• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular dynamics study of liquid crystals by 2H and 14N NMR spectroscopy

    Thumbnail
    View/Open
    MScThesis-YanbinChen_v2.pdf (1.916Mb)
    Date
    2006-03-28
    Author
    Chen, Yanbin
    Metadata
    Show full item record
    Abstract
    Deuterium (2H) and Nitrogen 14 (14N) NMR spectroscopy were used to investigate the molecular dynamics in one thermotropic and one lyotropic liquid crystal. Quantitative analyses of deuterium spectral densities of motion for three deuteron sites (ring and C[alpha]) at two different Larmor frequencies (46 and 61.4MHz) are reported in the smectic A and C* phases of (S)-[4-(2-methylbutyl)phenyl]-4’-octylbiphenyl carboxylate (8BEF5-d15), a partially deuterated smectogen. 2H spectral densities for two deuteron sites on the chain (C1 and C2/C3) at Larmor frequency 61.4MHz and 14N spectral densities for the head group (NH4+) of the molecule decylammonium chloride (DACl) at 28.9MHz are reported in the lamellar phase of a partially deuterated sample, DACl-d11/H2O binary system. The motional model is the small step rotational diffusion for reorientations plus internal rotations in the strong collision limit. In the chiral C* phase of the first molecule, 8BEF5-d15, the helical axes are aligned along the external magnetic field and the deuteron spins appear to relax in a macroscopically uniaxial environment. After including the molecular tilt, the reorientation processes in the SmC* phase are found to have higher activation energies than those in the smectic A phase. Applying the same motional models to the lyotropic molecule DACl-d11, the tumbling motion of the long axis of the molecule in the aggregates is more rigorous in comparison to the molecular spinning motion. The similarity of deuterium spectral densities from the C1 and C2/C3 sites may indicate a relatively rigid unit of C1-C2-C3-C4 in the backbone.
    URI
    http://hdl.handle.net/1993/222
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV