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ABSTRACT

The subject of the thesis is classical meson
theorye. The purpose in writing this thesis was to present
meson theory from an elementary point.of view, a point
of view which could be understood by students in physics
not familiar with quantum field theory. Thus the develop-
ment of the meson field equations is carried through by
analogy with familiar classical fields, such as the electro»
magnetic field. The various formulations of meson field
theory are considered: scalar, pseudo-scalar, vector, and
pseudo-vector. The charged and symmetric.meson theories
are introduced by regarding’the'isotopic spin of a nucleon
as a classical vector in an abstract charge spaces

A sufficient background is developed to enable
the reader to follow the analysis of several interesting
probléms in meson physics. The questions of nuclear forces§
the structure of the deuteron, meson production in nucleon=
nucleon and photoﬁ-nucleon collisions, meson scattering by
‘nucleons, are treated by applications of the classical theorys

Finally the classical results are compared with

quantum mechanics and with experiment.
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1. INTRODUCTION:

The mesons we shall be mainly concerned with are
the Z -mesons, believed to be reéponsible for the
specific nuclear interactions. We assume the reader is
familiar with the early historical development of meson
theory. Hideki Yukawal was the first to suggest that nuclear
forces might be.explained by a field theory similar to
electromagnetic theory. Because of the short range nature
of nuclear forces, Yukawa found it necessary to associate
with his field,particles of finite mass intermediate betﬁeen
that of the proton and electron. He was thus able to predict
the existence and mass of a hitherto unobserved elementary
particle, the meson. Several years after the publication of
Yukawa's first paper on meson theory, a particle of approxim-
ately the correct mass was discovered as a constituent of

2

cosmic rays®e It was subsequently demonstrated that this

particle, later called the pu-meson, interacted only weakly

1, Hideki Yukawa: 'On the Interaction of Elementary
Particles, I' Proceedings of the Physico-Mathematical
Society of Japan (3), 17, 48 (1935). Reprinted in

'Foundations of Nuclear Physics', Dover, 1949,

2. First observed by Neddermeyer, Anderson (1939) and
independently by Blackett, Wilson (1939).




with nucleons. However; further research3 uncovered the
presence of yet another meson in cosmic rays. This latter
meson, the 7T -meson, did in fact seem to possess the proper-

ties of Yukawa's field particless

Present day meson theory is based on the formalism
of quantum field theory. It is felt that many physicists
possess insufficient mathematical background to permit them
to follow the rather complicated structure of meson theory,
but are otherwisé.quite capable of grasping the physics in~-
volved. Perhaps, then, there is a need for an introductory;
classical theory of mesons = a classical theory which could
provide a basis for the reading of current literature on
experimental meson physicse It is true that there are
present in the literature many classical or semi-classical
treatments of problems in meson physics. However, nowhere
does there exist a unified account of meson theory from an

elementary point of views

It is our purpose to discuss the classical field
theory for the s -meson. We begin by establishing the
defining equations for the various types of meson fields:
scalar, péeudo-scalar, vector, pseudo-vectors This is
accomplished by considering well known classical fields as

ana10gies; the source terms of the meson field being patterned

3, Powell et al, at Bristol, (1947)s




after the source terms of the electrostatic, magnetostatic,
and electromagnetic fieldse Thus, just as one regards the
electrostatic field as arising from a distribution of
electric charge, so must one regard the meson field as

arising from a distribution of nuclear matter.

By interpreting the meson as a field particle we
find iﬁ possible to introduce electric charge into the meson
field, and hence to set up the symmétric formulation of
meson physicses It is in terms of this symmetric theory
that we are able to discuss many interesting problems in
meson physicse A solution of the static, symmetric, meson
field equations makes possible a discussion of nuclear
forces, and in addition yields a rather crude explanation

of meson production in nucleon-nucleon collisionss

Within the classical framework, we also consider
the scattering of mesons by nucleons and the production of

mesons in photon-nucleon collisionss

Finally the results of the applications of our
classical meson theory are compared with quantum theory and
with experiment. The latter comparison is carried out to
make the reader aware of the strengths and weaknesses of

present day meson theorys
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2. FORMALISM: FIELD EQUATIONS FOR MESON FIELD
2.1 Scalar Meson Field.

We have indicated that our purpose is to treat
meson theory in a classi cal or semi-classical fashion. In
‘doing so we will discuss two main formulations: first a
scalar, and then a vector development of the meson field.

We shall begin by considering the simpler of the two treate
ments; the scalar theory. One weuld saysthat a physical
field w;s scalar in nature, if it is possible to completely
describe the field by specifying the value of a scalar P (7e¢)
at an arbitrary space-time point(?{¢)¢: Associated with

this field ¢ are its sources, which may be given as definite
functions  $€£¢)0£ time and positionl. The manner in which
the sources S give rise to the field gﬁ is summed up in

a field equation
DC#e) P(F,e) = SCF ed (1)
where /) is a multiplicative and differential operator.

Our problem with regard to the meson
field 95 is to choose appropriate functions characteristic
of the nuclear sources for the field, and to relate these

sources with ?5 through a set of field equationse

It will be instruective to consider a familiar

scalar field, the classical electrostatic field arising from

1o In such case one ignores the reaction of the field

on its sources S .




a stationary distribution of electric charge. Let us suppose
that in some region of space the field is described by the
function (#)and the charge distribution by a densityf%(?f};
Then, it is well known that the behaviour of P(*Jwill be

governed by the Poisson equation

VY s - P, (2)

(units chosen so dielectric constant = %7)

At this point one often considers the force
exerted on an elementary volume ( 77) of charge, thereby
introducing the notion of a field intensity. The force on

dy will be

— , —
df = (%diﬁ)é | (3)
where the field intensity is defined as

F= - VY (4)

™|

In terms of L it is possible to replace the single second
order field equation (2) by a pair of first order equationss
The first of these is the defining equation (A) for E? sy and
the second is obtained by substitution from (4) into (2)¢

The result is V-E = £ | (5)

We are in particular interested in computing the

—p
field due to a single charged particle situated say at 7 =z0O

Such a charge distribution would be described by a density .




where () is the charge on the particle and 5/7) is the
Dirac delta function. Now a general solution of the Poisson
equation (2) may be obtained by a Green's method. One uses

the Green's function

-—-—L—.‘
=71
and obtains
NPY = L (7). v’
’ i ] )

The field at ‘}j due to a single particle at the origin
then is |

am———

wi 2

One notes that though the field ¥(#)in (8) apé
proaches zero as distance from the source increases, the
fall off is rather graduale. For our present work, this is
an important point. Experimenfs have shown that pérhaps the
main feature of specific nuclear forces is their very short
rangéi. If then one is to develop a meson theory capable of
explaining nuclear forces, one must incorporate in such a

theory the short range nature of these forces.

This may be accomplished by selecting for the meson

field a proper wave equation. One simple generalization of

lv—0One-might-say-that-nuclear forees—determine—the—scale—of -the

nucleusy-coulom at-ie the-atoms
Sinece the nuclearmraé1u3wf-i9’lémcm~“andfatcmic—raﬁ1u3“'

Nl@ w,8u_, oo FR D et

mueh--sherter—rangev
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the Poisson equation (2) which will define a field; gﬁ s of

definite range is the followinglz

(V-k") P = p (P (9)

( K is some constant of dimensions (length)-l)

For suppose one seeks the solution of (9) corresponding to a

point source, i.e.
L (7)) =39 5(F) (10a)

é}‘ being some constant whose nature we leave unspecified at

the moménts

A general solution of (9) is obtained through use
of a Green's Function -
| 5-/</?—?’i
(7 -7

The result is

s . - =B ‘
G(F)= L [p(P)C <77 g (100)

| vz ) " PP ]
and the choice =9 §(#) leads to a field
Pz -& e (11)
4z 7 ~

It is immediately evident that the field described by equation
(11) will fall off far more rapidly for large » than will

the coulomb field (8 )¢ One can in fact associate with the

1. The sign of fz in the equation (9) is opposite to that of
f%% in the electrostatic field equation. The reason for

this is that we wish to abide by standard convention for
meson notation. The same question arises with reference to

the meson field intensitys




field (11) a characteristic range ;% o

If one takes for -;% a value in agreement with the experie
mentally determined range of nuclear forces, then perhaps

equation (9) may be used as a basis for a scalar meson theorye

By analogy with the coulomb:: field, the source
functiqn ﬁfg?ﬁfbr the meson field will be taken as a density
of nuclear source materiales We shall in fact set /gig;ﬁf%zyﬁ ’
where ©(7#) 1is to be the number of nuclear particles per unit
volumeos This would imply that we attribute to each nucleon,
whether proton or neutron, a mesic 6harge‘%? o In this re;
spect the meson field would seem ©O parallel the grévitational
field more closely than the electrostatic field « we have only

one type of mesic chargee

Equation (11) will then give the field due to a

single nucleone

We may fix the units of :;, by considering the
energy possessed by a nucleon placed in an external meson
fielde In electrostatics a charge (p placed in an external
field 'gr possesses energy &YW o Similarly; we shall take
as the energy of a nuclear particle placed in a meson field

. , - 2p KV
¢ , the quan‘;:.ty 9 @  oClearly then,,.% is to have
the dimensions of energy, and &ﬁ? those of an electric

chargeo

It is also possible to introduce in meson field




theory an intensity defined by

- A # V

AL = V;@ (12)
Substitution into (9) then yields

v Z :/c¢+gp(7“) (13)

The equation (9) or the pair of equations (12) and (13) may

be taken as defining equations for the scalar meson fieldes

Actually such equations describe a rather limited field 95 ;

in fact a static fields One would like to be able to discuss
time varying fields arising from a moving distribution of
nuclear matter. We shall demand that the structure of any
time dependent meson theory be in conformity with the re~
quirements of special relativity, i.eo we ask that the field

X . . 1
equations be Lorentz invariant.

We achieve a relativistic generalization of (9) or
(12) and (13) by replacing all 3-dimensional quantities by
 corresponding L-dimensional quantities. Such a transformation
may be described by the following scheme:
¢C7“>“’"¢ar;
L ~ 2z (T, 2)

V7 > vZes 2Ds = 25 0,
< azr

Finally we must obtain a replacement for the nuclear density |
f>(;7. This is most readily done by introducing a velocity

field i?gffy} to describe the flow of nuclear matter. We:

1l,s See Appendix A,

oo
VEROREE




would refer to j?:‘f)i?. as a curvent density for this flow,
and weudd then combine f, ﬁ to form a L4-current JJ',':: (fzﬁﬂi
The magnitude of this 4=-current would be given by
| LT, = —62102(!—-323/63,>
Hence it would follow f;?

JOW— UZ,, = y—-éi_‘ o

is a L-scalar or invariant.

For the static field -0 , and 4~/ J 7, ““9/C3 o
V4
Clearly then /Cj_&gz; ' provides us with a suitable
czf

generalization of jO o

The time dependent meson field equations, then; may

be written down

——

Z = V?é (a)
Ay = £ 2P (b)evvve (14)

-y

. 2Lw - K& >
VEep B KP g s

The Lorentz invariance of the field egquations becomes

apparent if one makes use of the L-dimensional notation

X»=av¢ . (a)

sescee (15)
Z)»X),:/C"¢*,§;/*ébd7;3; (b) :

Either set,(1l4) or (15), is equivalent to the single wave

equation

(@R P3P T = 2P ae)



ll =

We see that the presence of nuclear matter makes
itself felt only in the divergence equation (15b), through
the scalar term J #-1 7.3,

We refer to such a situation as a scalar coupling of the meson
field to its sources. A vector coupling may be introduced

by adding to v ¥ , in the definition of X o s Some
L=vector describing the nuclear sourcese.. A rather obvious
choice is the 4-current JZ .« We then might replace equation

(15v) by
Xoz= opbr g, Jy (15b1)

where 4;;' is a coupling constant. It will now be shown

that the vector coupling contributes nothing to the field

P

If we assume conservation of nuclear matter, then

the flow of such matter must obey a continuity equation

oy

V-d+dp. 0 (16)

¥

Consider the wave equation resulting from both scalar and
vector coupling, i.e. from equation (15a) and (15b'). This

wave equation will be

(- K"‘MP _gm//-v/g Gy O (17)




The contribution from vector coupling vanishes by virtue of
the continuity equation (16). Hence we will not lose any of
the physical content of our theory if we ignore the vector

couplinge

In later applications of meson theory we shall be
interested in energy flow in the meson field. As a necessary
part of our formalism, then, we must consider the;possibility
of energy retention in the field, and of energy contribution to
the field by its source. We attempt to sum up such consideraQ
tions in a continuity equation describing the transport of

energy by the field.

To form this continuity equation we examine the

vector

—

S,; }f;fx:'—qsvsé: (gif§¢> (18)

o0

We compute the divergence of this vector and substitute from

the wave equation (17) to obtain

73 . 2 (Ho) = -3pPpe (19)
where Ho = £ KP4+ ‘ZL{V(#)!*Z‘;,,

This latter equation (19) is a continuity equation expressing
the conservation of some physical entity characteristicqu the
field 95 « To deduce the nature of this entity we examine

the term -‘é?f9f3€?é which is clearly a source for this
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field entity. By analogy with electrostatics we might attribute
an énergy density i?f¥3¥é to a distribution of nuclear
matter, f} y lmmersed in a meson field q% o It is then
reasonable to suppose -;?ﬁfpgé | represents the rate at which
the nuclear sources contribute energy tb the meson fieldla This
leads us to designate Ho as the energy density for the
meson field;,and éf' as'thé energy current densitye

In quantum mechanics one refers to :ygifigé as an
interaction energy density peculiar to the nuclear sources,

and writes the field energy density in the form

H- Horgperpd

1. Let us suppose that the meson field is set up by a single

| nucleon. We expect that there is a true energy conservation
in the system nucleon plus meson field. Thus; by inte~
grating the right side of (19) over the nuclear volume we
obtain as the time rate of éhange of the nucleon total

energy y:

dH . gp ¢>c7’“;.t‘>

( gé ,gg being evaluated at the nucleon position.)’

Now one has as a theorem in particle mechanics Qfﬂﬁbz_ég.,
aE I




where 2? is the total energy or Hamiltonian for the
particle and [ is its Lagrangian; It is a simple matter
to compute the Lagrangian for the nucleon - one adds to the
free particle Lagfangian a contribution from the meson
field, an interaction Lagrangian.
The relativistic free particle Lagrangian is

Ly = - )"7’57;,/6’
M being the nucleon mass;
while the interaction Lagrangian is

' . e _ f—’;’q' . «»;,"_,';)
LUs-fapppdv « JRPEL . p- 37

nucleon
volowe &

Hence the total nucleon Lagrangian is

L= ~(Mc+9¢ )5

b

and one finds
I . gp PR
Thus energy conservation in the system nucleon plus meson
field is guaranteed.
The fact that one has labelled _gf@p§f;'(ﬁf) as an
interaction energy density might suggest the potential
energy of a nucleon in a meson field is giﬁgb(;:,t} o
Actually the total energy for the nucleon is
A 7t 9H6,2
8 g ;-
and hence the nucleon potential energy is ézfé(égﬁ.

R
In any case, the nucleon at rest in a scalar field §5

possesses an energy wé;§5(§9&




2.2 PSeudo—Scaiar Meson Field.

Suppose in place of electrostatics we had selected
as a guiding analogy for meson theory the magnetic fiéld set
up by magnetized materials. One generally pictures magnetic
material as consisting of elementary magnetic dipoles. The
result is that on a macroscopic level the material possesses

- a net dipole moment per unit volume, ﬁ4(?) saye

The magnetic field intensity due to such a distrie

bution of magnetic material is
B(F) = —9Y ) » MP) (1)

where y& is to be considered as a potential for the mag-
netostatic field. As a consequence of the non-existence of

magnetic monopoles one has
V-8 = o (2)

From (1) and (2) one could deduce as the basic equation for

the magnetic field ¥,
' —
V¢ = VM (3)

We note that FT‘ is not a true 3~vector. In fact; the
magnetic moment F? is very similar to an angular momentum;
in that it possesses the properties of a cross product of

two vectorse. We suppose @ F are a pair of 3-vectors,
and we form the product (.f b 4 g o Then we consider a ree

flectibn of all three co-ordinate axes used in representation




