• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Proteomic characterization of serine hydrolase activity and composition in normal urine

    Thumbnail
    View/Open
    1559-0275-10-17.xml (95.82Kb)
    1559-0275-10-17.pdf (1.076Mb)
    1559-0275-10-17-S3.PPT (544.5Kb)
    1559-0275-10-17-S1.PPT (348.5Kb)
    1559-0275-10-17-S2.PPT (862Kb)
    1559-0275-10-17-S4.PPT (220Kb)
    Date
    2013-11-15
    Author
    Navarrete, Mario
    Ho, Julie
    Krokhin, Oleg
    Ezzati, Peyman
    Rigatto, Claudio
    Reslerova, Martina
    Rush, David N
    Nickerson, Peter
    Wilkins, John A
    Metadata
    Show full item record
    Abstract
    Abstract Background Serine hydrolases constitute a large enzyme family involved in a diversity of proteolytic and metabolic processes which are essential for many aspects of normal physiology. The roles of serine hydrolases in renal function are largely unknown and monitoring their activity may provide important insights into renal physiology. The goal of this study was to profile urinary serine hydrolases with activity-based protein profiling (ABPP) and to perform an in-depth compositional analysis. Methods Eighteen healthy individuals provided random, mid-stream urine samples. ABPP was performed by reacting urines (n = 18) with a rhodamine-tagged fluorophosphonate probe and visualizing on SDS-PAGE. Active serine hydrolases were isolated with affinity purification and identified on MS-MS. Enzyme activity was confirmed with substrate specific assays. A complementary 2D LC/MS-MS analysis was performed to evaluate the composition of serine hydrolases in urine. Results Enzyme activity was closely, but not exclusively, correlated with protein quantity. Affinity purification and MS/MS identified 13 active serine hydrolases. The epithelial sodium channel (ENaC) and calcium channel (TRPV5) regulators, tissue kallikrein and plasmin were identified in active forms, suggesting a potential role in regulating sodium and calcium reabsorption in a healthy human model. Complement C1r subcomponent-like protein, mannan binding lectin serine protease 2 and myeloblastin (proteinase 3) were also identified in active forms. The in-depth compositional analysis identified 62 serine hydrolases in urine independent of activity state. Conclusions This study identified luminal regulators of electrolyte homeostasis in an active state in the urine, which suggests tissue kallikrein and plasmin may be functionally relevant in healthy individuals. Additional serine hydrolases were identified in an active form that may contribute to regulating innate immunity of the urinary tract. Finally, the optimized ABPP technique in urine demonstrates its feasibility, reproducibility and potential applicability to profiling urinary enzyme activity in different renal physiological and pathophysiological conditions.
    URI
    http://hdl.handle.net/1993/23360
    DOI
    10.1186/1559-0275-10-17
    Collections
    • Rady Faculty of Health Sciences Scholarly Works [1296]
    • University of Manitoba Scholarship [1981]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV