Genome features of

dc.contributor.authorSharma, Parveen K
dc.contributor.authorFu, Jilagamazhi
dc.contributor.authorZhang, Xiangli
dc.contributor.authorFristensky, Brian
dc.contributor.authorSparling, Richard
dc.contributor.authorLevin, David B
dc.date.accessioned2014-06-10T15:07:50Z
dc.date.available2014-06-10T15:07:50Z
dc.date.issued2014-05-22
dc.date.updated2014-06-10T15:07:51Z
dc.description.abstractAbstract A novel strain of Pseudomonas putida LS46 was isolated from wastewater on the basis of its ability to synthesize medium chain-length polyhydroxyalkanoates (mcl-PHAs). P.putida LS46 was differentiated from other P.putida strains on the basis of cpn60 (UT). The complete genome of P.putida LS46 was sequenced and annotated. Its chromosome is 5,86,2556 bp in size with GC ratio of 61.69. It is encoding 5316 genes, including 7 rRNA genes and 76 tRNA genes. Nucleotide sequence data of the complete P. putida LS46 genome was compared with nine other P. putida strains (KT2440, F1, BIRD-1, S16, ND6, DOT-T1E, UW4, W619 and GB-1) identified either as biocontrol agents or as bioremediation agents and isolated from different geographical region and different environment. BLASTn analysis of whole genome sequences of the ten P. putida strains revealed nucleotide sequence identities of 86.54 to 97.52%. P.putida genome arrangement was LS46 highly similar to P.putida BIRD1 and P.putida ND6 but was markedly different than P.putida DOT-T1E, P.putida UW4 and P.putida W619. Fatty acid biosynthesis (fab), fatty acid degradation (fad) and PHA synthesis genes were highly conserved among biocontrol and bioremediation P.putida strains. Six genes in pha operon of P. putida LS46 showed >98% homology at gene and proteins level. It appears that polyhydroxyalkanoate (PHA) synthesis is an intrinsic property of P. putida and was not affected by its geographic origin. However, all strains, including P. putida LS46, were different from one another on the basis of house keeping genes, and presence of plasmid, prophages, insertion sequence elements and genomic islands. While P. putida LS46 was not selected for plant growth promotion or bioremediation capacity, its genome also encoded genes for root colonization, pyoverdine synthesis, oxidative stress (present in other soil isolates), degradation of aromatic compounds, heavy metal resistance and nicotinic acid degradation, manganese (Mn II) oxidation. Genes for toluene or naphthalene degradation found in the genomes of P. putida F1, DOT-T1E, and ND6 were absent in the P. putida LS46 genome. Heavy metal resistant genes encoded by the P. putida W619 genome were also not present in the P. putida LS46 genome. Despite the overall similarity among genome of P.putida strains isolated for different applications and from different geographical location a number of differences were observed in genome arrangement, occurrence of transposon, genomic islands and prophage. It appears that P.putida strains had a common ancestor and by acquiring some specific genes by horizontal gene transfer it differed from other related strains.
dc.description.versionPeer Reviewed
dc.identifier.citationAMB Express. 2014 May 22;4(1):37
dc.identifier.doihttp://dx.doi.org/10.1186/s13568-014-0037-8
dc.identifier.urihttp://hdl.handle.net/1993/23619
dc.language.rfc3066en
dc.rightsopen accessen_US
dc.rights.holderParveen K Sharma et al.; licensee BioMed Central Ltd.
dc.titleGenome features of
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
s13568-014-0037-8.xml
Size:
286.6 KB
Format:
Extensible Markup Language
Description:
Loading...
Thumbnail Image
Name:
s13568-014-0037-8.pdf
Size:
3.24 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
s13568-014-0037-8-S1.docx
Size:
90.6 KB
Format:
Unknown data format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.17 KB
Format:
Item-specific license agreed to upon submission
Description: