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ABSTRACT

A technique for computing the 1lift of a two-dimensional
elliptic airfoil in incompressible flow is presented. The
potential flow, including circulation, was computed around an
eiliptic airfoil - with a fineness ratio of 6:1 - by using a
higher order surface source singularity method. The surface
velocity distribution dﬁe to the potential flow was then used
to galculate the growth of a laminar boundary layer using
Thwaites' method at a Reynolds number of 800. The circulation
was adjusted to give equal velocities at the separation points
and the boundary layer was recalculated. The procedure was
iterated until the predicted separation points possessed equal
velocities. A maximum lift coefficient of 0.518 was predicted
‘at an angle of attack of 7.1°. The predicted 1lift is slightly
greater than that calculated by Howarth who used a modified
fohlhausen method for the boundary layer.

The effects of boundary layer'displacement thickness and
separation wake were modelled by using a surface source
diStributibn with bouﬁdary conditions such that, in the attached
region, the no;mal velocity was related to the displacement
thickness and, in the separated flow region, the pressure was
constant. The latter is a non-linear boundary condition and
the source distribution was solved iteratively using the Newton-
Raphson technigue. The subsequent iterations on the boundary

layer failed to converge and further work is required.
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NOMENCLATURE '

coefficient matrix in eqguation 2.14.

element curvature.

pressure coefficient, (p - pm)] % pwi.

the elliptic airfoil chord length which is equal to
the major axis length.

constant in equation 3.3.

shapg factor.

velocity at point t on the airfoil surface due to a

unit source at point g.

: . N 6 ,du
non-dimensional parameter,l--Utt (anhall
function of m (eguation 2.20).
. . . : o 9%u
non-dimensional parameter, m = —— () (wall

represents the airfoil surface S) .

the number of the surface elements.

distance in the direction normal to the airfoil surface.
pressure.

Onset flow éressure (at infinity).

element radius.

radius of the circles shown in Figure 8.

distances shown in Figure 9.

distances given by equations 3.5 and 3.6 respectively.
Reynolds number, Re = W_d4/Vv.

distance along the airfoil surface.

surface of the airfoil.




(1) (1)
v v

flow velocity in the boundary layer parallel to the
airfoil surface.

total tangential velocity at the airfoil surface.
tangential velocity at the airfoil surface due to U_.
tangential velocity at the airxrfoil surface due to V_.
tangential velocity at the airfoil surface due to the
circulation.

tangential velocity at the airfoil surface due to the
"boundary layexr" source distribution,

component of W_ in the direction of zero angle of attack,
U = W_ cosB.

o o -
velocity in the flow field, % = %m + w.
component of W_ in the direction of 90° angle of attack,
vV, = W_ sinB.
onset flow which represents either the uniform or
circulatory flow.
velocity at a point due to the source distribution on
one element.
parts of the velocity v given by eugation 3.10.
components of V(O) in the direction of the & and ﬁ
axes of the element.

(1)

components of v in the direction of the & and 0

axes of the element.

(¢)

components of v in the direction of the & and n

axes of the element.




(2)

E 14

(0)

(2)

(2)
n

G(lz

(2)

components of v in the direction of the £ and 1
axes of the element.

component of v in the direction of the body axes.
normal and tangential components of the velocity v.
disturbance velocity due to the airfoil boundary.
uniform onset flow with an angle of attack B.

body coordinate axes along the major and minor axes
of the body.

coordinates of a general point with respect to the
coordinate axes & andn.

coordinates of a .general point with respect to the
coordinate axes E and ﬁ.

slope angle of the element j.

the angle of attack.

uniform vorticity over the airfoil surface.
resultant circulation in the flow field.
circulation due to a uniform vorticity distribution
over the airfoil surface Y = 4T,

displacement thickness.

elemenf coordinate axes shown in Figure 10.

element coordinate axes shown in Figure 9.

momentum thickness.

kinematic viscosity.

density.

xi

constants of the source distribution given by egquation

3.2.




o(t)

xii

strength of the source distribution of the control
point k.

strength of the source distribution at point t on the
airfoil surface.

velocity potential, grad(¢) = -

il

velocity potential, grad(d)




1. INTRODUCTION

A knowledge of maximum section 1lift coefficient (chax) is

important, if not crucial to airfoil design. Since CLmax can
not be predicted using existing computer tools, heaVy emphasis
is placed on expensive wind tunnel tests, even though the tests
can not be performed at the high Reynolds number usually used
in flight. This has traditionallyllea to some doubt in airfoil
selection and to considerable conservatism in design to reduce
the risk of premature stalling.

Full computational analysis of the real flow about airfoil
sections has been limited b; the inability to compute the
effects of separation on section forces and moments. At low
angles of attack where the boundary layer is thin and there is
little if any separation, potentialbflow analysis (ignoring
the viscosity effects) is a fair approximation to the experi-
mental results but, as the angle is increased, the lift pre-
dicted is too ﬁigh. Obviously, the boundary laver thickness
and separation effects must be accounted for to predict maximum
lift. 1In fact, most of the 1lift curve showsbthe effects of
separation so that accurate results can be obtained in most
cases only when both of these effects are accounted for.

Taking the calculations for the GAW-1l reported in Ref. 1
as an example, Figure 1 compares wind tunnel data with é

potential flow analysis of the airfoil with no attempt to

account for the effects of either boundary layer thickness or




separation. Figure 2 displays the effect of modelling the

boundary layer thickness (but not separation) and, as shown,
the agreement with the wind tunnel data is good but, when the
angle of attack is increased and separation begins to occur,
the predicted and measured lift diverge. In Pigure 3, the
boundary layer thickness and separation region have been
modelled using Henderson's technique (Ref. 1) and the égreement
with the wind tunnel data is good for all values of the angle
of attack. Henderson's results are quite satisfactory but the
technigue is cumbersome especially for multiple element airfoils,
therefore a simpler alternative is the motive of the present work.
The current objective is to develop a computational
technigue to account for the effects of both the boundary layer
thickness and separation on the 1lift coefficient. Although the
technique which is presented here is applied to an elliptic
airfoil with a laminar boundary layer in incompressible flow,
the work can be extended to a general airfoil with a laminar or
turbulent boundary layer provided that a suitable technique is
used to compute the boundary displacement thickness distributioﬁ
and to predict the points of separation accurately. The ellipse
has been chosen to establish the technique since an exact
analytical solution fértme potential flow arxound it can be
obtained easily. Also, Howarth (Ref. 2) has made a first
approximation of the effects of laminar boundary layer separation

on the lift of an elliptic c¢ylinder and his results are available

for comparison.
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The technigue to be presented herxe is based on the pre-

mise that the effects of the boundary layer thickness and the

separated wake on the airfoil pressure distribution can
modelled by a source distribution on the surface of the
foil which will force the dividing streamline away.from
body by a distance equal to the displacement thickness,

cause the pressure to be constant in the separated wake

be

air—~

the

and

region - a feature which experiments show to be nearly true.

Extension of the technigue to multi-component airfoils

should be possible.




2. LITERATURE REVIEW OF THE PROBLEM OF

T LOW~VISCOSITY FLOW AROUND AIRFOILS

The solution of the problem of low-viscosity flow around
airfoils begins with computing the potential flow around that
airfoil. The potential flow pressure distribution is then
used to compute the characteristics of the boundary layer such
as the displacement thickness and the position of the points
of separation. The next step is to use an additional potential
flow pattern to model the boundary layer and separation effects.
Several iterations of thes%ksteps are regquired because the
boundary laver modifies the pressure field. The sequence in
this review will follow these steps, for the solution of the

laminar flow around an elliptic airfoil.

2.1 The Potential Flow Computation

The steédy flow of an incompressible inviscid fluid about
an arbitrary body is a classical fluid mechanics problem. A
good discription of the mathematical formulation is given by
Hess and Smith in Ref. 3, and the following discussion is
based on that work.

For a steady flow of an incompressible inviscid fluid,
the general Navier-Stokes equation reduces to the well known

Eulerian equation of motion

- - 1
(Vegrad) vV = - E_grad P 2.1




and the equation of continuity becomes
. >
div(Vv) = 0 . 2.2

Equations 2.1 and 2.2 hola in the field of flow which, in
the problem under consideration, will be the region egterior
to the boundary surfaces. In addition to these equationé, the
flow field must satisfy certain boﬁndary conditions. Attention
will be restricted here to the so-called direct problem of
fluid dynamics, where the'loéations of all boundary surfaces
are assumed known and the normal component of f£luid velocity

is prescribed on these boundaries. For the present problem of

/
A

a stationary airfoil in an infinite stream the normal component
is set equal to zero so that the rigid boundary surface S will

be a streamline,‘and the boundary condition will be wrxritten as

Yenl =0 2.3
Ven g = " o

For the exterior problem, a regularity condition at
K 0 . . . —)- _-)-
infinity must be also imposed: in this case, V > W _ far from
the airfoil.

For the case of potential flow, the velocity field will

be irrotational and therefore it can be expressed as the

negative gradient of a scalar potential function
—).
Vv = - grad & .

> ) .
The velocity field V can be expressed as the sum of two

velocities




- i .
where the onset flow, W in the airfoil problem will be a

>
uniform flow and the disturbance velocity field, w , due to
the boundaries will be an irrotational flow expressed as the

negative gradient of a potential function ¢; that is
> .
w = - grad ¢ . _ 2.6

- ) '
Since W_ is the velocity of a uniform flow, it satisfies

equation 2.2 and therefore it follows that
-
div(w) = 0 . ‘ 2.7

Substituting from equation 2.6 into equation 2.7, gives
the expected result that the potential ¢ satisfies Laplace'si

equation
V2 =0 . 2.8

The boundary conditions on ¢ arise from equations 2.3 and 2.5
in the form

>
n

> >
= W °n . 2.9

grad ¢ - .
and in the usual exterior problem, the regularity conditions
is
grad ¢ » 0 at infinity . 2.10

The essential simplicity of the potential flow derives
from the fact that the velocity field is determined by the
equations of continuity 2.2 and 2.7 and the condition of
irrotationality (implied in equationé 2.4 and 2.6): thus the

{ .
equation of motion 2.1 is not used, and the velocity may be
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determined independently of the pressure. Once the velocity
field is known, the pressure is calculated from equation 2.1
which, when integrated to the well known Bernoullli equation,

can be written in terms of the pressure coefficient

P - P >
cp = = _ . vl 2.11
Lo ol %)
2 © o

The problem defined by equations 2.8, 2.9 and 2.10 is a
well known classic Neumann problem which has certain special
features which greatly influenced the development of the methods
of solution. In particulary the domain of the unknown ¢ 1is
infinite in extent, but often the solution is of interest only
on the boundaries. Despite the fact that Laplace's equation
is one of the simplest and best known of all partial differential
egquations, the number of useful exact analytic solutions is quite
small, the difficulty of course liéé in satisfying the boundary
conditions.

The problem can only be solved analytically by the tech-
nique of separation of variables which requires the boundary to
be a coordinate surface of one_of the special orthogonal co-~
ordinate systems for which Laplace's equation can be separated
into ordiﬁary differential equations. In the two-dimensional
case, Laplace's equation is simply separable in all orthogonal
coordinate systems, but this technique is not commonly used.

Instead of solving the’Laplace's equation, the problem can be




replaced by finding a suitable conformal transformation of the

boundary into a circle, and the flow around the airfoil will
be calculated using the known solution of the flow around

this circle.

2.1.1The Analytic Methods

The Joukowski transformation when applied to an offset
circle results in a cambered Joukowski airfoil. The flow around
this airfoil can pe~obtained from the transformed flow around
the circular cylinder. The circulation around the airfoil is
obtained by applying the Kutta condition which requires the
velocity at the trailing edge to be finite, ana so the point
on the circular cylinderx whiéh corresponds to the trailing edge
must be a stagnation point. Then the coeffiéient of 1ift will
be otained from the theorem of Kutta and Joukowski. This |
gives the ideal lifg-curve sloée to be egqual to 27/radian for
thin airfoils at small incidences.

'All Joukowski airfoils have cusps at the trailing edge;
the application of wvon Karman and Trefftz transformation will
result in airfoils with finite angle trailihg edges.

Different exact and approximate analytical methods have.
been developed to calculate the steady flow of an incompfeSsible
inviscid fluid ab§ut two—dimenéional arbitrary airfoils. A
good survey of these methods has been given by Giesing in Ref. 4.

An exact method to calculate the pressure distribution

around an airfoil of given arbitrary shapé has been put forward




by Theodorsem who maps a single airfoil into a circle.

Initially, the airfoil is mapped into a pseudo-circle by an
inverse Joukowski transformation and then into an exact circle
by a second transformation. The brocedures can be generalized
and improved by replacing the single Joukowski transférmation
by one, or more than one, inverse Karman-Trefftz trénsformation.
Wifh such a transformation an airfoil with any number of surface
slope discontinuities, in addition to the trailing edge dis-
continuity, can be mapped into a smooth pseudo-circle.

The application of exact analytic solution . to practical
problems is generally beyond the capability 6f hand computation;
therefore approximate solutions have in the past receivéd most
of the attention of investigators in the field of potential
flow. Goldstein developed a series of systematic approximations
to the exact Theodorsen method which led to a sufficiently
accurate result with little labour in computation. The thin
airfoil theory put forward by Munk and refined by Glauert
assumes that the general‘thin airfoil vcan be replaced by its
camber 1ine which is assumed to be only a slight distortion of
a straight line and that the perturbation velocity components
due to the presence of the thin airfoil are small with respect
to the uniform onset flow. The thin airfoil theory, which led
to the linearization of the problem, has two different types
of analysis. The first one uses-an inverse Joukowski trans-

formation of the thin airfoil to a slightly distorted circle
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which is then traﬂsformed to .an exact circle and the other one
utilizes a distribution of singularities placed along the
chord and the strengths of the singularities are determined
by satisfying the boundary conditions. The thin airfoil theory
does not usually give accurate pfessure distributions, eépécially
. near the nose where it gives an infinite value, but it does
give usable .values of the lift coefficient. Riegels established .
a correction for the pressure distribution in regions of high
surface slopé, and a similar modification was developed by
Weber to improve the pressure distribution, especially near the
nose.

The approximate solutions are generally unsatisfactory
since they are ihapplicable in many cases, their validity in
other cases is not predictable, and the accuracy of the computed
solutions is .usually unknown.

All the exact and approximate analytical solutions
mentioned above are unable to handle the flow about multiple
bodies and this fact led to the consideration of the exact

numerical methods of solution.

2.1.2 Exact Numerical Methods

A distinction must be made between approximate analytic
solutions and exact numerical methods. In the latter the
analytical formulation, inclﬁding all equations, is exact and
numerical approximations are only introduced for purposes of

calculation. Such approximations are numbers having a finite

10
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number of decimal places and integrals that are evaluated by
guadrature formulas. Exact numerical methods have the

property that the errors in the calculated solution can be

made as small as desired by sufficiently refining the numerical
calculations. In contrast, approximate solutions introduce
analytical approximations into the formulation itself and thus
place a limit on the accuracy that can be obtained in a given
case redgardless of the numerical procedures used.

There appear to be two classes of exact numerical solutions
"that have been applied to the general fluid dynamics problem;
The first oﬁe is the netwoxrk method based on finite-difference
approximations of the derivatives of the potential; the second
is based on the solution of an~inteéral equation over the
boundary surface which involves determination of a sinéularity
distribution over the boundary surface. The network method is
usually unsuitable for the exterhal fluid dynamics problem
since the solution gives the whole field while it is usually
only the boundary values which are of interest. The flow field
about an airfoil is infinite in extent, which necessitates the
distribution of the network control points throughouﬁ many
body lengths in each direction resulting in a large number of
control points and a consequently large number of equations,
while the integral methods require only control points distributed
on the boundary of the airfoil. This difference is illustrated

in Figure 4.
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