Show simple item record

dc.contributor.supervisor Dr. John van Rees,Computer Science en
dc.contributor.author Karim, Lutful
dc.date.accessioned 2005-01-31T15:13:59Z
dc.date.available 2005-01-31T15:13:59Z
dc.date.issued 2005-01-31T15:13:59Z
dc.identifier.uri http://hdl.handle.net/1993/105
dc.description.abstract An (n, k, p, t) lotto design is a collection of k-subsets of a set X of n numbers wherein every p-subset of X must intersect at least one k-subset in t or more elements. L(n,k,p,t) is the minimum number of k-subsets which guarantees an intersection of at least t numbers between any p-subset of X and at least one of the k-subsets. To determine L(n,k,p,t) is the main goal of lotto design research. In previous work on lotto designs, other researchers used sequential algorithms to find bounds for L(n,k,p,t). We will determine the number of non-isomorphic optimal lotto designs on 5 or 6 blocks for n,k,p,t <= 20 and also improve lower bounds for L(n,k,p,t) >= 6 if possible by a more efficient implementation of a backtracking algorithm. en
dc.format.extent 351752 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.subject Lotto en
dc.subject Backtracking
dc.subject Isomorphism
dc.title Improvement to lotto design tables en
dc.type Electronic Thesis or Dissertation en
dc.degree.discipline Computer Science en
dc.contributor.examiningcommittee Dr. P.C. Li, Computer Science Dr. R. Padmanabhan, Mathematics en
dc.degree.level Master of Science (M.Sc.) en
dc.description.note May 2005 en


Files in this item

This item appears in the following Collection(s)

Show simple item record

View Statistics