• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship (login required)
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship (login required)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of driving forces and bending fatigue on structural performance of a novel concrete-filled fibre-reinforced-polymer tube flexural pile

    View/Open
    Helmi_Effects_of_driving.pdf (1.034Mb)
    Date
    2006-06-30
    Author
    Helmi, K
    Fam, A
    Mufti, AA
    Hall, JM
    Metadata
    Show full item record
    Abstract
    The effects of driving forces and high-cycle fatigue on the flexural performance of a novel pile consisting of a concrete-filled glass-fibre-reinforced polymer (GFRP) tube (CFFT) are investigated. A 367 mm diameter CFFT pile was driven and then extracted from the ground. Two 6 m segments cut from the upper and lower ends of the pile were tested to failure under monotonic bending and compared with a similar undriven CFFT pile. In addition, a 625 mm diameter CFFT and a conventional 508 mm square prestressed concrete pile of similar moment capacities, both 13.1 m long, were driven, tested in the field under lateral loads, and compared. It was found that driving forces have a marginal effect (about 5% reduction) on the flexural strength of CFFT piles. Also, CFFT piles have larger deflections than prestressed piles do. Because the GFRP tube is the sole reinforcement for the CFFT system, a comprehensive fatigue test program was conducted: coupons cut from the tube were tested under cyclic loading at various stress levels (20%-60% of ultimate) to establish the S-N curve and stiffness-degradation characteristics of the tube. A full-scale 367 mm diameter and 6 m long CFFT pile was tested under reversed cyclic bending at 60% of ultimate moment to validate the coupon test results. It is recommended that the service moment be limited to 20%-30% of ultimate moment to achieve at least 1 million cycles.
    URI
    http://hdl.handle.net/1993/2974
    DOI
    10.1139/l05-075
    Collections
    • University of Manitoba Scholarship (login required) [171]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV