• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical modelling of the effects of bin inserts on stress distribution in storage bins for cohesive powder material

    Thumbnail
    View/Open
    MQ32972.pdf (6.384Mb)
    Date
    1998-08-01
    Author
    Visen, Neeraj Singh
    Metadata
    Show full item record
    Abstract
    A study was undertaken to demonstrate the applicability of modified Cam-clay model to the study stress distribution in storage bins. Effects of insert location, insert size, insert friction, hopper outlet size, hopper slope, and bin wall friction on stress distribution in ground feed inside storage bin were investigated using finite element models. Simulations were carried out for filling of the storage bin and initiating draw-down. Stress distribution were plotted after the bin was filled with ground feed and after draw-down was initiated. Results of simulation were compared to results of experiments on model size bins. The modified Cam-clay model is an elastoplastic model that uses three critical state parameters in the constitutive equation: $\lambda,\ \kappa,\ {\rm and}\ \Gamma.$ The Cam-clay parameters for ground feed were determined by triaxial tests. The parameters $\lambda,\ \kappa,\ \Gamma,$ and M were 0.045, 0.016, 2.003, and 1.977, respectively. SIGMA/W software was used to prepare models of storage bins and solve finite element equations. Stress distribution changed in the bin when any of he insert or bin parameters were changed. The region near the hopper outlet had low vertical and horizontal stresses in bins where high flowability was expected. It was observed that mounting method of insert resulted in change of flow behaviour. Flowability increased and then remained unchanged as the insert was mounted higher up in the bin. Flowability increased as insert size and friction was decreased. Flowability increased with increase in size of hopper outlet but decreased as the hopper slope was reduced. Chances of interrupted flow decreased with decrease in wall friction.
    URI
    http://hdl.handle.net/1993/1463
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV