• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pathologic response prediction to neoadjuvant chemotherapy utilizing pretreatment near-infrared imaging parameters and tumor pathologic criteria

    Thumbnail
    View/Open
    s13058-014-0456-0.xml (198.7Kb)
    s13058-014-0456-0.pdf (1.835Mb)
    Date
    2014-10-28
    Author
    Zhu, Quing
    Wang, Liqun
    Tannenbaum, Susan
    Ricci, Andrew
    DeFusco, Patricia
    Hegde, Poornima
    Metadata
    Show full item record
    Abstract
    Abstract Introduction The purpose of this study is to develop a prediction model utilizing tumor hemoglobin parameters measured by ultrasound-guided near-infrared optical tomography (US-NIR) in conjunction with standard pathologic tumor characteristics to predict pathologic response before neoadjuvant chemotherapy (NAC) is given. Methods Thirty-four patients’ data were retrospectively analyzed using a multiple logistic regression model to predict response. These patients were split into 30 groups of training (24 tumors) and testing (12 tumors) for cross validation. Tumor vascularity was assessed using US-NIR measurements of total hemoglobin (tHb), oxygenated (oxyHb) and deoxygenated hemoglobin (deoxyHb) concentrations acquired before treatment. Tumor pathologic variables of tumor type, Nottingham score, mitotic index, the estrogen and progesterone receptors and human epidermal growth factor receptor 2 acquired before NAC in biopsy specimens were also used in the prediction model. The patients’ pathologic response was graded based on the Miller-Payne system. The overall performance of the prediction models was evaluated using receiver operating characteristic (ROC) curves. The quantitative measures were sensitivity, specificity, positive and negative predictive values (PPV and NPV) and the area under the ROC curve (AUC). Results Utilizing tumor pathologic variables alone, average sensitivity of 56.8%, average specificity of 88.9%, average PPV of 84.8%, average NPV of 70.9% and average AUC of 84.0% were obtained from the testing data. Among the hemoglobin predictors with and without tumor pathological variables, the best predictor was tHb combined with tumor pathological variables, followed by oxyHb with pathological variables. When tHb was included with tumor pathological variables as an additional predictor, the corresponding measures improved to 79%, 94%, 90%, 86% and 92.4%, respectively. When oxyHb was included with tumor variables as an additional predictor, these measures improved to 77%, 85%, 83%, 83% and 90.6%, respectively. The addition of tHb or oxyHb significantly improved the prediction sensitivity, NPV and AUC compared with using tumor pathological variables alone. Conclusions These initial findings indicate that combining widely used tumor pathologic variables with hemoglobin parameters determined by US-NIR may provide a powerful tool for predicting patient pathologic response to NAC before the start of treatment. Trial registration ClincalTrials.gov ID: NCT00908609 (registered 22 May 2009)
    URI
    http://hdl.handle.net/1993/28568
    DOI
    10.1186/s13058-014-0456-0
    Collections
    • Faculty of Science Scholarly Works [209]
    • University of Manitoba Scholarship [1952]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV