Application specific performance measure optimization using deep learning

Loading...
Thumbnail Image
Date
2016
Authors
Rahman, Md Atiqur
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract

In this thesis, we address the action retrieval and the object category segmentation problems by directly optimizing application specific performance measures using deep learning. Most deep learning methods are designed to optimize simple loss functions (e.g., cross-entropy or hamming loss). These loss functions are suitable for applications where the performance of the application is measured by overall accuracy. But for many applications, the overall accuracy is not an appropriate performance measure. For example, applications like action retrieval often use the area under the Receiver Operating Characteristic curve (ROC curve) to measure the performance of a retrieval algorithm. Likewise, in object category segmentation from images, the intersection-over-union (IoU) is the standard performance measure. In this thesis, we propose approaches to directly optimize these complex performance measures in deep learning framework.

Description
Keywords
Deep learning, Action retrieval, Object category segmentation, Directly optimizing ROC-area, Directly optimizing intersection-over-union
Citation
Rahman, M.A., and Wang, Y. Learning neural networks with ranking-based losses for action retrieval. In 13th conference on Computer and Robot Vision (CRV), 2016.