Show simple item record

dc.contributor.author Njue, Catherine en_US
dc.date.accessioned 2007-05-22T15:10:23Z
dc.date.available 2007-05-22T15:10:23Z
dc.date.issued 2001-05-01T00:00:00Z en_US
dc.identifier.uri http://hdl.handle.net/1993/1943
dc.description.abstract Multivariate data collected over time on the same experimental unit, referred to as multivariate longitudinal data, are typical of many agricultural, biological, clinical and medical studies. One way to account for the correlations that exist both within and across time is to express the variance-covariance matrix as the Kroneeker product of two matrices. These matrices, denoted by [Delta] and [Omega], reflect the characteristic and time dimensions underlying multivariate longitudinal data. The purpose of this thesis is to investigate the asymptotic relative efficiency (ARE) of hypothesis tests in the linear model for multivariate longitudinal data, evaluated through the trace asymptotic relative efficiency (TARE) and curvature asymptotic relative efficiency (CARE). The gain in efficiency from exploiting a Kronecker product covariance structure when it is appropriate is investigated. To estimate the TARE and CARE, a Monte-carlo simulation study is conducted. The loss of efficiency from imposing a Kronecker product model when it is not appropriate is also considered. Using a class of non-Kroneeker product covariance matrices and an index, which quantifies how far a given matrix departs from Kronecker product structure, a Monte-carlo simulation study is conducted. Ordinary least squares and generalised least squares procedures were also compared under a Kronecker product model. For the designs and covariance matrices considered, the gain in efficiency from exploiting the Kronecker product covariance structure is most pronounced when there is high correlation across time. For the class of non-Kronecker product covariance matrices defined, a noticeable loss of efficiency occurs when the covariance matrix is far from Kronecker product structure, in particular when there is a moderate departure from the null hypothesis under consideration. The use of ordinary least squares, which ignores cross-sectional and longitudinal correlations, is shown to be inefficient, especially when these correlations are high in absolute value. en_US
dc.format.extent 10620113 bytes
dc.format.extent 184 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.language en en_US
dc.language.iso en_US
dc.rights info:eu-repo/semantics/openAccess
dc.title On the efficiency of testing procedures in the linear model for multivariate longitudinal data en_US
dc.type info:eu-repo/semantics/doctoralThesis
dc.degree.discipline Statistics en_US
dc.degree.level Doctor of Philosophy (Ph.D.) en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics