• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Point, Line Segment, and Region-Based Stereo Matching for Mobile Robotics

    Thumbnail
    View/Open
    BrianPaulMcKinnonThesis.pdf (3.453Mb)
    Date
    2009-09-04
    Author
    McKinnon, Brian Paul
    Metadata
    Show full item record
    Abstract
    At the heart of every stereo vision algorithm is a solution to the matching problem - the problem of finding points in the right and left image that correspond to a single point in the real world. Applying assumptions regarding the epipolar rectification and color similarity between two frames is often not possible for real-world image capture systems, like those used in urban search and rescue robots. More flexible and robust feature descriptors are necessary to operate under harsh real world conditions. This thesis compares the accuracy of disparity images generated using local features including points, line segments, and regions, as well as a global framework implemented using loopy belief propagation. This thesis will introduce two new algorithms for stereo matching using line segments and regions, as well as several support structures that optimize the algorithms performance and accuracy. Since few complete frameworks exist for line segment and region features, new algorithms that were developed during the research for this thesis will be outlined and evaluated. The comparison includes quantitative evaluation using the Middlebury stereo image pairs and qualitative evaluation using images from a less structured environment. Since this evaluation is grounded in urban search and rescue robotics, processing time is a significant constraint which will be evaluated for each algorithm. This thesis will show that line segment-based stereo vision with a gradient descriptor achieves at least a 10% better accuracy than all other methods used in this evaluation while maintaining the low runtime associated with local feature based stereo vision.
    URI
    http://hdl.handle.net/1993/3191
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV