Genetic analysis of resistance to Fusarium head blight in wheat (Triticum spp.) using phenotypic characters and molecular markers

Thumbnail Image
Malihipour, Ali
Journal Title
Journal ISSN
Volume Title
Fusarium head blight (FHB), caused mainly by Fusarium graminearum (teleomorph: Gibberella zeae), is one of the most damaging diseases of wheat. A ‘Brio’/‘TC 67’ spring wheat population was used to map quantitative trait loci (QTLs) for resistance to FHB, and to study the association of morphological and developmental characteristics with FHB resistance. Interval mapping (IM) detected a major QTL on chromosome 5AL for resistance to disease severity (type II resistance) and Fusarium-damaged kernels (FDK) under greenhouse and field conditions, respectively. Inconsistent QTL(s) was also detected on chromosome 5BS for disease severity and index using field data. The associations of plant height and number of days to anthesis were negative with disease incidence, severity, index, and deoxynivalenol (DON) accumulation data under field conditions. However, number of days to anthesis was positively correlated with disease severity (greenhouse) and FDK (field). Awnedness had a negative effect on FHB, namely the presence of awns resulted in less disease in the population. Spike threshability also affected FHB so that the hard threshable genotypes represented lower disease. Phylogenetic relationships of putative F. graminearum isolates from different sources were characterized using Tri101 gene sequencing data. Canadian and Iranian isolates clustered in F. graminearum lineage 7 (=F. graminearum sensu stricto) within the F. graminearum clade while the isolates received from CIMMYT, Mexico were placed in F. graminearum lineage 3 (=Fusarium boothii) within the Fg clade or Fusarium cerealis. The PCR assay based on the Tri12 gene revealed the presence of the NIV, 3-ADON, and 15-ADON chemotypes with 15-ADON being the predominant chemotype. While we did not find the NIV chemotype among the Canadian isolates, it was the predominant chemotype among the Iranian isolates. High variation in aggressiveness was observed among and within Fusarium species tested, with the isolates of F. graminearum sensu stricto being the most aggressive and the NIV chemotype being the least aggressive. The interactions between Fusarium isolates and wheat genotypes from different sources were investigated by inoculating isolates of F. graminearum sensu stricto and F. boothii on wheat genotypes. Significant differences were observed among the genotypes inoculated by single isolates. Results also showed significant interactions between Fusarium isolates and wheat genotypes. The F. boothii isolates from CIMMYT produced low disease symptom and infection on wheat genotypes regardless of the origin of the genotypes while F. graminearum sensu stricto isolates from Canada and Iran resulted in higher FHB scores.
Wheat, Triticum aestivum, Triticum timopheevii, Brio, TC 67, Fusarium head blight, Quantitative trait loci, resistance, 5AL, 5BS, plant height, number of days to anthesis, awnedness, spike threshability, Tri101, Fusarium graminearum, Fusarium boothii, Fusarium cerealis, Lineage 7, Lineage 3, Tri12, NIV, 3-ADON, 15-ADON, aggressiveness, host-pathogen interaction