• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kinetic Properties of Triple Junctions in Metals Studied by Atomistic Simulations

    Thumbnail
    View/Open
    Qingzhe_Song.pdf (4.260Mb)
    Date
    2015-02-27
    Author
    Qingzhe, Song Jr
    Metadata
    Show full item record
    Abstract
    Nanocrystalline materials could exhibit high mechanical yield strength. Nevertheless, with a high volume fraction in nanocrystalline material, grain boundaries and triple junctions which store a relatively high free energy, are thermally instable which potentially contribute to grain growth. On the other hand, since both grain boundaries and triple junctions are prior sites of impurity enrichment which could in return reduce the triple junction energy, alloys with impurity enriched in grain boundaries and triple junctions are widely applied to stabilize the nanostructures. However, past studies mainly focused on grain boundaries and the kinetic properties of triple junctions and their influences on the thermal stability of nanocrystalline metals is less studied. In this work, triple junction mobility and impurity diffusivity in triple junction are studied by molecular dynamics simulations. Specifically, interface random walk method due to thermal fluctuation which has been widely applied to extract grain boundary mobility is extended to study triple junction motion.
    URI
    http://hdl.handle.net/1993/30282
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV