• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancement of antitumour activity and structure-activity study of bioreductive agents

    Thumbnail
    View/Open
    MQ35088.pdf (6.232Mb)
    Date
    1999-01-01
    Author
    Wang, Xiaowei
    Metadata
    Show full item record
    Abstract
    DT-diaphorase is a two-electron reducing enzyme that activates the bioreductive antitumour agent, mitomycin C (MMC). Cell lines having elevated levels of DT-diaphorase are generally more sensitive to MMC. This study demonstrates that induction of DT-diaphorase can increase the cytotoxic activity of MMC in human tumour cell lines and suggests that it may be possible to use non-toxic inducers of DT-diaphorase to enhance the efficacy of bioreductive antitumour agents. Bioreductive antitumour agents are uniquely suited to the improvement of tumour selectivity by an "enzyme-directed" approach to tumour targeting. However, none of the bioreductive agents developed to date have been specific for activation by a single reductive enzyme, in part, due to a lack of knowledge of structural factors that produce selectivity for activation by reductive enzymes. We used a series of model benzoquinone mustard bioreductive agents to investigate the role of functional groups in modifying the specificity for drug activation byDT-diaphorase. We compared the parent agent, benzoquinone mustard (BM), with a series of analogues having different functional groups in their structures to identify structure-activity relationships. We found that methoxy, phenyl and chloro functional groups decreased the rate of reduction of the quinone group by DT-diaphorase. The methoxy group resulted in DT-diaphorase becoming an activating enzyme for 5-methoxy-BM (MBM) compared to an inactivation enzyme for BM. The functional groups also affected the ability of the reduced product to undergo redox cycling. (Abstract shortened by UMI.)
    URI
    http://hdl.handle.net/1993/1601
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV