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ABSTRACT

A technigue for computing the lift of a two-dimensional

elliptic airfoil in incompressible flow is presented. The

potential flow, including circulation, \¡¡as computed around an

ellíptic airfoil - with a fineness ratio of 6:I by using a

higheï order surface source singularity method. The surface

velocity distribution d,ue to the potential flow was t.hen used.

to calculat,e the growth of a laminar boundary layer using

Thwaites' method at a Reynolds number of 800. The circulation

was adjust,ed to give equal velocities at the separation points

and the boundary Iayer $tas recalculated. The procedure was

iterated unt,i1 the predicted separation points possessed equal

vel-ocities. A maximum lift coefficient of 0.5I8 was predicted

at an aDgle of attack of 7.L". The predicted lift is slightly

greater than that calculated by Ho.\rúarth who used a modif ied

Pohlhausen method for the boundary layer'

The effects of boundary layer displacement thickness and

separation wake were modeLled by using a surface source

distribution with boundary conditions such that, in the attached

region, the normal velocity Ìfas related to the displacement

thickness and, in the separated flow region, the Pressure was

constant. The latt,er is a non-linear boundary condition and

the source dístribution l{as solved iteratively using the Newton-

Raphson technique- The su-bsequent iterations on the boundary

layer failed to converge and further \{ork is reguíred.
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1. TNTRODUCTION

A knowledge of maximum section lift coefficient (a"*r*) is

important, if not crucial to airfoil" design" Since C"*.* can

not be 'predícted using existing computer tools, heavy emphasis

is placed on expensive wind tunnel tests, even though the tests

can not be performed. at the high Reynolds number usually used

in flight. This has traditionally led to some doubt in airfoil

selection and to considerabl-e conservatism in design to reduce

the risk of premature stal1ing.

Ful1 computational analysis of the real flow about airfoil

sections has been limite¿ ¡i the inabilit.y to compute the

effects of separation on section forces and. moments. At low

angles of attack where the boundary layer is thin and there is

litti-e if any separat j.on, potentíaI f 1ow analysís ( ignoring

the viscosity effects) is a fair approximatíon to the experi-

mental results but, as the angle is increased, the Iift pre-

dicted is too high. Obviously, the boundary layer thickness

and separation effects must be accounted for to predict. maximunr

lift.. In facto most of the 1íft curve shows the effects of

separation so that accurate results can be obtained in most

cases only when both of these effects are accounted for"

Taking the calculat,ions for the cAW-1 reported in Ref. I

as an example, Figure 1 compares wind tunnel data with a

potential flow analysis of the airfoil with no attempt to

account for the effecÈs of either boundary layer Èhickness or



separaÈion. Figure 2 displays the effect of modelling the

boundary layer thickness (but not separaÈion) and, as shovrn,

the agreement with the wind tunnel data is good but, when the

angle of attack is increased and separation begins to occur,

the predicted and measured 1íft diverge. In Figure 3, the

boundary layer thickness and separation region have been

modelled using Hende:.son's technigue (Ref. 1) and Èhe agreemenÈ

with the wind tunnel data is good for all values of Èhe angle

of attack. Henderson's results are quite satisfactory but the

technique is cumbersome especially for multiple element airfoils,

therefore a sinpler alternative is the motive of the present work.

The current objective is to develop a computational

technique to account for the effects of both t,he boundary layer

thickness and, separation on the lift, coefficient. Although the

technigue which is presented here is applied to an elliptic

airfoil with a laminar boundary layer in incompressible flow,

the work can be extended to a general airfoil with a laminar or

turbulent boundary layer provided that a suitable technigue is

used to compute the boundary displacement thíckness dist,ribution

and to predict the points of separation accurately. The ellipse

has been chosen to establish the technique since an exact

analytical solution for the potentiat flow around it can be

obtaíned easily. AIso, Howarth (Ref- 2) has made a first

approximation of the effects of l-aminar boundary layer separation

on the lift of an elliptic cylinder and his results are available '

f or compari s on . *li

I



The technique to be presented here is based on the pre-

mise that the effects of the boundary layer thickness and the

separated. wake on the airfoil pressure distríbution can be

modelled by a source distribution on the surface of the air-

f oi1 which wi 11 f orce the dividing streamline a\4/ay f rom the

body by a distance equal to the displacement thickness ¡ and

cause the pressure to be constant in the separated wake

region - a feature which experiments show to be nearly true,

Extension of the technique to nulti-component airfoils

should be possible-



2. LÏTERATURE REVÏEI/ü OT' T'H'E PROBLEM OF

LO'W.VTSCOSTTY FLOW AROUN'D ÄIRFOÏLS

The solution of the problem of lor+-viscosity flow around

airfoils begins with compuÈing the potential flow around that

airfoil" The potential flow pressure distribution is then

used to compute the characteristics of the boundary layer such

as the displacement thickness and the position of the poínts

of separation. The next step is to use an additíonal potential

flov¡ pattern to model the boundary layer and separation effects.

Several iterations of these* steps are required because ùhe

boundary layer modifies the pressure field. The seguence in

this review witl follow these steps. for the solution of the

1amínar flow around an elliptic airfoil.

2"1 The Potential Flow Computation

The steady flow of an incoupressible inviscid ftuid about

an arbitrary body is a classical fluid mechanics problem. A

good discription of the mathematical formulation is given by

Hess and Smith in Ref" 3, and the following discussion is

based on that work"

For a steady flow of an incompressible inviscid f1uid,

the general Navier-Stokes equation reduces to the well known

Eulerian equation of motion

+-+1-(ú"grad) v= f,sradr , 2-I



and the equation of continuity becomes

->
div(v) 0 )t

Equations 2.1 and 2.2 hold in the f iel-d of f low which " in 
r:,;:.:

the problem under consideration, will be the region exterior '-'"'l

to the boundary surfaces" In addition to these equations, the

flow field must satisfy certain boundary conditions" Attention
]tl 

"""twitl be restricted here to the so-called direct problem of i''';,,,'
,"," 4'

f luid dynamics, where the locations of all boundary surf ace= ,,,,,.

]t:t 
"t-t:are assumed known and the normal component of fluid velocitlz

is p=,u=cribed on these boundaries. For the present problem of
ì

a stationary airfoil in an infinite stream the normal component 
f

is set equal to zeyo so that the rigid boundary surface S will

be a streamline, and the boundary condition i^¡il1 be written as

ü"i1, = o . 2"3

For the exterior problem, a regularity condition at

inf inity must be aLso impose d.: in this case , ü -o fi- f ar f rom

the airf oi1"

For the case of potential flow, the velocity field will

be irrotational and therefore it can be expressed as the

negative gradient of a scalar potential function

->
1¡= grad0

The velocity field ü can be expressed as the sum of two

ve locities

V=w*+wt

)â.

2.5



!'rhere the onset fIow, fi , in the airfoil problem will be a' co'

uniform flow and the disturbance velocity fie1d, *, due to

the bound,aries will be an irro,tational flow expressed as the

negative gradient of a potential function Ô; that is

+w=-grad 0.
.>

Since W is the velocity of a uniform f1ow, it saÈisfies
æ

equation 2.2 anò, therefore it follows that

div(w) = 0 . 2.7

Substituting from equation 2.6 into equation 2.7, gives

the expected result that the potent.ial 0 satisfies Laplacers

equation

v' ô = o 2.8

The boundary conditions on þ arise from equations 2.3 and 2.5

in the form

2.6

tq++'>gradÔ'n=W-'n,

and in the usual exteríor problem, the regularity conditions

IÞ

grad S + 0 at infinitY 2-l0

The essential sirnplicity of the potential flow derives

from the fact that the velocity fietd is determined by the

equations of continuity 2.2 and 2.7 and the condition of

irrotationality (implied in equations 2.4 and 2.6) z thus the
l

equatíon of motion 2.L is not used, and the velocity may be



d,etermined independently of Èhe ft.=sure- Once the velocity

field is known, the pressule is calculated from equation 2-I

which, v¿hen integ'rated to the well known Bernoull-i equation,

can be written in terms of the pressure coefficient

v

P-P ,2
I 'llvl

lñ- |

2"LI

! o lñ""l'

The,problem defined by eguations 2-8, 2.9 and 2"10 is a

well known classic Neumann problem which has certain special

features which greatly influenced the development of the methods

of solution. parti cula::i the domain of the unknown Ô is

infinite in extent, but often the solutíon is of interest only

on the boundaries. Despite the fact that Laplace's equation

is one of the simplest and best known of all partial differential

equations, t,he number of useful exact analytic solutions is quite

small-, the difficulty of course lies in satisfying the boundary

conditions "

The problem can only be solved. analytically by the tech-

nique of separation of variables which requires the boundary to

be a coordinate surface of one of the special orthogonal co-

ordinate systems for which Laplace ' s equation can be separated

into ordinary differential equaÈions" fn the tsro-dimensional

case, Laplace's equation is simply separable in a1I orthogonal

coordinate systems, but this technique is not comrnonly used"

Inste.ad of solving the Laplace ¡ s equat.ion, the problem can be

t'i+r¡

i



replaced by finding a suitable conformal transformation of the

boundary into a circle, and the flow around the airfoil will

be calculated using the known solution of the flow around

this circle.

2.1.1 The AnalYtic Methods

The Joukowski transformation when applied to an of f set 
i:.,: -:::r

circle resuLts in a càmbered Joukowski airfoí1. The f low around ..:.',.'.,;,,

this airfoit can be obtained from the transformed flow around

the circular cylinder. The circulation around the airfoil ís

obtained by applying the Kutta condition which requires the

velocÍty at the trailing edge to be finite, and so the point

on the circular cylinder which corresponds to the trailing edge

must be a stagnation point. Then the coefficient of lift will

be otained. from the theorem of Kutta and Joukowski. This

gives the ideal lift-curve slope to be equa'I to 2lt/tadi-an for

thin airf oi Is at smal-1 incidences.

All Joukowski airfoils have cusps at the Ërailing edge;

the application of von Karman and TreffEz transformation will

result in airfoils with finite angle trailing edges-

Different exact and approximate analytical methods have

been developed to calculaÈe the steady flow of an incompressible

inviscid fluid about two-dimensional arbitrary airfoils. A

good survey of these methods has been given by Giesing in Ref. 4.

An exact method to calculate the pressure distributíon

around an airfoil of given arbitrary shape hes been put forward,

È



by Theodorsen who maps a single aírfoil. into a circle.

Initially, the airfoiI is mapped into a pseudo-circle by an

inverse Joukowski transformation and then into an exact circle

by a second transformation. The procedures can be generalized

and improved by replacing the single Joukowski transformation

by one, or more than one, j.nverse Karman-Treffi-z transformation.

With such a transformation an airfoíl with any number of surface

slope discontinuities, in addition to the trailing edge dis-

conÈinuity, can be mapped into a smooth pseudo-circle.

The application of exact analytic solution to practical

problems ís generally beyond the capability of hand computation;

therefore approximate solutions have in the past received most

of the attention of investigators in the field of potential

flow. Goldstein developed a series of systematic approximations

to the exact Theod.orsen method which led to a sufficiently

accurate result with littIe labour in computation. The thin

airfoil theory put forward by Munk and refined by Glauert

assumes that the general thín airfoil can be replaced by its

camber line which is assumed to be only a slight distortion of

a straight líne and that the perturbation velocity components

due to the presence of the thin airfoil are small with respect

to the unifor¡n onset f1ow. The thin airfoil theory, whÍch led

to the Linearízation of the problem, has two different types

of analysis. The first one uses an inverse Joukowski trans-

formation of t.he thin airfoil t,o a slightly distorted circle

': ,-: ; :l



which is then transformed to an exact. circle and, the other one

utí1izes a distribution of singularíties placed along the

chord and the strengths of the singularities are determined

by satisfying the boundary conditions. The Èhin airfoil theory

does not usually give accurate pressure distríbutions, especially

near the nose where it gives an infinite va1ue, but it does

give usable .values of the lift coefficient. Riegels established

a correction for the pressure distribution in regions of high

surface s1ope, and, a similar modífication was d,eveloped by

!'leber to improve the pressure distribution r €specially near the

nose.

The approximate solutions are generally unsatisfactory

since they are inapplicable in many cases, their validity in

other cases is not predictable, and t,he accuracy of t,he compuÈed

solutions is .usually unknown.

All the exact and approxímate analytical solutions

mentioned above are unable to handle the flow about multiple

bodies and this fact led to the consideration of the exact

numerical methods of solution.

2.L.zExact Numerical Methods

A distinction must be made between approximate analytic

solutions and exact numerical methods. In the latÈer the

analytical formulation, inctuding all equations, is exact and

numerical approximations are only introduced for purposes of

calculation. Such approximations are numbers having a finite

, i iIi.'

.llr.l;:;r,
i.t t:...

10



number of decimal places and integrals that are evaluated by

quadrature formulas. Exacù numerical methods have the

property that the errors in the cal-culated solution can be

made as small as desired by suf f iciently ref ining the numerical '- :.:
': :_:-:: : :

calculations. fn contrast, approximate solutions introduce

analytical approximations into the formulation itself and thus

place a linit on the accuracy that can be obtaine d in a given 
,:., ,,,1,,,.
.,:: ::l r:

case regardtess of the numerical procedures used. 
':1 

" 
:l

: 
tt" tt'"-t

There appear to be two classes of exact numerical solutions i,i.':,',:i

that have been applied to the general fluíd dynamics problem"

The first one is the network method based on finite-difference

approximations of the derivatives of the potential; the second

is based on the solution of an inte$rat equatíon over the

bound.ary surface which involves determination of a singularity

distribution over the boundary surface. The network method is

usually unsuitable for the external fluid dynamics problem

since the solution gives the whole field whil-e it is usually

only t,he boundary values which are of interest. The flow field

about an airfoit is infinite in extent, which necessitates the

distribution of the netlttork conÈrol points throughout many

body lengths i.n each direction resulting in a large number of

control points and a consequently large number of equations,

while the integral methods require only conÈrol points distributed

on the.boundary of the airfoil. This difference is illustraÈed

in Figure 4.
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