• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship (login required)
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship (login required)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nucleoplasmic calcium regulation in rabbit aortic vascular smooth muscle cells

    View/Open
    Abrenica_Nucleoplasmic_calcium.pdf (909.3Kb)
    Date
    2003-09-30
    Author
    Abrenica, B
    Pierce, GN
    Gilchrist, JSC
    Metadata
    Show full item record
    Abstract
    In this study, we investigated whether nucleoplasmic free Ca2+ in aortic vascular smooth muscle cells (VSMCs) might be independently regulated from cytosolic free Ca2+. Understanding mechanisms and pathways responsible for this regulation is especially relevant given the role of a numerous intranuclear Ca2+-sensitive proteins in transcriptional regulation, apoptosis and cell division. The question of an independent regulatory mechanism remains largely unsettled because the previous use of intensitometric fluorophores (e.g., Fluo-3) has been criticized on technical grounds. To circumvent the potential problem of fluorescence artifact, we utilized confocal laser scanning microscopy to image intracellular Ca2+ movements with the ratiometric fluorophore Indo-1. In cultured rabbit VSMCs, we found sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pumps and ryanodine receptor (RyR) Ca2+ channel proteins to be discretely arranged within a perinuclear locus, as determined by fluorescent staining patterns of BODIPY(R) FL thapsigargin and BODIPY(R) FL-X Ry. When intracellular Ca2+ stores were mobilized by addition of thapsigargin (5 muM) and activatory concentrations of ryanodine (1 muM), Indo-1 ratiometric signals were largely restricted to the nucleoplasm. Cytosolic signals, by comparison, were relatively small and even then its spatial distribution was largely perinuclear rather homogeneous. These observations indicate perinuclear RyR and SERCA proteins are intimately involved in regulating VSMC nucleoplasmic Ca2+ concentrations. We also observed a similar pattern of largely nucleoplasmic Ca2+ mobilization upon exposure of cells to the immunosuppressant drug FK506 (tacrolimus), which binds to the RyR-associated immunophillin-binding proteins FKBP12 and FKBP12.6. However, initial FK506-induced nucleoplasmic Ca2+ mobilization was followed by marked reduction of Indo-1 signal intensity close to pretreatment levels. This suggested FK506 exerts both activatory and inhibitory effects upon RyR channels. The latter was reinforced by observed effects of FK506 to only reduce nucleoplasmic Indo-1 signal intensity when added following pretreatment with both activatory and inhibitory concentrations of ryanodine. These latter observations raise the possibility that VSMC nuclei represent an important sink of intracellular Ca2+ and may help explain vasodilatory actions of FK506 observed by others.
    URI
    http://hdl.handle.net/1993/2915
    DOI
    10.1139/y03-005
    Collections
    • University of Manitoba Scholarship (login required) [171]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV