• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two novel off-screen navigation techniques

    Thumbnail
    View/Open
    Final Thesis.pdf (5.086Mb)
    Date
    2009-04-23
    Author
    Nezhadasl, Mahtab
    Metadata
    Show full item record
    Abstract
    In large workspaces that do not fit on the screen space, users have to navigate to various regions outside the viewport to locate items of interest. Researchers have developed a variety of different navigation techniques to improve the performance of working with large workspaces. In this thesis I design, implement, and evaluate two novel navigation techniques to access off-screen content. I call these techniques Multiscale Window and Crystal Ball. The design of these two techniques was based on two hybrid interaction systems WinHop and Multiscale Zoom. Multiscale Window takes advantage of Multiscale Zoom to provide an overview of the context by incorporating full-detail object representations (proxies), and Crystal Ball is an improvement to WinHop. The implemented techniques were designed to alleviate the shortcomings of both hybrid techniques; Multiscale Zoom lacks the ability to provide detail information of overlapped proxies, and WinHop does not facilitate navigation to the off-screen region due to the animation. I evaluated the Multiscale Window and Crystal Ball techniques in two experiments. In the first experiment (N = 14) a Tablet PC with a digital pen as an input device was used. Results showed that there was no significant difference between Multiscale Window and Multiscale Zoom. However, Crystal Ball showed improved effects over WinHop in most tasks. The second experiment (N = 14) compared the same techniques as in experiment one, on a PC with a mouse as input device. The results indicated that subjects were faster with Crystal Ball than WinHop. Like the first experiment, Multiscale Window did not show any significant improvement over Multiscale Zoom.
    URI
    http://hdl.handle.net/1993/3153
    Collections
    • FGS - Electronic Theses and Practica [25061]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV