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Abstract

In this thesis, direct numerical simulations have been preformed with a high-order

spectral element method computer code to investigate the Coriolis force effect on

a fully-developed turbulent flow confined within a circular pipe subjected to radial

system rotations. In order to study the radially rotating effects on the flow, a wide

range of rotation numbers (Roτ ) have been tested. In response to the system rotation

imposed, large-scale secondary flows appear as streamwise counter-rotating vortices,

which highly interact with the boundary layer and have a significant impact on the

turbulent flow structures and dynamics. A quasi Taylor-Proudman region occurs at

low rotation numbers, where the mean axial velocity is invariant along the rotating

axis. As the rotation number increases, laminarization occurs near the bottom wall

of the pipe, and the flow become fully laminarized when the rotation number ap-

proaches Roτ = 1.0. The characteristics of the flow field are investigated in both

physical and spectral spaces, which include the analyses of the first- and second-order

statistical moments, pre-multiplied spectra of velocity fluctuations, budget balance of

the transport equation of Reynolds stresses, and coherent flow structures.
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Chapter 1

Introduction

1.1 Background

Turbulent flows confined within a circular pipe subjected to radial system rotation

(the rotating direction being perpendicular to the axial center of the pipe) represent an

important subject with engineering applications in rotary machinery, rotating heat

exchangers and centrifugal separators. In response to the radial system rotation,

Coriolis forces act on the fluid flows as body forces, inducing large-scale secondary

flows in the cross-stream direction. The appearance of large-scale secondary flows has

a significant impact on the flow physics, statistical moments, and coherent structures.

1.2 Literature review

In this section, previous studies of the rotating effect on the turbulent boundary

flows are reviewed, which include the turbulent spanwise-rotating 2D-plane channel

and square duct flows, and turbulent radially-rotating circular pipe flows.

1



CHAPTER 1. INTRODUCTION 2

1.2.1 Turbulent 2D-plane channel and square duct flows sub-

jected to spanwise system rotation

In the current literature, numerical and experimental studies of rotating flows have

primarily focused on spanwise-rotating flows confined within either plane channels

or square ducts. Belhoucine et al. [1] conducted Reynolds averaged Navier-Stokes

(RANS) simulations of spanwise-rotating duct flows based on several explicit alge-

braic Reynolds stress models. They observed that the cross-stream flows consisted of

two large and two small counter-rotating vortices at a sufficiently high rotation num-

ber. Kristoffersen and Andersson [2] conducted direct numerical simulations (DNS) to

investigate spanwise-rotating plane channel flows. They observed Taylor-Görtler-like

vortices in the pattern of counter-rotating streamwise roll cells in the cross-stream

direction, and laminarization of the flow on the suction side of the plane channel at

high rotation numbers. Grundestam et al. [3] investigated the occurrence of lami-

narization in a spanwise-rotating plane channel, and indicated that the large-scale

longitudinal vortices in a spanwise-rotating channel are analogous to the Taylor-

Görtler vortices induced by surface curvature. Wallin et al. [4] also performed DNS

of spanwise-rotating channel flows using a pseudo-spectral method code. Through

a linear stability analysis, they showed that full laminarization is dominated by the

cycle of Tollmien-Schlichting (TS) waves at sufficiently high rotation numbers. Re-

cently, Xia et al. [5] conducted DNS to investigate the spanwise-rotating effects on the

first- and second-order statistical moments of the velocity field. Pallares and David-

son [6] conducted large-eddy simulation (LES) to study the turbulent flow confined

within a square duct at different rotation numbers. They investigated the effects of

system rotation on the secondary flows and the interaction of flow structures with

the four sidewalls. They demonstrated that system rotation significantly affects the

secondary flows which appear as counter-rotating streamwise roll cells near the cor-
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ners of duct, and descends the turbulence level associated with flow stabilization and

the development of a Taylor-Proudman (TP) region at high rotation numbers. Dai et

al. [7] conducted DNS to investigate the effects of spanwise system rotation on the

secondary flow pattern confined within a square duct. More specifically, they studied

the influence of the Coriolis force on the secondary flow of Prandtl’s second kind and

formation of vortical flow structures. Recently, Fang et al. [8] systematically stud-

ied the spanwise-rotating square duct flows using DNS, and observed that complete

laminarization is almost reached near the top and side walls of the square duct at

sufficiently high rotation numbers.

1.2.2 Turbulent circular pipe flows subjected to radial sys-

tem rotation

Turbulent flow through a stationary (non-rotating) circular pipe is a classical subject

and has been well studied using DNS (Eggels et al. [9], Wu and Moin [10], Chin et

al. [11], and Wu et al. [12]). However, based on a thorough literature review, it is

noticed that detailed studies of radially-rotating circular pipe are still lacking, and

the underlying flow physics of the impact of the Coriolis force on the generation of

both mean and turbulent secondary flow structures are not yet well understood. In

his pioneering work, Barua [13] studied radially-rotating laminar pipe flows using

an analytical approach, and obtained a semi-empirical equation to estimate the skin

friction coefficient. Ishigaki [14, 15] conducted DNS to analyze the similarity between

curved pipe flows and radially-rotating pipe flows. Both laminar and turbulent flow

patterns were investigated, and Ishgaki [14, 15] was able to demonstrate a similarity

between these two types of flows with respect to the skin friction coefficient, mean

Nusselt number and secondary flow structures. Besides a limited number of numerical

studies of radially-rotating pipe flow, the number of experimental studies is also very
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limited in the current literature. Lei et al. [16] performed a series of laser Doppler

anemometry (LDA) experiments of fully-developed laminar pipe flows under radial

system rotation. They studied the effects of Coriolis force on the mean and secondary

flows under different Reynolds numbers and rotation numbers.

1.3 Objectives

The objective of this thesis is to conduct a systematic DNS study of turbulent circular

pipe flows under radial system rotation for a wide range of rotation numbers. In total,

11 rotation numbers are tested, ranging from Roτ = 0.0 to 1.0. The characteristics of

the flow field are compared against those of a non-rotating pipe flow, and the effects

of the Coriolis force on the mean and turbulent flow structures are examined in both

physical and spectral spaces. Furthermore, through a budget analysis of Reynolds

stresses transport equations, the rotating effect on the turbulence energy transfer

between velocity fluctuating components are investigated.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: in Chapter 2, the test case

and numerical algorithm for solving the governing equations will be introduced. In

Chapter 3, the DNS results will be analyzed to understand the first- and second-

order statistical moments of the velocity field, spectra of velocity fluctuations, and

budget balance of the transport equation of Reynolds shear stresses. In Chapter 4,

major findings of this research and future studies will be summarized. Finally, in

Appendix A, the algorithm of the spectral-element code is documented.



Chapter 2

Test Case and Numerical

Algorithm

Figure 2.1 describes the circular pipe configuration with respect to both cylindrical

and rectangular coordinate systems. For the cylindrical coordinate system, r, θ and

z represent the radial, azimuthal and axial coordinates, and the three corresponding

velocity components are denoted using ur, uθ and uz, respectively. The axial-length

of the circular pipe is set to Lz = 20πR, where R is the pipe radius. In order to

study the rotating effects, a wide range of rotation numbers (Roτ = 2ΩR/uτ ) have

been tested, varying from Roτ = 0.0 (corresponding to the non-rotating case) to 1.0

(corresponding to the full laminarization case), with the Reynolds number fixed at

Reτ = uτR/ν = 180. Here, ν is the kinematic viscosity of the fluid. The flow is fully

developed, with a periodic boundary condition applied to the axial direction and a

no-slip condition enforced on the curved pipe surface. The equations that govern an

5



CHAPTER 2. TEST CASE AND NUMERICAL ALGORITHM 6

Figure 2.1: Configuration of a circu-
lar pipe under radial system rotation in
both cylindrical and rectangular coordi-
nate systems. The angular speed of ra-
dial system rotation of the pipe is Ω. The
three Coriolis force components are de-
noted using Cr, Cθ and Cz (in the radial,
azimuthal and axial directions, respec-
tively), with the arrows indicating their
directions.

Figure 2.2: Cross-sectional view of the
mesh. A spectral-element method is used
to discretize the cross section of the pipe
with 352 quadrilateral-structural ele-
ments with each element constructed us-
ing a 8th-order Gauss-Lobatto-Legendre
(GLL) Lagrange polynomial. In the ax-
ial direction (not shown), Fourier expan-
sion of 960 modes is used for spatial dis-
cretization.

incompressible flow with respect to a radially-rotating reference frame read

∇ · ~u = 0 , (2.1)

∂~u

∂t
+ ~u · ∇~u = −Πêz −

1

ρ
∇p+ ν∇2~u+ ~C , (2.2)

where ~u, ρ and p represent the velocity, density and pressure of the fluid, respectively,

Π is the constant mean axial pressure gradient, and êz is the base unit vector of the

z-direction, with |êz| ≡ 1. As shown in Fig. 2.1, the pipe rotates counterclockwise

(about the positive x-direction) at a constant angular speed Ω. In response to the

system rotation, Coriolis force ~C appears, with three components: Cr = 2Ωuzsinθ,

Cθ = 2Ωuzcosθ and Cz = −2Ω (ursinθ + uθcosθ) in the radial, azimuthal and axial

directions, respectively.
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The simulations were conducted with a spectral-element code so-called “Semtex”

(Blackburn and Sherwin [17]) developed using the C++ and FORTRAN programming

languages, and parallelized following the message passing interface (MPI) standard.

Figure 2.2 provides a cross-sectional view of the mesh used for performing DNS of

the pipe flow. This mesh is generated to not only satisfy the near-wall refinement,

but also to avoid the singularity problem at the pipe center in the discretization

of the governing equations with respect to a cylindrical coordinate system. Similar

meshes were used in Karniadakis and Sherwin [18], Sharma and Nandakumar [19], El

Khoury et al. [20], Di Liberto et al. [21] and Bolis et al. [22] for numerical simulation

of non-rotating pipe flows. This mesh was divided in 352 quadrilateral structural

elements, and a 8th-order Gauss-Lobatto-Legendre (GLL) Lagrange polynomial was

used for spatial discretization of each element. All physical quantities were calculated

with a Fourier expansion of 960 modes along the axial direction. In total, 21.8 million

grid points were used to perform the DNS. The grid resolution, measured in wall

coordinates, is uniform in the axial direction with ∆z+ = 11.78, and varies in the

azimuthal and radial directions with R∆θ+ = 1.78-6.40, ∆r+ = 0.25 at the first node

off the wall and ∆r+ = 1.03 at the pipe center. It should be indicated here that

in comparison with a finite-volume code (which is typically second-order accurate),

the Semtex code of Blackburn and Sherwin [17] used for performing the current DNS

is based on a high-accuracy spectral-element algorithm [17, 18], free from any non-

physical numerical dissipation [8, 23]. In effect, the current axial and azimuthal grid

resolutions are comparable to those used by Eggels et al. [9], Wu and Moin [10],

Wagner et al. [24] and Chin et al. [25] in their DNS studies of turbulent non-rotating

circular pipe flows at similar Reynolds numbers. However, the radial grid resolution

of the current DNS is mush finer than those implemented in these classical DNS

papers. The maximum radial grid resolution is ∆r+
max = 1.03 in the current study,

but was kept at ∆r+
max = 1.647-4.32 in Eggels et al. [9], Wu and Moin [10], Wagner et
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al. [24] and Chin et al. [25]. All simulations were performed on the WestGrid (Western

Canada Research Grid) supercomputers. In order to compute the flow statistics, for

each simulation at each rotation number, 300 instantaneous flow fields were generated

with approximately 310 GB data over 80 large-eddy turnover times (LETOTs, defined

as R/uτ ).

In result analysis, an instantaneous turbulence variable Φ is decomposed as Φ =

〈Φ〉 + Φ′, where 〈Φ〉 is an averaged value over time and the homogeneous (z) direc-

tion, and Φ′ denotes the relative fluctuating value. All quantities expressed in wall

coordinates are indicated using superscript ‘+’, and the nominal wall friction velocity

uτ used for calculating the wall coordinates is determined based on the non-rotating

pipe flow case. The origin for the radial coordinates r is located at the pipe cen-

ter. In order to conduct near-wall analysis (as in a turbulent plane channel), a wall

coordinate y+ is also introduced to simplify the symbol system, which is defined as

y+ def
= (R− r)uτ/ν.



Chapter 3

Results analysis

In this chapter, the DNS results of radially-rotating pipe flow are analyzed and com-

pared against those of a non-rotating pipe flow. The comparative study includes 11

rotation numbers, ranging from Roτ = 0.0 to 1.0. In the following (sections 3.1-3.5),

I first investigate the circular pipe length effects on turbulence statistics with tur-

bulence intensities, two-point auto-correlation coefficients and pre-multiplied energy

spectra; and then present a study of the instantaneous and mean velocity fields to

explain the basic physical characteristics of the flow, followed by the analyses of sta-

tistical moments, spectra of velocity fluctuations, budget balance of the transport

equation of Reynolds stresses, and turbulent flow structures.

3.1 Test of the Axial Domain Size

In DNS of a fully-developed turbulent pipe flow under a periodic boundary condition

applied to the axial direction, the only geometrical factor that needs to be consid-

ered is the axial length of the computational domain, which has a direct impact on

the predictive accuracy of flow statistics. Eggels et al. [9] conducted experiments

9
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and DNS to study fully-developed pipe flows at Reynolds number Reτ = 180 and

compared their pipe flow results with those of a fully-developed plane channel flow.

In their study, an axial-length of 10R was used to perform numerical simulations

which led to nonzero correlation of velocity fluctuations at half axial length of the

computational domain, indicating that this pipe length was insufficient for producing

accurate flow statistics. Later, Kim and Adrian [26] conducted wind-tunnel measure-

ments using hot-film anemometry, and investigated the spectra of the axial velocity

fluctuations. They observed very large-scale motions (VLSM) in the outer layer re-

gion, with a maximal wavelength of 12R-14R. Recently, Chin et al. [11] conducted

DNS of fully developed turbulent pipe flows at Reynolds numbers of Reτ = 170 and

500 to investigate the axial domain size effects on turbulence statistics. Based on

a thorough examination of the turbulence intensities, two-point correlations and the

spectra of velocity fluctuations, they suggested that an axial domain size of 8πR was

enough to capture all mean and turbulent flow structures at Reτ = 170. In their

DNS study of stationary low-Reynolds number turbulent plane channel flow, Kim et

al. [27] indicated that the streamwise domain size should be kept long enough in order

to capture the largest scale eddy motions by ensuring that the velocity fluctuations

become uncorrelated over one half the streamwise domain length. However, based on

the study of Chin et al. [11], it is clear that the criterion for judging a proper axial

domain size for a pipe flow can be based on many physical quantities other than just

the two-point auto-correlation of velocity fluctuations. Recently, Yang and Wang [28]

performed DNS of streamwise-rotating plane channel flows at very high rotation num-

bers in order to investigate the influence of the Coriolis force on the streamwise growth

of the Taylor-Görtler vortices. They studied the effect of streamwise domain size on

the predictive accuracy of flow statistics in both physical and spectral spaces, and

concluded that the minimal computational domain depends strongly on the specific

physical quantity under investigation.
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Thus far, a systematic study of the proper axial computational domain size for

numerical simulation of radially-rotating pipe flow is still lacking in the current liter-

ature. In view of this, I aim at performing a comparative study to choose a proper

streamwise computational domain size for conducting DNS of circular pipe flows un-

der radial system rotations. Following the approach of Yang and Wang [28] for DNS

of a streamwise-rotating plane channel flow, I will judge the effect of the axial pipe

dimension on the predictive accuracy of a variety of physical quantities such as tur-

bulence intensities, two-point auto-correlation coefficients, and pre-multiplied energy

spectra of velocity fluctuations. Five pipe lengths for Lz = 2πR, 5πR, 8πR, 12πR

and 20πR will be compared. The longest pipe (i.e., Lz = 20πR) tested here is also

the longest in the current literature on DNS study of radially-rotating pipe flows. In

the following analysis, I will focus on the comparison of a rotating flow of Roτ = 0.2

against a non-rotating flow (of Roτ = 0.0). The reason that DNS results of Roτ = 0.2

are presented here is that the highest turbulence level is observed on the pressure

side of the pipe at this particular rotation number. In fact, it will be shown later

that at the highest rotation number (Roτ = 1.0) tested in this research, the pipe flow

actually becomes fully laminarized.

Figure 3.1(a) compares the root-mean square (RMS) values of the three velocity

components of the rotating flow obtained based on five different pipe lengths in the

central vertical plane (θ = 90◦) at Roτ = 0.2. Clearly, owing to the system rotation

imposed, the profiles of all three RMS velocities are no longer symmetrical across

the central vertical plane. The minimal values of turbulence intensities occur at

y+ = 108.41, a location that deviates from the pipe center (at y+ = 180). It is

interesting to observe that the peak value of u′+z,rms is well predicted in all five cases

of different computational pipe lengths. The peak value of u′+z,rms is around 2.82

at y+ = 14.24 on the pressure side (θ = 90◦) of the pipe and is around 2.21 at

y+ = 338.65 on the suction side (θ = 270◦) of the pipe. Furthermore, as is clear
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(a) Turbulence intensity (b) Two point auto-correlation
coefficients

Figure 3.1: Comparison of turbulence intensities as a function of y+ in the central
vertical plane (θ = 90◦) and two-point auto-correlation coefficients along the axial
direction of the pipe at the wall-normal position of y+ = 14.24 (on the pressure side
of the pipe, for θ = 90◦) for Lz = 2πR, 5πR, 8πR, 12πR and 20πR. The comparison
is made with the rotation number kept at Roτ = 0.2.

from Fig. 3.1(a), the value of u′+r,rms and u′θ,rms are insensitive to the pipe lengths

testes. However, the profiles of u′+z,rms show that the predictions based on three longer

pipes (Lz = 8πR, 12πR and 20πR) are close to each other. In comparison, the value

of u′+z,rms predicted based on the pipe length of Lz = 2πR is slightly higher in the

pipe center. These indicate that the relatively short computational pipe lengths of

Lz = 2πR and 5πR are insufficient to give an accurate prediction of the u′+z,rms value.

This observation is consistent with the study of non-rotating pipe flows of Chin et

al. [11]. From Fig. 3.1(a), it is observed that the value of turbulence intensity u′+z,rms

reaches it maximum at wall-normal position y+ = 14.24 on the pressure side of the

rotating pipe. In view of this, this specific position has been chosen for the calculation

of the two-point auto-correlation coefficients and pre-multiplied energy spectra in my

comparative study of the pipe length.

Figure 3.1(b) compares the two-point auto-correlation coefficients along the axial
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direction of the pipe at the wall-normal position y+ = 14.24 for five different com-

putational domain sizes at Roτ = 0.2. In the figure, Rzz and Rrr represent the axial

and radial two-point correlations, respectively. As is evident in Fig. 3.1(b), the value

of Rrr drops towards zero rather quickly as the pipe length increases. However, the

tend of Rzz behaves in a different manner than does Rrr in the sense that the value

of Rzz falls more slowly than that of Rrr. From Fig. 3.1(b), it is clear that the value

of the Rzz and Rrr for three longer pipe lengths (Lz = 8πR, 12πR and 20πR) tested

approach zero around z/R = 10, indicating a minimum computational pipe length

of approximately Lz = 20R (or, 6.4πR) is sufficient (and therefore, these three pipes

lengths are proper), if the judgment is solely based on the two-point auto-correlation

coefficient. However, in the following, I will show that this conclusion does not hold

if I further consider the pre-multiplied energy spectra.

Figure 3.2 compares the profiles and isopleths of the pre-multiplied energy spec-

tra for five different computational domain lengths at Roτ = 0.2. The profiles in

Fig. 3.2(a) are plotted along the axial direction of the pipe at wall-normal position

y+ = 14.24, while the isopleths in Fig. 3.2(b) are plotted with respect to both wave-

length λ+
z and wall coordinate y+, which vividly show the near-wall effect on the

scale of turbulence structures. In Fig. 3.2, kz represents the axial wavenumber; φzz,

φrr and φθθ represent the axial energy spectra of the three fluctuating velocity com-

ponents; and the axial wavelength is defined as λz = 2π/kz, non-dimensionalized as

λ+
z = λzuτ/ν. From Fig. 3.2(a), it is clear that at y+ = 14.24, the value of kzφzz peaks

at λ+
z ≈ 700 ∼ 2000, while the values of kzφrr and kzφθθ are comparatively small. In

the case of the shortest pipe length (Lz = 2πR), DNS fails to predict the peak value

of the energy spectrum, and all turbulence kinetic energy (TKE) loses at the wave-

lengths larger than the domain size. In the case of the pipe lengths of Lz = 5πR, 8πR

and 12πR, considerable amounts of energy (about 92.03%, 62.21% and 39.86% of the

peak value of kzφzz, respectively) are not captured because the wavelengths of these
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(a) Pre-multiplied energy spectra along
the axial line of the pipe at wall-normal
position y+ = 14.24 from the pressure

side (θ = 90◦)

λ

(b) Isopleths of pre-multiplied energy
spectra kzφzz in the central vertical

plane (θ = 90◦)

Figure 3.2: Pre-multiplied energy spectra for different computational domain sizes
Lz at Roτ = 0.2. The vertical dashed lines in panel (a) demarcate the computational
domain sizes of Lz = 2πR, 5πR, 8πR, 12πR, and 20πR, respectively. The isopleths
in panel (b) are plotted with respect to wavelength λ+

z and wall coordinate y+. The
cross symbol “+” in panel (b) indicates the location (y+ = 12.99, λ+

z = 1407.83)
of the peak value of kzφzz. The value of the inner and outer isopleths is 1.92 and
0.82 (corresponding to 70% and 30% of the peak value of kzφzz, respectively). The
pre-multiplied energy spectra have been non-dimensionalized using u2

τ .

amounts of missed TKE are larger than the corresponding pipe lengths. In contrast,

for the case of the longest pipe length of Lz = 20πR, a relatively small amount of

TKE (27.35 % of the peak value) is held by the scales longer than the pipe length.

This indicates that the result of the case with the longest pipe length (Lz = 20πR)

are considered proper as only less than 30% of TKE is missed in the numerical simu-

lation. Figure 3.2(a) is plotted along the axial line of the pipe at the vertical location

of y+ = 14.24, which does not show any wall anisotropic effect. To refine my study

of the pre-multiplied energy spectra, it is necessary to consider how it varies in the

wall-normal direction. Figure 3.2(b) shows the isopleths of the pre-multiplied energy

spectra of the axial velocity component (kzφzz) on the pressure side of the rotating
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pipe as a function of both wavelength λ+
z and wall coordinate y+. Only the pressure

side (for 0 ≤ r ≤ R or 0 ≤ y+ ≤ 180) is considered because in a radially-rotating

pipe flow, the flow is more turbulent on the pressure side (see the profile of u′+z,rms

shown in Fig. 3.1(a)). The value of the pre-multiplied energy spectra peaks around

y+ = 12.99 and λ+
z = 1407.83. In contrast, for the non-rotating pipe flow tested, the

spectral peak occurs at y+ = 14.24 and λ+
z = 1023.88, which is similar to the result

of Chin et al. [11] who demonstrated that the pre-multiplied energy spectra occurs

at y+ ≈ 15 and λ+
z ≈ 1000 in a non-rotating pipe flow of a similar Reynolds number.

