Foraging flexibility of seabirds (Family Alcidae) under varying prey biomass

dc.contributor.authorLescure, Lauren
dc.contributor.examiningcommitteeFraser, Kevin (Biological Sciences) Detwiler, Jillian (Biological Sciences)en_US
dc.contributor.supervisorDavoren, Gail (Biological Sciences)en_US
dc.date.accessioned2021-09-09T16:02:10Z
dc.date.available2021-09-09T16:02:10Z
dc.date.copyright2021-08-25
dc.date.issued2021en_US
dc.date.submitted2021-08-25T14:23:26Zen_US
dc.degree.disciplineBiological Sciencesen_US
dc.degree.levelMaster of Science (M.Sc.)en_US
dc.description.abstractDuring the breeding season, seabirds may respond to shifts in prey regimes, which can lead to changes in diet, foraging behavior and breeding success. In coastal Newfoundland, seabirds rely on capelin (Mallotus villosus), a forage fish that migrates into coastal areas during the summer to spawn, thereby increasing prey availability. However, with increasing variability in ocean climate, capelin biomass as well as the timing of spawning and inshore arrival has become highly variable. In Chapter 1, I measured the association between capelin biomass and three niche metrics for chick-rearing razorbills (Alca torda): diet, foraging effort and body condition. For three years, I estimated dietary proportions using blood stable isotope ratios (δ15N, δ13C), foraging and dive metrics from GPS and TDR loggers and assessed colony-based measures of body condition with body mass and wing length. During higher capelin biomass years (2017, 2019), foraging effort of razorbills decreased with a higher proportion of capelin in the diet after they arrived inshore to spawn, but not in the year with lower capelin biomass (2020), which was also associated with lower adult and chick body condition. In Chapter 2, I explored how sympatrically breeding razorbills, Atlantic puffins (Fratercula arctica) and common murres (Uria aalge) respond to inter-annual (2017, 2018, 2019) variation in capelin biomass using blood stable isotope ratios (δ15N, δ13C) to estimate isotopic niche, as a proxy of dietary niche. At the species-level, niche breadth generally contracted and trophic position shifted toward capelin during the year of higher capelin biomass (2018) relative to years of lower biomass (2017, 2019), indicating a higher reliance on capelin and lower diversity of prey in the diet when more capelin were available. At the assemblage-level, trophic diversity was lower and niche overlap was higher during high capelin availability years (2018) relative to low capelin availability years (2017), suggesting shifts in species interactions with variation in capelin availability. Overall, these studies examining multi-species responses to variation in prey biomass in a multi-year context provide a better understanding of how species interactions may change and, thus, how species will tolerate future changes in ocean climate.en_US
dc.description.noteOctober 2021en_US
dc.identifier.urihttp://hdl.handle.net/1993/35932
dc.language.isoengen_US
dc.rightsopen accessen_US
dc.subjectPredator-prey dynamicsen_US
dc.subjectDieten_US
dc.subjectTrackingen_US
dc.subjectStable isotope analysisen_US
dc.titleForaging flexibility of seabirds (Family Alcidae) under varying prey biomassen_US
dc.typemaster thesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lescure_Lauren.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.2 KB
Format:
Item-specific license agreed to upon submission
Description: