• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface Roughness Effects on Separated and Reattached Turbulent Flows in Open Channel

    Thumbnail
    View/Open
    ampadu_mintah_afua.pdf (1.864Mb)
    Date
    2013-07-04
    Author
    Ampadu-Mintah, Afua
    Metadata
    Show full item record
    Abstract
    An experimental research was performed to study the effects of surface roughness on the characteristics of separated and reattached turbulent flows in an open channel. A backward facing step was used to induce flow separation. The rough surfaces comprised wire mesh grit-80 and sand grains of average diameter 1.5 mm. In each experiment, the Reynolds number based on the step height and freestream velocity of approach flow was fixed at 3240 and the Reynolds number based on the approach flow depth and freestream velocity was kept constant at 25130. Particle image velocimetry (PIV) technique was used to measure the flow velocity. The results showed that roughness effects on the mean and turbulent quantities are evident only in the recovery region. Moreover, roughness effects on the flow dynamics are dependent on the specific roughness element.
    URI
    http://hdl.handle.net/1993/21699
    Collections
    • FGS - Electronic Theses and Practica [25495]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV