• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Progressive image transmission using fractal and wavelet techniques with image complexity measures

    Thumbnail
    View/Open
    NQ57505.pdf (13.15Mb)
    Date
    2001-03-01
    Author
    Dansereau, Richard M.
    Metadata
    Show full item record
    Abstract
    This thesis presents the theoretical and experimental development of progressive image transmission techniques involving fractals and wavelets, with emphasis on progressive image complexity measures to evaluate and guide the image decomposition. A new and novel progressive image transmission technique is presented where textures are synthesized to recreate an image. The textures are synthesized by generating fractal surfaces such that they interpolate control points, resulting in a higher level representation of an image. From this work, it was conjectured that fractal and multifractal complexity measures can serve as quantitative quality measures, since these dimensions characterize object complexity. The framework and experimentation for a complexity measure is developed based on the Renyi generalized entropy, the Renyi dimension spectrum, and the Mandelbrot spectrum. This framework is extended to the newly introduced relative Renyi dimension spectrum, which forms a new class of measures referred to as relative multifractal dimensions. Experimental results show that these multifractal dimensions, and in particular the relative Renyi dimension spectrum, has properties consistent with an image quality measure and correlate well with psychovisual characteristics. It is shown that the relative Renyi dimension spectrum is more resilient to calculation errors as compared to the other image quality measures. These image complexity measures are used to analyze and identify of regions of complexity disparity in an image for wavelet based progressive image transmission. Finally, the theoretical framework is developed to extend the idea of additive information cost functions in wavelet packet best basis searches such that the Renyi generalized entropy can serve as an entropy based information cost function.
    URI
    http://hdl.handle.net/1993/1890
    Collections
    • FGS - Electronic Theses and Practica [25517]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV