• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Decomposition methods for finite queue networks with a non-renewal arrival process in discrete time

    Thumbnail
    View/Open
    mq23489.pdf (7.571Mb)
    Date
    1997-03-01
    Author
    Schamber, Michelle L.
    Metadata
    Show full item record
    Abstract
    The purpose of this thesis is to develop a decomposition method for obtaining the queue length distributions of open, tandem and split queue networks with Markovian arrival processes, and finite intermediate queues. Equivalent geometric systems are also studied to determine if maintaining the relationship between the decomposed queues improves the results over existing methods. This thesis contains an introduction, conclusion and three main sections: a literature review; a section outlining the exact and decomposition procedures for the tandem networks; and a section outlining the exact and decomposition procedures for the split networks. Neuts' (46) Matrix Geometric Method is adopted to provide exact results which are used to validate the approximate results. It can be concluded that for tandem and split systems with Markovian arrival processes the decomposition method developed in this thesis is superior to existing methods which fail to represent the dependence between the isolated queues. The opposite is true for both configurations of the geometric systems. That is, existing methods which do not maintain the dependence in their decomposition approach produce equal or superior results. Therefore, it can be concluded that utilizing the approximation method which captures the relationship between the queues is not worth the extra effort for geometric systems.
    URI
    http://hdl.handle.net/1993/1090
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV