Show simple item record

dc.contributor.author Lam, Tam Le en_US
dc.date.accessioned 2007-05-18T19:56:52Z
dc.date.available 2007-05-18T19:56:52Z
dc.date.issued 1999-05-01T00:00:00Z en_US
dc.identifier.uri http://hdl.handle.net/1993/1740
dc.description.abstract Improvements in technology of the microelectronic areas have allowed researchers to develop Integrated Circuits (ICs) with higher speed and smaller size. However these improvements have also increased the difficulties for diagnostic testing of the circuits in the radio frequency (RF) range. The ideal measurement technique must be non-invasive with high spatial resolution, high temporal resolution, high sensitivity. It must be easy to use and cost effective. The current techniques do not meet the above combined criteria. This thesis introduces a simple non-contact technique, based on the Electrostatic Force Microscope (EFM), for internal testing of microelectronic circuits. A heterodyne technique which utilizes short electrical pulses for sampling is implemented to extract an arbitrary periodic digital pattern. This thesis also evaluates three narrow pulse generation techniques. An Integrated Circuit version of the Non-Linear Transmission Line (NLTL) was designed, fabricated and tested. Using the heterodyne technique, measurements of 0.5 Gb/s and 1 Gb/s are performed on 50 W transmission line as well as on internal nodes of BiCMOS and CMOS integrated circuits. Results show that the proposed technique is a capable tool for diagnostic testing of high frequency microelectronic circuits while satisfying the above requirements. en_US
dc.format.extent 6236912 bytes
dc.format.extent 184 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.language en en_US
dc.language.iso en_US
dc.rights info:eu-repo/semantics/openAccess
dc.title Non-invasive internal pattern extraction of integrated circuits using electrostatic force microscopy en_US
dc.type info:eu-repo/semantics/masterThesis
dc.degree.discipline Electrical and Computer Engineering en_US
dc.degree.level Master of Science (M.Sc.) en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics