Modelling mitochondrial complex IV bioenergetics

Loading...
Thumbnail Image
Date
2016
Authors
Cadonic, Chris
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A computational model for mitochondrial function has been developed from oxygen concentration data measured in the Oroboros Oxygraph-2k and oxygen consumption rates measured in the Seahorse XF24 Analyzer. Measurements were acquired using embryonic-cultured cortical neurons and isolated mitochondria from CD1 mice. Based on the biological mechanism of mitochondrial activity, a computational model was developed using biochemical kinetic modelling. To modulate mitochondrial activity, dysfunctions were introduced by injecting the inhibiting reagents oligomycin, rotenone, and antimycin A, and the uncoupling reagent carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) during measurements. To incorporate these changes, model equations were adapted and globally calibrated to experimental data using the genetic algorithm developed by Jason Fiege of the University of Manitoba by fitting oxygen concentration data. The model was coded in MATLAB R2014a along with the development of a graphical user interface for simulating mitochondrial bioenergetics in silico.
Description
Keywords
Mathematical Model, Computational Model, Mitochondria, Bioenergetics, Kinetics, Oroboros Oxygraph-2k, Complex IV
Citation