It is apparent that the characteristic streamwise length scale of the most energetic

vortices increases (from λ+
z = 1023.88 to 1407.83) as the rotation number increases

from Roτ = 0 to 0.2 as a consequence of the Coriolis effects associated with the radial

system rotation of the pipe. As shown in Fig. 3.2(b), the cases of Lz = 2πR and 5πR

fail to capture the complete isopleth at a rather high TKE level of kzφzz/u
2
τ = 1.92

(or 70% of the peak value), and the cases of Lz = 8πR and 12πR start to fail at

level of kzφzz/u
2
τ = 0.82 (or 30% of the peak value). In conclusion, in order to fully

capture the scale of energetic eddy motions in different wall layers on the pressure

side of the pipe, a very long pipe of Lz = 20πR is needed, which allows for capturing

the complete isopleth of the pre-multiplied energy spectrum up to 72.65% of its peak

value.

3.2 Instantaneous flow

Figure 3.3 displays typical instantaneous axial velocity field u+
z in a cross-stream plane

at four different rotation numbers. The contour at each rotation number is presented

at the same instant from the start of the simulation. As is clear from Fig. 3.3(a),

typical of a non-rotating turbulent pipe flow, the flow structures are uniform in the

azimuthal direction. Large-scale high-momentum flow structures dominate (indicted
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(a) Roτ = 0.0 (b) Roτ = 0.2

(c) Roτ = 0.8 (d) Roτ = 1.0

Figure 3.3: Contours of the instantaneous axial velocity u+
z in a cross-stream plane

at four different rotation numbers.

by red color) the central region of the pipe, while low-momentum flow structures

(represented by blue color) are concentrated in the near-wall region of the curved

pipe. It is interesting to observe that instantaneous flow structures exhibit “mushroom

patterns”, an observation that is consistent with the findings of Wu and Moin [10] who

performed DNS study of a non-rotating pipe flow at the same Reynolds number. From

Figs. 3.3(b)-(d), it is evident that the flow field becomes apparently asymmetric in the
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vertical direction once the radial system rotation is imposed. As the rotation number

increases from Roτ = 0.2 to 1.0, the pressure (or top) and suction (or bottom) sides

of the pipe become increasingly dominated by high- and low-speed flows, respectively.

Clearly, the role of the Coriolis force is to push the high-momentum fluids towards

the pressure side and low-momentum fluids towards the suction side of the pipe.

Given the circular boundary of the pipe, it is interesting to observe that there are two

“legs” of the high-momentum fluid structures appearing on both sides of the pipe, a

pattern that is the most apparent in Fig. 3.3(c). Finally, at Roτ = 1.0 as shown in

Fig. 3.3(d), the high- and low-momentum fluids occupy the pressure and suction sides

of the pipe, respectively; and furthermore, the irregular mushroom structures vanish

and the instantaneous flow field becomes apparently laminarized. The interesting

instantaneous secondary flow patterns observed at four different rotation numbers in

Fig. 3.3 can be more clearly demonstrated and better explained based on the mean

velocity field in the following context.

3.3 Mean flow

Figure 3.4 compares the mean axial velocity fields (〈uz〉+) of four different rotation

numbers in a cross-stream plane of the pipe. Given the axial symmetry of the mean

flow, only one half of the domain is plotted for each rotation number. As is evident in

Fig. 3.4(a), at Roτ = 0.0, the contour of the mean axial flow field exhibits a concentric

pattern characteristic of a non-rotating Poiseuille pipe flow. As Roτ increases to 0.2,

mean secondary flows appear as a pair of counter-rotating vortices near the suction

(bottom) side of the pipe in response to the radial system rotation imposed. Clearly,

it is this pair of vortices that push the high-speed fluids in the pipe center (r/R→ 0)

towards the pressure side, and drive the low-momentum fluids along the periphery

(r/R → 1) of the pipe towards the suction side. The large-scale vortex pair of the
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(a) Roτ = 0.0 and 0.2 (b) Roτ = 0.8 and 1.0

Figure 3.4: Contours of the mean axial velocity 〈uz〉+ superimposed with mean
streamlines in the cross-stream plane at different rotation numbers.

mean flow observed here well explains the instantaneous secondary flow structures

shown in Fig. 3.3(b). In addition, a small quasi TP region (defined by the invariant

mean axial velocity along the rotating direction, featuring ∂〈uz〉/∂x ≈ 0) forms in

the pipe center. As Roτ reaches 0.8, the quasi TP region expands further along the

rotating axis. The mean secondary flow pattern is similar between Roτ = 0.2 and 0.8,

featuring only one pair of counter-rotating vortices. Because the mean axial Coriolis

force 〈Cz〉 points to the negative z-direction, it suppresses the axial momentum of

the turbulent flow. As is clear in Fig. 3.4(b), at Roτ = 1.0, the flow becomes fully

laminarized, and two pairs of counter-rotating roll cells appear in the mean secondary

flow.

Figure 3.5 compares the bulk mean velocity U+
b , volume-averaged TKE k+

m and

skin friction coefficient Cf with respect to 11 rotation numbers. From Fig. 3.5(a), it

is seen that as the rotation number increases from Roτ = 0.0 to 1.0, the profile of

U+
b varies non-monotonically. At Roτ = 0.3, the value of U+

b reaches its maximum,

which is 2.87% higher than that of the non-rotating case (Roτ = 0.0). However, at the
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Figure 3.5: Comparison of bulk mean velocity U+
b , volume-averaged TKE k+

m, and
skin friction coefficient Cf as a function of the rotation number. The TKE value has
been non-dimensionalized using u2

τ .

highest rotation number Roτ = 1.0, the magnitude of U+
b is 12.28% lower than that of

the non-rotating case. It is interesting that the trend of U+
b in the turbulent circular

pipe flow is qualitatively different from those of Grundestam et al. [3] for turbulent

plane-channel flow and Fang et al. [8] for turbulent square duct flow in the sense that

the value of U+
b decreases monotonically with an increasing rotation number in the
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latter two canonical flows (owing to the different geometry setups of the computational

domains and boundary conditions). In contrast to the bulk mean velocity profile,

from Fig. 3.5(b), it is evident that the value of k+
m decreases monotonically with

an increasing rotation number, implying that the Coriolis force resulted from radial

system rotation always acts to damp out the general turbulence level of the pipe flow.

Moreover, as the rotation number increases beyond Roτ = 0.9, the decay of k+
m is so

dramatic, and eventually, the volume-averaged TKE value becomes zero at Roτ = 1.0,

clearly indicating that the flow field has become completely laminarized. The reason

for this dramatically decreasing trend is that the laminarization process is accelerated

due to the increasing Coriolis effects at a high rotation number. Figure 3.5(c) shows

the variation of the skin friction coefficient as a function of the rotation number. In the

figure, Ct
f , C

s
f and Cb

f represent skin friction coefficient at the top (or pressure side, at

θ = 90◦), lateral sides (at θ = 0◦ or 180◦), and bottom (or suction side, at θ = 270◦) of

the pipe. From Fig. 3.5(c), as Roτ increases from 0.0 to 1.0, the magnitudes of Ct
f and

Cs
f increase monotonically, however, that of Cb

f decreases monotonically. The sharp

contrast between the trends of Ct
f and Cb

f can be well explained by the secondary flow

patterns shown in Figs. 3.3 and 3.4. As the rotation number increases, the Coriolis

force effects (and the strength of the associated secondary flows) become increasingly

stronger, which push high- and low-axial-moment fluids to the pressure and suction

sides, respectively. This further necessarily leads to increased and decreased values

in Ct
f and Cb

f , respectively.

Figure 3.6 compares the profiles of the mean axial velocity 〈uz〉+ for six different

rotation numbers in the central vertical plane (θ = 90◦) and in the central horizontal

plane (θ = 0◦), respectively. As is clear in Fig. 3.6(a), the profile of 〈uz〉+ is per-

fectly symmetrical for the non-rotating case (Roτ = 0.0). However, as Roτ increases,

the profile becomes increasingly asymmetrical, and the peak value of 〈uz〉+ is shifted

from the pipe center to the pressure side of the pipe due to secondary flows in the
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Figure 3.6: Profiles of mean axial velocity 〈uz〉+ at six different rotation numbers.
Arrow points to the direction of monotonic variation of the rotation number.

cross-stream direction (shown in Fig. 3.4). Meanwhile, the magnitude of 〈uz〉+ de-

creases monotonically with an increasing Roτ near the suction side of the pipe. From

Fig. 3.6(b), it is clear that as rotation number increases from Roτ = 0.0 to 1.0, the

magnitude of the mean streamwise velocity 〈uz〉+ decreases monotonically in the pipe

center. Furthermore, it is observed that as the rotation number reaches 0.2, a quasi

TP region previously observed qualitatively in Fig. 3.4 also appears in Fig. 3.6(b),

indicated by the fact that the profile of 〈uz〉+ tends to be “flat” (i.e., the profile is

insensitive to the x-direction, or the rotating direction) in the pipe center. However,

owing to presence of the curved surface of the pipe wall, an ideal TP region (strictly

obeying ∂ 〈uz〉+ /∂x ≡ 0) is not observed, which is qualitatively different from the

spanwise-rotating 2-D plane channel flow case of Kristoffersen and Andersson [2] and

Johnston et al. [29].
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(a) Roτ = 0.0 and 0.2 (b) Roτ = 0.8 and 0.9

Figure 3.7: Contours of TKE k+ in a cross-stream plane at four different rotation
numbers. The contour legends are kept identical in panels (a) and (b) in order to
facilitate a direct comparison of TKE levels at four rotation numbers. Furthermore,
contours corresponding to low TKE levels (for k+ ≤ 0.7) are clipped to highlight
turbulent regions. The TKE value has been non-dimensionalized using u2

τ .

3.4 Turbulence statistics

Figure 3.7 compares the contours of TKE k = 〈u′iu′i〉/2 (non-dimensionalized by u2
τ ,

i.e. k+ = k/u2
τ ) in a cross-stream plane at four of the eleven rotation numbers tested.

As is clear from Fig. 3.7(a), for a non-rotating flow (Roτ = 0.0), the contours of the

TKE field exhibit a concentric pattern in the cross-stream plane as a direct result

of perfect axial-symmetry of the flow and boundary conditions. The maximal and

minimal TKE values occur in the buffer layer (for y+ = 12-22) and at the pipe center,

respectively. Clearly, the axial-symmetry is destroyed as soon as the system rotation

is imposed. At Roτ = 0.2, the TKE level reduces near the lateral sides and bottom

wall. In Fig. 3.7(b), as rotation number further increases to Roτ = 0.8 and 0.9, the

reduction in the TKE value becomes very significant as the Coriolis force strengthens.

In order to make a fair comparison of the TKE levels at four rotation numbers, the
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Figure 3.8: Profiles of Reynolds stresses in the central vertical plane (θ = 90◦) of
the pipe at different rotation numbers. Arrow points to the direction of an increasing
rotation number.

contour legends are kept identical at four rotation numbers in Fig. 3.7. Furthermore,

contours levels corresponding to low TKE levels (for k+ ≤ 0.7) have been clipped off in

order to highlight the turbulent regions and the trend of laminarization. The Coriolis

effects on the distribution of the TKE and laminarization of the flow observed here are

qualitatively similar to those observed in turbulent plane-channel flow (Grundestam et

al. [3]) and square-duct flow (Fang et al. [8]) under spanwise system rotations.
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Among the six independent Reynolds stress components, 〈u′θu′r〉 ≡ 0 and 〈u′θu′z〉 ≡

0 due to the axial-symmetry of the pipe flow. Figure 3.8 compares the profiles of the

other four non-trivial stress components, 〈u′zu′z〉, 〈u′ru′r〉, 〈u′θu′θ〉 and 〈u′zu′r〉, in the

central vertical plane (θ = 90◦) of the pipe for six different rotation numbers. It

is clear that for a non-rotating flow, the profiles of these four non-trivial Reynolds

stresses exhibit central-symmetry, which however, breaks as soon as the radial system

rotation is imposed. From Figs. 3.8(b)-(d), it is seen that in the near-wall region of the

pressure side (0 ≤ r/R ≤ 1) of the pipe, the peak value of 〈u′ru′r〉, 〈u′θu′θ〉 and 〈u′zu′r〉

decreases monotonically as the rotation number increases. However, it is interesting

to observe in Fig. 3.8(a) that the peak value of the streamwise Reynolds normal stress

component 〈u′zu′z〉 occurs at Roτ = 0.2 at r/R = 0.921 (or y+ = 14.24). Furthermore,

in the near-wall region of the suction side (−1 ≤ r/R ≤ 0), the peak value of the

〈u′zu′z〉 decreases monotonically with an increasing rotation number. Nevertheless, in

Figs. 3.8(b)-(d), the peak value of 〈u′ru′r〉, 〈u′θu′θ〉 and 〈u′zu′r〉 varies non-monotonically

and its position consistently shifts towards the pipe center as the rotation number

increases. As shown in Figs. 3.8(b) and (c), the profiles of 〈u′ru′r〉 and 〈u′θu′θ〉 exhibit

a characteristic dual-peak pattern to reflect wall-anisotropic effects for non-rotating

(Roτ = 0) and rotating pipe flows at relatively low rotation numbers (Roτ ≤ 0.2).

However, as the rotation number increases beyond 0.2, the profiles of 〈u′ru′r〉 and

〈u′θu′θ〉 transform from a dual-peak pattern to a single-peak pattern, reflecting the

effect of the Coriolis force. As is evident from Fig. 3.8(d), as soon as the radial

system rotation is imposed on the pipe flow, the well-recognized linear distribution

of the Reynolds shear stress 〈u′zu′r〉 characteristic of a non-rotating pipe flow starts

to lose effect. As the rotation number increases, the strength of 〈u′zu′r〉 decreases on

both sides of the pipe. Eventually, as Roτ approaches 1.0, the value of the Reynolds

shear stress becomes trivial, indicating that the flow becomes fully laminarized by

the Coriolis force.



CHAPTER 3. RESULTS ANALYSIS 25

λ

φ
τ

τ

τ

τ

τ

τ

τ

(a) Axial component

λ

φ
τ

τ

(b) Radial component

λ

φ θθ
τ

τ

(c) Azimuthal component

Figure 3.9: Effect of radial system rotation on the pre-multiplied velocity spectra
calculated along the axial line of the pipe at wall-normal position y+ = 14.24 on the
pressure side (θ = 90◦) of the pipe. Arrow points to the direction of an increasing
rotation number. The pre-multiplied energy spectra kzφii (no summation convention
implied here) have been non-dimensionalized using u2

τ .

Figure 3.9 compares pre-multiplied spectra of axial, radial and azimuthal velocity

fluctuations (kzφzz, kzφrr and kzφθθ, respectively) calculated along the axial line at

wall-normal position y+ = 14.24 on the pressure side (θ = 90◦) of the pipe for six

different rotation numbers. From Fig. 3.9, it is evident that the magnitude of kzφzz is
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much higher than those of kzφrr and kzφθθ. As is clear in Fig. 3.9(a), the magnitude of

kzφzz varies non-monotonically with respect to Roτ at large wavelengths. A perusal

of the figure indicates that the peak value of kzφzz reaches the largest at Roτ = 0.2.

By contrast, at small wavelengths, the magnitude of kzφzz decreases monotonically

with an increasing Roτ , indicating that the Coriolis force tends to suppress turbulent

motions at small scales in the axial direction. As is evident from Fig. 3.9(b) and (c),

the magnitudes of kzφrr and kzφθθ both decrease monotonically with an increasing

rotation number. This indicates that the general effect of radial system rotation is

to suppress turbulent motions (at all scales) in the radial and azimuthal directions.

Furthermore, it is observed that the characteristic axial length scales (as indicated

by the modes of kzφrr and kzφθθ) corresponding to the most energetic eddies increase

monotonically from λ+
z = 200∼600 to 400∼1000 as the rotation number increases from

Roτ = 0.0 to 0.8. However, as shown in Figs. 3.9(a)-(c), once the rotation number

continues to increase to Roτ = 1.0, the pre-multiplied spectra of all three fluctuating

velocity components become zero identically, clearly indicating a full laminarization

state of the flow at the highest rotation number tested. By comparing Figs. 3.9(a)-

(c), it is clear that the TKE level associated with axial velocity fluctuations is the

highest among the three velocity components because the magnitude of kzφzz is one

or two orders larger than those of kzφrr and kzφθθ. Furthermore, the energy loss

at the cut-off wavelength (i.e., at (λ+
z )max = 11309.73, corresponding to the pipe

length Lz = 20πR), is also the highest with axial velocity fluctuations. Specifically,

the percentage of TKE loss (with respect to the peak value of the pre-multiplied

spectrum) at the cutoff wavelength is 25.1%, 27.4%, 23.6%, 20.9% and 24.5% at

Roτ = 0.0, 0.2, 0.4, 0.6 and 0.8, respectively.

In order to refine my study of the effect of rotation on the Reynolds stresses,

the transport equation of Reynolds stresses 〈u′iu′j〉 can be further studied, which is
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expressed as

Hij − Pij − Πij + εij −Dij − Cij = 0 . (3.1)

Here, Hij, Pij, Πij, εij, Dij and Cij represent the convection, production, pressure-

strain, viscous dissipation, diffusion (consisting of turbulent, pressure and viscous

diffusion effects) and Coriolis production terms, respectively. The definitions of these

terms are complex, and are given in the appendix B.

Figures 3.10, 3.11 and 3.12 compare the budget terms of 〈u′zu′z〉, 〈u′ru′r〉 and 〈u′zu′r〉,

respectively, in the central vertical plane (θ = 90◦) of the pipe for the non-rotating

and rotating cases (with Roτ = 0.0, 0.2 and 0.8). The budget terms of 〈u′θu′θ〉 are not

presented simply because the Coriolis effect is trivial (i.e., Cθθ = 4Ω〈u′θu′z〉 cos θ = 0)

in this central vertical plane. Also, the budget terms of 〈u′θu′r〉 and 〈u′θu′z〉 are not

presented because these two Reynolds shear stresses are zero identically due to the

axial symmetry condition of the pipe flow. For the three Reynolds stress components

investigated, the Coriolis production term Cij appears in their transport equations as

a result of radial system rotation, and according to the appendix B, they are

Czz = −4Ω (〈u′ru′z〉sinθ + 〈u′θu′z〉cosθ) , (3.2)

Crr = 4Ω〈u′ru′z〉sinθ , (3.3)

Czr = 2Ω (〈u′zu′z〉sinθ − 〈u′ru′r〉sinθ − 〈u′ru′θ〉cosθ) . (3.4)

In the central vertical plane (θ = 90◦), the above equations are further simplified to

Czz = −4Ω〈u′ru′z〉 , (3.5)

Crr = 4Ω〈u′ru′z〉 , (3.6)

Czr = 2Ω (〈u′zu′z〉 − 〈u′ru′r〉) . (3.7)
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Clearly, the joint function of Czz and Crr is to transfer turbulence energy between

the two Reynolds normal components 〈u′zu′z〉 and 〈u′ru′r〉, simply because Czz ≡ −Crr.

On the other hand, the Coriolis production term Czr behaves as an additional source

term for the Reynolds shear stress component 〈u′zu′r〉. If there is a net energy balance

between the 〈u′zu′z〉 and 〈u′ru′r〉, the Coriolis force (as indicated by the factor 2Ω in

Eq. (3.7)) shifts this amount of energy balance (〈u′zu′z〉-〈u′ru′r〉) to the Reynolds shear

stress component 〈u′zu′r〉.

As shown in Figs. 3.10(a), (b) and (c), a common feature between the non-rotating

and rotating pipe flows is that the budget balance is dominated by −Pzz, εzz and

−Dzz in the near-wall region. However, at Roτ = 0.2, the peak values of these three

terms are much smaller on the suction side than on the pressure side. This indicates

that owing to the system rotation imposed, the flow becomes more turbulent on

the pressure side than on the suction side. As Roτ reaches 0.8, the magnitudes

of these three terms on both sides reduce, demonstrating that the flow field is less

turbulent and starts to become laminarized at a high rotation number. Similarly, by

comparing Fig. 3.11(b) with 3.11(c) and Fig. 3.12(b) with 3.12(c), it is apparent that

the magnitudes of the budget terms are smaller at Roτ = 0.8 than at Roτ = 0.2,

further revealing a laminarization trend as the rotation number becomes high.

As is clear in Fig. 3.10(b), although the value of Coriolis production term −Czz
is small, its sign changes at r/R = 0.45. As such, it facilitates the Reynolds nor-

mal stress component 〈u′zu′z〉 to receive energy from another Reynolds normal stress

component 〈u′ru′r〉 within the region −1.0 < r/R < 0.45, and to transfer energy back

to the 〈u′ru′r〉 component within the region 0.45 < r/R < 1.0 where −Czz behaves

in a similar mechanism as the pressure-strain term −Πzz. This property of Czz can

be well explained through its definition (Czz = −4Ω〈u′zu′r〉) and the profile of 〈u′zu′r〉

shown previously in Fig. 3.8(d). Clearly, at Roτ = 0.2, the sign of 〈u′zu′r〉 changes at

r/R = 0.45, directly resulting in a change in the sign of Czz at the same position. By
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Figure 3.10: Profiles of the budget terms of 〈u′zu′z〉 in the central vertical plane
(θ = 90◦) of the pipe for different rotation numbers. All budget terms have been
non-dimensionalized using u3

τ/R.

comparing Fig. 3.11(b) with 3.10(b) and Fig. 3.11(c) with 3.10(c), it is evident that

the mechanism and trend of the Coriolis production term −Crr are opposite to those

of −Czz, simply because Czz = −Crr holds in the vertical central plane (θ = 90◦)

by definition. Furthermore, as shown in Figs. 3.11(b) and (c), the budget balance of

〈u′ru′r〉 is dominated by the pressure-strain term −Πrr and dissipation term εrr. By
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Figure 3.11: Profiles of the budget terms of 〈u′ru′r〉 in the central vertical plane
(θ = 90◦) of the pipe for different rotation numbers. All budget terms have been
non-dimensionalized using u3

τ/R.

comparing Figs. 3.12(a), (b) and (c), it becomes clear that in both non-rotating and

rotating flow cases, the budget of 〈u′zu′r〉 is primarily balanced by the diffusion term

−Dzr and pressure-strain term −Πzr in the near-wall region. However, at the pipe

center, the budget is dominated by the production term −Pzr and pressure-strain

term −Πzr, and furthermore, these two terms balance each other so well as if they
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Figure 3.12: Profiles of the budget terms of 〈u′zu′r〉 in the central vertical plane
(θ = 90◦) of the pipe for different rotation numbers. All budget terms have been
non-dimensionalized using u3

τ/R.

are a mirror reflection of each other. The Coriolis effect is apparent by comparing

Figs. 3.12(a), (b) and (c): for the non-rotating flow case, the profiles of these two

dominant terms, −Pzr and −Πzr, are symmetrical in the vertical direction; however,

in the rotating flow cases, their profiles become asymmetrical and go across each other

at r/R = 0.45 for Roτ = 0.2 and at r/R = 0.74 for Roτ = 0.8, respectively.



CHAPTER 3. RESULTS ANALYSIS 32

Π

λ

〈
〉

ε

(a) Roτ = 0.0

λ

〈
〉

(b) Roτ = 0.2

λ

〈
〉

(c) Roτ = 0.8

Figure 3.13: Pre-multiplied spectra of the budget terms of 〈u′zu′z〉 with respect to
wavelength λ+

z calculated along the axial line of the pipe at wall-normal position
y+ = 14.24 on the pressure side (θ = 90◦) for Roτ = 0.0, 0.2 and 0.8. All budget
terms have been non-dimensionalized using u3

τ/R.

The above analysis of the budget balance of the Reynolds stresses based on

Figs. 3.10-3.12 was conducted in the physical space. In order to develop a deeper

understanding of the transport process of Reynolds stresses under a radially-rotating

condition, it is of research interest to further look into the budget terms in the spectral
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space. Fig. 3.13 compares the pre-multiplied spectra of the budget terms of 〈u′zu′z〉 as

a function of wavelength λ+
z at the wall-normal position y+ = 14.24 on the pressure

side (θ = 90◦) of the pipe under the non-rotating (Roτ = 0.0) and rotating (Roτ = 0.2

and 0.8) conditions. As is evident in Fig. 3.13(a), for the non-rotating case, in the

inner region near the pressure side of the pipe, the peak value of both the spectra

of pressure-strain −kzΠzz(kz) and dissipation kzεzz(kz) terms occurs at small wave-

lengths (indicated by the wavelength λ+
z ). In these wavelengths, the pressure-strain

term −Πzz transfers energy from 〈u′zu′z〉 to 〈u′ru′r〉 which is consistent with the obser-

vation in Figs. 3.10(a) and 3.11(a); and the dissipation term εzz supports the energy

sinking mechanism. These indicate that both terms promote the turbulence isotropy

at small wavelengths. It is interesting to be observed that the spectrum of diffusion

term −kzDzz(kz) has a peak value at small wavelengths, implying that the diffusion

term −Dzz (contributed by turbulent diffusion term) drains energy through inertia at

small wavelengths. Furthermore, the spectra of diffusion −kzDzz(kz) and production

−kzPzz(kz) terms peaks at large wavelengths around 500 < λ+
z < 2000, demonstrat-

ing that the diffusion term −Dzz, together with dissipation term εzz, counteracts the

energy transferred by the production term −Pzz from mean flow to 〈u′zu′z〉. It is also

observed that the energy spectrum kzφzz and the production spectrum −kzPzz(kz)

are almost synchronized at 500 < λ+
z < 2000; and the peak value of both of them

appears at λ+
z ≈ 1000. It indicates that comparing with other terms in transport

equation of Reynolds stress component 〈u′zu′z〉, the production term has a direct con-

tribution on the increment of the axial turbulence intensity. For the rotating flow,

as is shown in Fig. 3.13(b) and (c), the spectrum of Coriolis term −kzCzz(kz) peaks

at large wavelengths; and the Coriolis term, together with the pressure-strain term,

transfers energy from 〈u′zu′z〉 to 〈u′ru′r〉. Except the Coriolis term, the mechanism

of budget terms involved in transport equation of 〈u′zu′z〉 remains unchanged in the

inner region of the pressure side. However, in response to the radial system rota-
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tion, the magnitudes of −kzPzz(kz), kzεzz(kz) and −kzDzz(kz) significantly increase

at Roτ = 0.2, implying that the Coriolis effects result in more turbulence on the flow

field. In contrast, as Roτ reaches 0.8, the magnitudes of all term spectra become

much smaller than those in the non-rotating case, especially at small wavelengths

where the values are almost zero. It demonstrates that the turbulent pipe flow starts

laminarization at small wavelengths under the radial system rotation.

3.5 Turbulence structures

The appearance of the Coriolis forces in a radially-rotating pipe flow drastically al-

ters its dynamics and coherent structures. Induced by the Coriolis force, secondary

flows occur in the cross-stream direction, which have been demonstrated using the

instantaneous and mean flow fields in Figs. 3.3 and 3.4, respectively. The Coriolis

forces also have a significant impact on the development of turbulent flow structures

in the axial direction.

Figure 3.14 compares the contours of instantaneous axial vorticity fluctuation

ω′+z in a cross-stream plane for the non-rotating case (Roτ = 0.0) and rotating cases

(Roτ = 0.2 and 0.8), respectively. From Fig. 3.14(a), it is clear that for a non-rotating

case, the instantaneous turbulence eddies mostly appear as counter-rotating vortex

pairs in the near-wall region and they are uniformly distributed in the circumferential

direction. In contrast, as is shown in Fig. 3.14(b) and (c), in the rotating pipe flow

cases, most vortices become merged, and the strength of these vortices (as indicted by

the contour level of ω′+z ) reduces significantly to reflect the trends of laminarization

as Roτ increases.

Figure 3.15 compares the coherent structures of the non-rotating case (Roτ = 0.0)

and rotating case (with Roτ = 0.2 and 0.8), based on the so-called “λci-criterion” [30].
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(a) Roτ = 0.0

(b) Roτ = 0.2 (c) Roτ = 0.8

Figure 3.14: Contours of instantaneous axial vorticity fluctuation ω′+z in a cross-
stream plane at Roτ = 0.0, 0.2 and 0.8.

To ensure the visual clarity, only one-fourth axial and one-half cross-stream domain

is displayed in the figure. As is evident in Fig. 3.15(a), for the non-rotating case

(Roτ = 0.0), complete hairpin structures are observed. In response to the bursting

behaviour, two counter-rotating streamwise vortices form the arch head of a hairpin

structure in the outer region through events of ejection (or, the so-called “Q2-events”)

and sweeping (or, the so-called “Q4-events”). As Roτ increases to 0.2 as shown in
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(a) Roτ = 0.0

(b) Roτ = 0.2 (c) Roτ = 0.8

Figure 3.15: Contours of vortical structures for the non-rotating (Roτ = 0.0) and
rotating (Roτ = 0.2 and 0.8) cases. Only one-fourth axial and one-half cross-stream
domain (iso-surfaces are plotted with λci = 0.8) is displayed. The contours are colored
with non-dimensionalized radius r/R.

Fig. 3.15(b), complete hairpin structures can still be observed on the pressure side of

the pipe because the flow field becomes increasingly turbulent on the pressure side

due to the Coriolis effects. Meanwhile, flow structures are suppressed on the suction

side of the pipe. However, as shown in Fig. 3.15(c), as the rotation number further

increases to Roτ = 0.8, complete hairpin vortices can hardly be observed at this high

rotation number. In response to radial system rotation, the bursting behaviour is

broken preventing the occurrences of Q2- and Q4-events in the near-wall region of
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the pressure side. As a result, the arch heads of the hairpin vortices cannot be formed

effectively on the pressure side. On the other hand, the radial system rotation directly

accelerates the bursting behaviour on the suction side. Although this acceleration can

promote the formation of arch heads directly through the Q2-events of low-momentum

streaks, hairpin structures cannot be maintained in this process, which breakdown

to finer-scale structures rapidly. By comparing Fig. 3.15(c) with (a) and (b), it is

evident that at a high rotation number of Roτ = 0.8, the flow becomes less turbulent,

and as a result, the amount of flow structures are significantly reduced, especially on

the suction side of the pipe.

In the literature, turbulent plane-channel flows subjected to spanwise system ro-

tation have been extensively studied using experimental [29] and numerical [2, 3]

approaches. It has been concluded that streamwise elgongated Taylor-Görtler-like

(TGL) vortices appear in pairs in the cross-stream direction in a spanwise-rotating

flow in response to the Coriolis effects. As indicated by Speziale and Thangam [31]

and Grundestam et al. [3], the appearance of TGL vortices in a spanwise-rotating

channel is triggered by the Coriolis force instability, analogous to the centrifugal

instability (associated with surface curvature) that is responsible for the formation

of TG vortices in a Taylor-Couette flow. In this research, I am tempted to extend

these concepts from the context of spanwise-rotating channel flows to that of radially-

rotating pipe flows, and it would be interesting to find out is TGL vortices exist in

a radially-rotating pipe flow. To this purpose, Fig. 3.16 plots the contours of time-

averaged axial fluctuating vorticity ω′z
+

at Roτ = 0.8. Here, the overbar denotes the

time-averaging over a duration of 80 LETOTs (or 80R/uτ ). To improve the visual

clarity, only one-fourth of axial computational domain size is displayed, iso-surfaced

by |ω′z
+| = 0.7. Clearly, in a rapidly radially-rotating pipe flow, the TGL vortices are

present. The contour-rotating roll cells are visualized using the positive and negative

values of ω′z
+

(represented by red and blue colours, respectively). From Fig. 3.16, it
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Figure 3.16: Contours of streamwise-elongated Taylor-Görtler vortical structures for
the rotating pipe flow (Roτ = 0.8), based on time-averaged axial vorticity fluctuations

ω′z
+

. Only one-fourth of pipe length (iso-surfaces are plotted with |ω′z
+| = 0.7)

is displayed. Red and blue colours represent negative and positive values of ω′z
+

,
respectively. The two partially enlarged panels are extracted to demonstrate the
characteristic instantaneous turbulent flow structures in the cross-stream direction,
superimposed with time-averaged velocity vectors.

is seen that the TGL vortices are of larger length scales in the axial direction than in

the radial and azimuthal directions.



Chapter 4

Conclusions and future studies

In this chapter, major results on DNS of turbulent flow in a circular pipe subjected to

radial system rotation are concluded. Future studies are briefly discussed to include

passive heat transfer, transport equations of Reynolds stresses in the spectral space

and turbulent radially-rotating pipe flow at high Reynolds numbers.

4.1 Conclusions on DNS of turbulent flow in a cir-

cular pipe subjected to radial system rotation

Fully-developed turbulent flow confined within a circular pipe subjected to radial

system rotation has been studied using DNS. A wide range of rotation numbers have

been tested, varying from Roτ = 0.0 to 1.0. In order to ensure the most energetic

large-scale eddy motions to be captured by DNS, the pipe length was set to Lz =

20πR, which represents the longest pipe length in numerical simulation of rotating

pipe flows in the current literature.

In response to the radial system rotation imposed, the flow field becomes appar-

39



CHAPTER 4. CONCLUSIONS AND FUTURE STUDIES 40

ently asymmetric in the vertical direction. As the rotation number increases from

Roτ = 0.2 to 1.0, the pressure and suction sides of the pipe become increasingly dom-

inated by high- and low-speed flows, respectively. Clearly, the role of the Coriolis force

is to push the high-momentum fluids towards the pressure side and low-momentum

fluids towards the suction side of the pipe. In consequence, as Roτ increases from 0.0

to 1.0, the magnitude of the skin friction coefficient at the pressure and suction sides

of the pipe increases and decreases monotonically, respectively.

For the mean flow field, secondary flows in form of a pair of counter-rotating axial

vortices appear in the cross-stream direction in response to the radial system rotation

imposed. As Roτ increases from 0.0 to 0.8, a quasi Taylor-Proudman region is briefly

observed in the pipe center, which features an invariant mean axial velocity distribu-

tion along the rotating direction. At the highest rotation number (Roτ = 1.0) tested,

the flow becomes completely laminarized under the influence of the Coriolis force,

and two pairs of counter-rotating axial vortices are present in the mean secondary

flows.

As soon as the radial system rotation is imposed on the pipe flow, the well-

recognized linear distribution of the Reynolds shear stress 〈u′zu′r〉 characteristic of a

non-rotating pipe flow starts to lose effect. As the rotation number increases, the

strength of 〈u′zu′r〉 decreases on both sides of the pipe. In the near-wall region of

the pressure side of the pipe, the peak values of Reynolds stresses 〈u′ru′r〉, 〈u′θu′θ〉

and 〈u′zu′r〉 decrease monotonically as the rotation number increases. However, it is

interesting to observe that the peak value of the streamwise Reynolds normal stress

component 〈u′zu′z〉 occurs at Roτ = 0.2 at y+ = 14.24 on the pressure side of the

pipe. The pre-multiplied spectrum of the axial velocity fluctuations at this position

further shows that as Roτ increases from 0 to 0.2, the TKE level as indicated by kzφzz

increases at large wavelengths. However, once the rotation number increases beyond

Roτ = 0.8, the TKE level drops dramatically because the effect of the Coriolis forces
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tends to suppress turbulent motions.

Depending on the sign of 〈u′zu′r〉, the Coriolis force shifts TKE between two

Reynolds normal stress components 〈u′zu′z〉 and 〈u′ru′r〉, simply because Czz = −Crr.

Also, if there is a net energy balance between the 〈u′zu′z〉 and 〈u′ru′r〉, the Coriolis force

shifts this amount of energy balance (〈u′zu′z〉-〈u′ru′r〉) to the Reynolds shear stress com-

ponent 〈u′zu′r〉. At the pipe center, the budget of the Reynolds shear stress 〈u′zu′r〉 is

dominated by the production term −Pzr and pressure-strain term −Πzr, they balance

as if they are a mirror reflection of each other. Furthermore, owing to the presence

of the Coriolis force, the profiles of −Pzr and −Πzr become asymmetrical about the

pipe center and their crossing point is shifted towards the pressure side of the pipe, a

feature that is in sharp contrast to that of a non-rotating pipe flow. It is clear that the

mechanism of budget terms of 〈u′zu′z〉 is invariant in the inner region of the pressure

side for all wavelengths; and the values of budget spectra decrease as rotation number

increases from Roτ = 0.2. On the one hand, the dissipation εzz and pressure-strain

−Πzz terms promote the turbulent isotropy at small wavelengths. On the other hand,

the diffusion −Dzz, Coriolis production −Czz and production −Pzz terms, together

with εzz, maintain the budget balance at large wavelengths. In addition, It is also

interesting to be observed that the turbulent pipe flow starts the laminrization from

small wavelengths.

For the non-rotating (Roτ = 0.0) and rotating flows at a low rotation number

(Roτ = 0.2), complete hairpin structures are observed. In response to the bursting

behaviour, two counter-rotating streamwise vortices form the arch head of a hairpin

structure in the outer region through ejection and sweep events along the curved pipe

wall. However, as the rotation number further increases to Roτ = 0.8, the burst-

ing behaviour is broken preventing the occurrences of ejection and sweep events in

the near-wall region of the pressure side; as a result, the arch heads of the hairpin

structures cannot be formed effectively. On the other hand, the radial system rotation
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directly accelerates the bursting behaviour on the suction side. Although this acceler-

ation can promote the formation of arch heads directly through the ejection events of

low-momentum streaks, hairpin structures cannot be maintained in this process, and

breakdown to finer-scale structures rapidly. At a high rotation number of Roτ = 0.8,

the flow becomes less turbulence, and as a result, the amount of flow structures are

significantly reduced, especially on the suction side of the pipe. From this study, it

is confirmed that TGL vortices exist in radially-rotating pipe flows, which are larger

in the axial direction than in the radial and azimuthal directions.

4.2 Future studies

Three interesting aspects can be further extended from this thesis in the future stud-

ies, which are:

• turbulent heat transfer of radially-rotating circular pipe flows. An uniform pe-

ripheral wall heat flux boundary condition can be added to the spectral-element

code. Through the same mesh and flow conditions, temperature fields will be

conducted to post-process two-point auto-correlation and pre-multiplied spectra

of temperature fluctuations, followed by instantaneous and mean temperature

fields, Nusselt number, first- and second-order thermal statistics, and transport

equation of heat fluxes. This research will focus on the effects of Coriolis force

on thermal convention in a turbulent circular pipe flow with respect to different

rotation numbers.

• transport of velocity-spectrum tensor in radially-rotating turbulent pipe flows.

Specifically, this research will mainly focus on the budget balance of Reynolds

stresses in the spectral space. In order to analyze the budget terms, three

transport equations of Reynolds stresses (i.e., 〈u′zu′z〉, 〈u′ru′r〉 and 〈u′zu′r〉) can be
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analyzed in the spectral space using the current statistical results. Therefore,

the effect of Coriolis forces on the occurrence of secondary flow and on the

transport of Reynolds stresses in a radially-rotating turbulent pipe flow can be

systemically investigated in spectral space.

• turbulent radially-rotating pipe flow at high Reynolds numbers. This research

will investigate the effects of Coriolis forces on the high-Reynolds-number tur-

bulent pipe flows in comparison with the flows at Reτ = 180. In order to

conduct a thorough comparative study, all simulations will be based on the

same mesh and boundary conditions; and two Reynolds numbers will be con-

sidered to perform DNS, which are Reτ = 395 and 610. The similarity and

difference between turbulent radially-rotating pipe flows at different Reynolds

numbers will be investigated following a similar procedure used in this thesis.

To ensure that these three goals can be achieved, the spectral-element code “Semtex”

has to be further developed and modified to satisfy my requirements on DNS. For

instance, I will need to add an uniform peripheral wall heat flux boundary condition

into the code in order to conduct turbulent heat transfer research. Furthermore, I

will also need to develop the post-process code in order to explore more interesting

flow mechanisms and dynamics. Two major issues have to be concerned in order to

conduct these studies. First, the computational resources could be so limited and

expensive. I will have to efficiently allocate the computational resources on simula-

tions. Moreover, the space of data storage can be another problem. In the current

thesis, data in each simulation takes up to 310 GB. For example, if I simulate one

case at Reτ = 395, I would need another 1TB storage space to store its instantaneous

3-D velocity and temperature fields. Therefore, in the future, how to reasonably use

computational resources and to improve storage efficiency will be very important in

order to successfully conduct these studies.
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Appendix A

Spectral-Element Method

In this thesis, all direct numerical simulations (DNS) are conducted using a spectral-

element method (SEM) code “Semtex” primarily written with C++ and FORTRAN

programming languages. The SEM code is based on a high-order finite element tech-

nique and is capable of offering geometric flexibility of finite elements while maintain-

ing a high spectral accuracy. Prior to the use of the code, the underlying algorithm

needs to be studied. After getting familiar with Semtex and its mesh requirements,

I developed a quadrilateral-structural grid generator with MATLAB using Transfi-

nite Interpolation (TFI) method in order to deal with the circular pipe geometry. In

simulations, the function of Semtex is to conduct the instantaneous files containing

instantaneous flow field in a binary form. Therefore, to ensure that the instantaneous

flow field data can be used in post-processing, several standalone post-processing

codes have been developed using the C++ and Linux scripting programming lan-

guages to calculate turbulence statistics of instantaneous flows, including the mean

velocity field, turbulence intensities (RMS), two point auto-correlation coefficients,

pre-multiplied energy spectra, TKE, Reynolds stresses, and λci criterion for flow

structure visualizations. Furthermore, the budget terms of transport equations in

49
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both physical and spectral space for the Reynolds stresses need to be calculated.

This appendix describes the temporal and spatial discretizations in details for Sem-

tex code.

A.1 Time-splitting Algorithm

The governing equations containing the continuity and incompressible Navier-Stokes

equations can be written as

∇ · u = 0 , (A.1)

∂u

∂t
+ N(u) = −1

ρ
∇p+ ν∇2u + f , (A.2)

where N(u) is the nonlinear convective term and can be represented in several differ-

ent forms as follows

N(u) = u · ∇u , (A.3)

N(u) = ∇ · (uu) , (A.4)

N(u) =
1

2
[u · ∇u +∇ · (uu)] , (A.5)

N(u) = (∇× u)× u +
1

2
∇(u · u) , (A.6)

which in order are the convective, divergence, skew-symmetric and rotational forms.

Although those forms of N(u) are identical in the continuous mathematics, they

possess significantly different properties after discretization. For a low-order spatial

scheme, such as the finite volume (FV) and finite difference (FD) methods, the di-

vergence form is widely used to satisfy the momentum conservation. For a spectral

accurate spatial scheme, all four schemes can conduct almost identical results after

employing the de-aliasing technique. Nevertheless, de-aliasing can be expensive to

implement and is commonly deactivated for the fine enough grid resolution. In com-
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parison with other forms of the nonlinear term, although the skew-symmetric form

is more expensive in computation, it is also more tolerable in deal with the aliasing

error. In order to maintain a balance between stability and computational cost, the

SEM code in this thesis employed the convective and divergence forms to calculate

the nonlinear term alternatively [32].

A “stiffly stable” integrating method used for the temporal discretization reads

∂u(n+1)

∂t
=

1

∆t

Je∑
q=0

αqu
(n+1−q), (A.7)

where αq are some chosen weights for Je-order scheme. In this method, the region

of stability shrinks as Je increases. More specifically, Eq. (A.7) represents backward

Euler equation at Je = 1. As Je reaches 2, it is knows as A-stable method; and it has

a good balance between CFL stability and spatio-temporal accuracy.

Three sub-steps of a time-splitting scheme for decoupling the velocity and pressure

can be read as follows

u∗ − un

∆t
=

Je−1∑
q=0

βq
[
N(un−q) + fn−q

]
, (A.8)

u∗∗ − u∗

∆t
= −1

ρ
∇pn+1 , (A.9)

α0u
n+1 − u∗∗

∆t
= ν∇2un+1 , (A.10)

where βq are some chosen weights for Je-order scheme. In Eqs. (A.8) and (A.9), u∗ and

u∗∗ are defined as intermediate velocity fields. No boundary conditions are employed

in the first sub-step. To ensure that u∗∗ satisfies the incompressible constraint in the
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second sub-step, it has to be solved by following equation

1

ρ
∇2pn+1 =

∇ · u∗

∆t
, (A.11)

with subjected velocity boundary condition

1

ρ

∂pn+1

∂n
= n ·

Je−1∑
q=0

βq
[
N(un−q)− ν∇× (∇× un−q)

]
. (A.12)

For the third sub-step as Eq. (A.10), the prescribed boundary conditions are imposed.

A.2 Spatial discretization

A.2.1 Weighted residual method

In a 3D simulation, Semtex transforms all physical quantities into a Fourier space

in z-direction (assumed as homogenous direction). Meanwhile, it interpolates the

quantities with the quadrilateral spectral-element method based on Gauss-Lobatto-

Legendre (GLL) Lagrange polynomial in x- and y-directions. Semtex also uses the

scheme called “iso-parametric projection” to map every quadrilateral element into

the canonical domain (ξ, γ) ∈ [−1, 1]× [−1, 1]. Therefore, Eqs. (A.11) and (A.10) can

be further expressed respectively as

1

ρ

[
∇2
xyp̂

n+1 − k2
z p̂
n+1
]

= ∇ ·
(

û∗

∆t

)
, (A.13)

∇2
xyû

n+1 − (
1

ν∆t
+ k2

z)û
n+1 = − û∗∗

ν∆t
, (A.14)

where ∇2
xy = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator in cross-stream directions, kz

denotes the wavenumber in z-direction and (̂·) represents the quantities in Fourier
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space.

In order to simplify above Eqs. (A.14) and (A.13), a two-dimensional Helmholtz

equation can be employed in general form as

∇2u− λ2u = f , (A.15)

where λ and f represent real and general constants, respectively. The subscript in

∇xy is omitted for convenience. In a bounded domain of Ω, Eq. (A.15) is required to

be integrated and multiplied by a weight function v, i.e.,

∫
Ω

(∇2u− λ2u− f)vdΩ = 0 . (A.16)

The above equation can be further expressed using the integration by parts (IBP) on

∇2 as ∫
Ω

∇u∇vdΩ + λ2

∫
Ω

uvdΩ = −
∫

Ω

fvdΩ +

∮
∂Ω

hvd (∂Ω) , (A.17)

where h represents the Neumann boundary condition defined as n · ∇u. In order

to partition the whole bounded domain Ω into sub-domain Ωe for each element, a

mathematical definition has to be introduced, which is a integral of sum equals a

sum of integral as

∫
Ω

(·) dΩ =
Ne∑
e=1

∫
Ωe

(·) dΩe. Therefore, the above equation can be

rearranged as

Ne∑
e=1

[∫
Ωe

∇u∇vdΩe + λ2

∫
Ωe

uvdΩe +

∫
Ωe

fvdΩe −
∮
∂Ωe

hvd (∂Ωe)

]
= 0 , (A.18)

where Ne denotes the total number of elements.
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A.2.2 Discretization in a 1D quadrilateral element

To ensure that each of the integrations of sub-domains in Eq. (A.18) can be dis-

cretized, some important concepts in 1D SEM have to be introduced.

A continuous base function u(ξ) ∈ [−1, 1] in a variational form reads as

u(ξ) =
N∑
i=0

uiΨi(ξ) , (A.19)

where Ψi(ξ) is defined as the nodal base functions and ui is the coefficients. In

the canonical domain, the nodal base function is chosen as Lagrange polynomial

satisfying Ψi(ξj) = δij for {j = 0, 1, · · · , N} where ξj is the GLL quadrature points,

corresponding to the zeros of (1−ξ2)L′N(ξ) with L′N(ξ) being the Legendre polynomial

of order N .

Because any linear operation on continuous base function u(ξ) in Eq. (A.19) can

be discretized, the numerical integration on u(ξ) with the Gaussian quadrature rule

reads ∫ 1

−1

u(ξ)dξ =
N∑
i=0

ui

∫ 1

−1

Ψi(ξ)dξ =
N∑
i=0

wiui = ŵTu , (A.20)

where the quadrature weight for the i-th base function is defined as wi =
∫ 1

−1
Ψi(ξ)dξ.

To simplify the above equation, matrices ŵ = [w0, · · · , wN ]T and u = [u0, · · · , uN ]T

are introduced.

The spatial derivative on u(ξj) reads

∂u(ξj)

∂ξ
=

N∑
i=0

ui
∂Ψi(ξj)

∂ξ
= D̂u , (A.21)

where D̂ = [∂Ψi(ξj)/∂ξ] represents the differentiation matrix.

In order to employ Galerkin weighted residual method, the nodal base function
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has also been used to represent the weight function, i.e., vj = Ψj(ξ). As such,

(u, vj) =
N∑
i=0

ui

∫ 1

−1

Ψi(ξ)Ψj(ξ)dξ . (A.22)

By using the Gaussian quadrature rule and Ψi(ξj) = δij, which can also be expressed

as

(u, vj) =
N∑
i=0

ui

N∑
k=0

wkΨi(ξk)Ψj(ξk) =
N∑
i=0

ui

N∑
k=0

wkδikδjk = ujwj = vTj Ŵu .

(A.23)

Here, the mass matrix is defined as Ŵ = Îŵ where Î is the identical matrix of

rank N + 1. vj is the j-th weight function in the variational form of Eq. (A.19).

Because only the j-th row is identical in vj, i.e., vj = [0, · · ·, 1, · · ·, 0]T . Therefore,

Eq. (A.22) can be further expanded for all weight functions with a simplified matrix

notation as

(u, v) = Ŵu , (A.24)

where Î is related with the weight functions as Î = [v̂0, · · · , v̂N ]T .

Moreover, in order to discretize (∇u,∇v) of Eq. (A.18) in a 1D quadrilateral

element, (∇u,∇v) can be expressed as

(
∂u

∂ξ
,
∂vj
∂ξ

) = (D̂u, D̂vj) = (D̂vj)
TŴD̂u = vTj D̂TŴD̂u . (A.25)

Thus, for all weight function, the discretization of (∇u,∇v) can be further derived

as follows,

(
∂u

∂ξ
,
∂v

∂ξ
) = D̂TŴD̂u . (A.26)
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Meanwhile, the last term in Eq. (A.18) in 1D quadrilateral element can be derived as

∫
∂Ωe

hvjdτ =

∫ 1

−1

hvj
∂τ

∂ξ
dξ =

N∑
i=0

wihiΨj(ξi)
∂τ

∂ξ
(ξi) = wjhj

∂τ

∂ξ
(ξj) . (A.27)

where τ denotes the tangential direction. Therefore, for all weight functions, the last

component of Eq. (A.18) reads

∫
∂Ωe

hvdτ = Bh , (A.28)

where B = diag(w0
∂τ
∂ξ

(ξ0), · · · , wN ∂τ
∂ξ

(ξN)) and h = [h0, h1, · · · , hN ]T . Among these

two parts, ∂τ/∂ξ can be determined with

∂τ

∂ξ
=

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

. (A.29)

A.2.3 Discretization in a 2D quadrilateral element

For a 2D quadrilateral spectral-element, a similar method mentioned in subsec-

tion A.2.2 has been used for mapping u(x, y). A continuous base function u(ξ1, ξ2) ∈

[−1, 1]× [−1, 1] can be expressed as follows

u(ξ1, ξ2) =
N∑
i=0

N∑
j=0

uijΨi(ξ1)Ψj(ξ2) , (A.30)

where Ψi(ξ) are the nodal base functions using GLL interpolants. And then, the

spatial derivatives of u(ξ1, ξ2) can be derived as

∂u(ξ1, ξ2)

∂ξ1

=
N∑
i=0

N∑
j=0

uij
∂Ψi(ξ1)

∂ξ1

Ψj(ξ2) = D̂⊗ Îu = D1u , (A.31)
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∂u(ξ1, ξ2)

∂ξ2

=
N∑
i=0

N∑
j=0

uijΨi(ξ1)
∂Ψj(ξ2)

∂ξ2

= Î⊗ D̂u = D2u . (A.32)

Here, the symbol ⊗ represents the Kronecker product operator. u is defined as

u = [u00, u10, · · · , uN0, u01, u11, · · · , uNN ]T .

In order to determine the spatial derivatives of a function u(x, y), the employed

chain rule is presented as

∂

∂x
=
∂ξ1

∂x

∂

∂ξ1

+
∂ξ2

∂x

∂

∂ξ2

, (A.33)

∂

∂y
=
∂ξ1

∂y

∂

∂ξ1

+
∂ξ2

∂y

∂

∂ξ2

. (A.34)

Meanwhile, the transformation tensor can be expressed as

∂ξ1∂x ∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

 =

 ∂x
∂ξ1

∂x
∂ξ2

∂y
∂ξ1

∂y
∂ξ2

−1

=
1

J

 ∂y
∂ξ2

∂y
∂ξ1

∂x
∂ξ2

∂x
∂ξ1

 , (A.35)

where the transformation Jacobian is defined as J = ∂x/∂ξ1∂y/∂ξ2 − ∂x/∂ξ2∂y/∂ξ1.

Therefore, the spatial derivatives as a function of x and y read

Dx = Λ

(
∂ξ1

∂x

)
D1 + Λ

(
∂ξ2

∂x

)
D2 , (A.36)

Dy = Λ

(
∂ξ1

∂y

)
D1 + Λ

(
∂ξ2

∂y

)
D2 , (A.37)

where function Λ (fij) returns a matrix of rank (N+1)2 with the diagonal components

being the vector fij.

By employing the transformation Jacobian J , the integration in a 2D quadrilateral
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element can be transformed into the canonical domain Ωst ∈ [−1, 1]×[−1, 1] as follows

∫
Ω
u(x, y)dxdy =

∫
Ωst

u(ξ1, ξ2)Jdξ1dξ2

=
∑N

i=0

∑N
j=0 uij

∫ 1

−1

∫ 1

−1
J(ξ1, ξ2)Ψi(ξ1)Ψj(ξ2)dξ1dξ2

=
∑N

i=0

∑N
j=0 uij

∑N
p=0wp

∫ 1

−1
J(ξ1p, ξ2)Ψi(ξ1p)Ψj(ξ2)dξ2

=
∑N

i=0

∑N
j=0 uij

∑N
p=0wp

∑N
q=0wqJ(ξ1p, ξ2q)Ψi(ξ1p)Ψj(ξ2q)

=
∑N

i=0

∑N
j=0 uij

∑N
p=0wp

∑N
q=0wqJ(ξ1p, ξ2q)δipδjq

=
∑N

i=0

∑N
j=0 uijwiwjJij

= wTu ,

(A.38)

where w = [w0w0J00, w1w0J10, · · · , wNwNJNN ]T .

The weight functions in a 2D quadrilateral element are also defined with the nodal

base functions, which is as same as the method in subsection A.2.2, i.e.,

vmn = Ψm(ξ1)Ψn(ξ2) , (A.39)

where m, n = 0, 1, 2, · · ·N . As such,

(u, vmn) =
∑N

i=0

∑N
j=0 uij

∫ 1

−1

∫ 1

−1
J(ξ1, ξ2)Ψi(ξ1)Ψj(ξ2)Ψm(ξ1)Ψn(ξ2)dξ1dξ2

=
∑N

i=0

∑N
j=0 uij

∑N
p=0

∑N
q=0 J(ξ1p, ξ2q)wpwqδipδmpδjqδnq

= vTpqWu .

(A.40)

Here, W = Iw where I is the identical matrix of rank (N + 1)2. The value in vector

vpq is one at the pq-th component and zero at any other components. Therefore,

for all weight functions in a 2D quadrilateral element, the above expression can be

further expanded into a matrix form as follows

(u, v) = Wu (A.41)
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The discretization of (∇u,∇v) in a 2D quadrilateral element for Eq. (A.18) can

be generally written as

(∇u,∇v) = (∂u
∂x
, ∂v
∂x

) + (∂u
∂y
, ∂v
∂y

)

= (Dxu,Dxv) + (Dyu,Dyv)

= DT
xWDxu + DT

y WDyu

=
(
DT
xWDx + DT

y WDy

)
u .

(A.42)

Therefore, the local elemental linear operator (the first two-components of Eq. (A.18))

can be presented as

∫
Ωe

∇u∇vdΩe + λ2

∫
Ωe

uvdΩe =
(
DT
xWDx + DT

y WDy + λW
)

u ≡ Aeu , (A.43)

where DT
xWDx+DT

y WDy and W represent stiffness and mass matrices, respectively.

A.2.4 Global operations

In order to express the local ul using the global degree of freedom ug, an assembly

matrix G has to be introduced, which reads

ul = Gug . (A.44)

Therefore, each component of Eq. (A.17) can be discretized as

∫
Ω

∇u∇vdΩ + λ2

∫
Ω

uvdΩ = GT (Ae ⊗ Ie)Gug , (A.45)

−
∫

Ω

fvdΩ = GT (We ⊗ Ie)fe , (A.46)
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and ∮
∂Ω

hvd (∂Ω) = GT (Be ⊗ Ie)he , (A.47)

respectively, where Ie is an identical matrix of rank as same as the total element

number. Therefore, Eq. (A.17) becomes

GT (Ae ⊗ Ie)Gug = GT (We ⊗ Ie)fe + GT (Be ⊗ Ie)he , (A.48)

then it can be expressed as Agug = bg.

The final expression can also be further presented employing the Dirichlet bound-

ary condition, ug = [uug ,u
D
g ]T , where the superscripts (·)u and (·)D are the unknown

and Dirichlet degree of freedom (DOF), respectively, as follows

A AD

0 ID

uug

uDg

 =

bug

bDg

 . (A.49)

Therefore, the linear equation must be solved with

Auug = bug −ADuDg ≡ b . (A.50)

A.3 Linear solver

The above 2D Helmholtz equation (Eq. (A.50)) needs to be employed to solve both

the pressure and viscous substeps at each wavenumber. Particularly, for the viscous

substep, a large value of 1/(ν∆t) results in a strong domination on the diagonal

components of the matrix A, indicating that a Jacobian preconditioned-conjugate-

gradient (PCG) solver is enough for solving the equation. In contrast, for the pres-

sure substep, due to a poor Jacobian-preconditioned effect on the matrix A, the 2D
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Helmholtz equation has to be calculated by a multigrid solver. It is noticed that

Semtex allows the parallel computation in the homogeneous (or Fourier) direction,

and each 2D Helmholtz equation has to be solved in a sequence. A direct solver

is possibly required to avoid the complex multigrid implementation in the pressure

substep.

A.3.1 Iterative solver for the viscous substep

In order to solve 2D Helmholtz equation for the viscous substep, such as Auu = b, a

basic iterative solver can be presented as follows

uuk+1 = uuk + P−1rn for k = 0, 1, 2, · · · , (A.51)

where P is a preconditioning matrix for relaxation, and rn is a residual matrix defined

as rn = b−Auuk . To avoid a slow convergence rate, P needs to satisfy a requirement

that it has to be close to A as much as possible. Therefore, a Jacobian preconditioner

is introduced in the viscous substep, i.e. P ≡ diag(A).

The PCG solver begins with an initial guess uu0 and performs the following iter-

ating steps:
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r0 = b−Auu0 , z0 = P−1r0

w0 = z0 and j = 0

Loop j:

αj = (rj, zj)/(Awj, wj)

uuj+1 = uuj + αjwj

rj+1 = rj − αjAwj
zj+1 = P−1rj+1

βj = (rj+1, zj+1)/(rj, zj)

wj+1 = zj+1 + βjwj

break if converged

End

In fact, Awj is solved employing a local elemental matrix Ae and globally assem-

bled afterward in the PCG solver.

A.3.2 Direct solver for the pressure substep

For the pressure substep, a direct solver can avoid a complication in use of multigrid

solver. However, the inverse matrix A−1 from direct solver results in a huge cost

on computational resources. Therefore, a so-called static condensation technique is

involved in order to avoid this situation. The function of the static condensation is

to split uu into element-interior DOF uui and element-boundary DOF uub . Therefore,

Auu = b can be expressed as followsAb Ac

AT
c Ai

uub

uui

 =

bb

bi

 . (A.52)
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By simple manipulation, the above expression can be further written asAb −AcA
−1
i AT

c 0

AT
c Ai

uub

uui

 =

bb −AcA
−1
i bi

bi

 . (A.53)

From above equation, it is straightforward to determine boundary unknowns with

uub =
(
Ab −AcA

−1
i AT

c

)−1 (
bb −AcA

−1
i bi

)
. (A.54)

Here, the rank of
(
Ab −AcA

−1
i AT

c

)−1
is significantly lower than it of A−1, indicating

that the usage of memory for the element-boundary matrix is not much expensive.

Moreover, the interior unknowns can be determine directly by

uui = A−1
i bi −A−1

i AT
c uub . (A.55)



Appendix B

Transport equations of Reynolds

stresses

The transport equations of Reynolds stresses 〈u′iu′j〉 in a radially-rotating reference

frame can be expressed as

Hij − Pij − Πij + εij −Dij − Cij = 0 , (B.1)

where Hij, Pij, Πij, εij, Dij and Cij represent the convection, production, pressure-

strain, viscous dissipation, diffusion (consisting of turbulent, pressure and viscous

diffusion effects) and Coriolis production terms, respectively.

In this appendix, only the transport equations of four non-trivial Reynolds stresses

are provided in a cylindrical coordinate system, which are 〈u′zu′z〉, 〈u′ru′r〉, 〈u′zu′r〉 and

〈u′θu′θ〉. Based on a literature study, it is concluded that there is a necessity to present

these transport equations here, as the exact forms of these equations are not readily

available in the literature.

64
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The transport equation of 〈u′zu′z〉 reads

〈ur〉
∂〈u′zu′z〉
∂r

+
〈uθ〉
r

∂〈u′zu′z〉
∂θ

+ 〈uz〉
∂〈u′zu′z〉
∂z︸ ︷︷ ︸

Hzz

−

−2〈u′ru′z〉
∂〈uz〉
∂r
− 2
〈u′θu′z〉
r

∂〈uz〉
∂θ

− 2〈u′zu′z〉
∂〈uz〉
∂z︸ ︷︷ ︸

Pzz

− 2

ρ
〈p′∂u

′
z

∂z
〉︸ ︷︷ ︸

Πzz

+ 2ν

[〈
∂u′z
∂r

∂u′z
∂r

〉
+

1

r2

〈
∂u′z
∂θ

∂u′z
∂θ

〉
+

〈
∂u′z
∂z

∂u′z
∂z

〉]
︸ ︷︷ ︸

εzz

−


− 1

r

∂r〈u′ru′zu′z〉
∂r

− 1

r

∂〈u′θu′zu′z〉
∂θ

− ∂〈u′zu′zu′z〉
∂z

− 2

ρ

∂〈u′zp′〉
∂z

+ ν

[
1

r

∂

∂r

(
r
∂〈u′zu′z〉
∂r

)
+

1

r2

∂2〈u′zu′z〉
∂θ2

+
∂2〈u′zu′z〉
∂z2

]
︸ ︷︷ ︸

Dzz


−

−4Ω (〈u′ru′z〉sinθ + 〈u′θu′z〉cosθ)︸ ︷︷ ︸
Czz

 = 0 .

(B.2)
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The transport equation of 〈u′ru′r〉 is

〈ur〉
∂〈u′ru′r〉
∂r

+
〈uθ〉
r

∂〈u′ru′r〉
∂θ

+ 〈uz〉
∂〈u′ru′r〉
∂z

− 2〈uθ〉
〈u′ru′θ〉
r︸ ︷︷ ︸

Hrr

−

2〈u′ru′θ〉
〈uθ〉
r
− 2〈u′ru′r〉

∂〈ur〉
∂r
− 2
〈u′ru′θ〉
r

∂〈ur〉
∂θ
− 2〈u′ru′z〉

∂〈ur〉
∂z︸ ︷︷ ︸

Prr

− 2

ρ
〈p′∂u

′
r

∂r
〉︸ ︷︷ ︸

Πrr

+ 2ν

[〈
∂u′r
∂r

∂u′r
∂r

〉
+

1

r2

〈(
∂u′r
∂θ
− u′θ

)2
〉

+

〈
∂u′r
∂z

∂u′r
∂z

〉
− 2

r2

∂〈u′ru′θ〉
∂θ

]
︸ ︷︷ ︸

εrr

−


2
〈u′ru′θu′θ〉

r
− 1

r

∂r〈u′ru′ru′r〉
∂r

− 1

r

∂〈u′ru′ru′θ〉
∂θ

− ∂〈u′ru′ru′z〉
∂z

− 2

ρ

∂〈u′rp′〉
∂r

+ ν

[
1

r

∂

∂r

(
r
∂〈u′ru′r〉
∂r

)
+

1

r2

∂2〈u′ru′r〉
∂θ2

− 2

r2
(〈u′ru′r〉 − 〈u′θu′θ〉) +

∂2〈u′ru′r〉
∂z2

]
︸ ︷︷ ︸

Drr


−

4Ω〈u′ru′z〉sinθ︸ ︷︷ ︸
Crr

 = 0 .

(B.3)
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The transport equation of 〈u′zu′r〉 reads

〈ur〉
∂〈u′ru′z〉
∂r

+
〈uθ〉
r

∂〈u′ru′z〉
∂θ

+ 〈uz〉
∂〈u′ru′z〉
∂z

− 〈uθ〉
〈u′θu′z〉
r︸ ︷︷ ︸

Hzr

−


〈u′θu′z〉

〈uθ〉
r
− 〈u′ru′z〉

∂〈ur〉
∂r
− 〈u′ru′r〉

∂〈uz〉
∂r
− 〈u

′
θu
′
z〉

r

∂〈ur〉
∂θ

− 〈u
′
ru
′
θ〉

r

∂〈uz〉
∂θ

− 〈u′zu′z〉
∂〈ur〉
∂z

− 〈u′ru′z〉
∂〈uz〉
∂z︸ ︷︷ ︸

Pzr


− 1

ρ

(
〈p′∂u

′
r

∂z
〉+ 〈p′∂u

′
z

∂r
〉
)

︸ ︷︷ ︸
Πzr

+ 2ν

[〈
∂u′r
∂r

∂u′z
∂r

〉
+

1

r2

〈(
∂u′r
∂θ
− u′θ

)
∂u′z
∂θ

〉
+

〈
∂u′r
∂z

∂u′z
∂z

〉
+

1

r2

∂〈u′θu′z〉
∂θ

]
︸ ︷︷ ︸

εzr

−



〈u′θu′θu′z〉
r

− 1

r

∂r〈u′ru′ru′z〉
∂r

− 1

r

∂〈u′ru′θu′z〉
∂θ

− ∂〈u′ru′zu′z〉
∂z

− 1

ρ

(
∂〈u′zp′〉
∂r

+
∂〈u′rp′〉
∂z

)
+ ν

[
1

r

∂

∂r

(
r
∂〈u′ru′z〉
∂r

)
+

1

r2

∂2〈u′ru′z〉
∂θ2

− 〈u
′
ru
′
z〉

r2
+
∂2〈u′ru′z〉
∂z2

]
︸ ︷︷ ︸

Dzr


−

2Ω (〈u′zu′z〉sinθ − 〈u′ru′r〉sinθ − 〈u′ru′θ〉cosθ)︸ ︷︷ ︸
Czr

 = 0 .

(B.4)
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The transport equation of 〈u′θu′θ〉 is

〈ur〉
∂〈u′θu′θ〉
∂r

+
〈uθ〉
r

∂〈u′θu′θ〉
∂θ

+ 〈uz〉
∂〈u′θu′θ〉
∂z

+ 2〈uθ〉
〈u′θu′θ〉
r︸ ︷︷ ︸

Hθθ

−

−2〈u′ru′θ〉
〈uθ〉
r
− 2〈u′ru′θ〉

∂〈uθ〉
∂r
− 2
〈u′θu′θ〉
r

∂〈uθ〉
∂θ
− 2〈u′θu′z〉

∂〈uθ〉
∂z︸ ︷︷ ︸

Pθθ


− 2

ρr
〈p′∂u

′
θ

∂θ
〉︸ ︷︷ ︸

Πθθ

+ 2ν

[〈
∂u′θ
∂r

∂u′θ
∂r

〉
+

1

r2

〈(
∂u′θ
∂θ

+ u′r

)2
〉

+

〈
∂u′θ
∂z

∂u′θ
∂z

〉
− 2

r2

∂〈u′ru′θ〉
∂θ

]
︸ ︷︷ ︸

εθθ

−


− 2
〈u′ru′θu′θ〉

r
− 1

r

∂r〈u′ru′θu′θ〉
∂r

− 1

r

∂〈u′θu′θu′θ〉
∂θ

− ∂〈u′θu′θu′z〉
∂z

− 2

ρr

∂〈u′θp′〉
∂θ

+ ν

[
1

r

∂

∂r

(
r
∂〈u′θu′θ〉
∂r

)
+

1

r2

∂2〈u′θu′θ〉
∂θ2

+
2

r2
(〈u′ru′r〉 − 〈u′θu′θ〉) +

∂2〈u′θu′θ〉
∂z2

]
︸ ︷︷ ︸

Dθθ


−

4Ω〈u′θu′z〉cosθ︸ ︷︷ ︸
Cθθ

 = 0 .

(B.5)


