Stability of pro- and anti-inflammatory immune biomarkers for human cohort studies

Thumbnail Image
Graham, C.
Chooniedass, R.
Stefura, W. P
Lotoski, L.
Lopez, P.
Befus, A. D
Becker, A. B
HayGlass, K. T
Journal Title
Journal ISSN
Volume Title
Abstract Background Although discovery research has identified the importance of dozens of pro- and anti-inflammatory immune mediators in the pathogenesis, maintenance, exacerbation and resolution of inflammatory diseases, most human cohort studies have incorporated few or no immunological intermediate phenotypes in their analyses. Significant hindrances have been (1) the limited panel of biomarkers known to be readily detected in healthy human populations and (2) the stability, hence utility, of such biomarkers to repeated analysis. Methods The frequency and stability of 14 plasma biomarkers linked to in vivo immune regulation of allergic and autoimmune inflammatory disorders was determined in 140 healthy pediatric and adult participants. The impact of initial and multiple subsequent freeze/thaw cycles on pro-inflammatory (CCL2, CXCL10, IL-18, TNFα, IL-6), anti-inflammatory (IL-10, sTNF-RII, IL-1Ra), acute phase proteins (CRP, PTX3) and other biomarkers (sST2, IL-1RAcP) was subsequently quantified. Results Multiple biomarkers capable of providing an innate immune signature of inflammation were readily detected directly ex vivo in healthy individuals. These biomarker levels were unaffected when comparing paired data sets from freshly obtained, never frozen plasma or serum and matched aliquots despite extensive freeze/thaw cycles. Neither age nor sex affected stability. Similarly, no quantitative differences were found following repetitive analysis of inflammatory biomarkers in culture samples obtained following in vitro stimulation with TLR and RLR ligands. Conclusions A broad panel of in vivo and ex vivo cytokine, chemokine and acute phase protein biomarkers that have been linked to human chronic inflammatory disorders are readily detected in vivo and remain stable for analysis despite multiple freeze thaw cycles. These data provide the foundation and confidence for large scale analyses of panels of inflammatory biomarkers to provide better understanding of immunological mechanisms underlying health versus disease.
Journal of Translational Medicine. 2017 Mar 02;15(1):53