Solvent effects on the molecular structures of crude gliadins as revealed by density and ultrasound velocity measurements

Loading...
Thumbnail Image
Date
2010-06-22T15:11:51Z
Authors
Zhang, Zhuo
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Crude gliadins were extracted from Canada Western Red Spring (CWRS) wheat flour with 70% (v/v) aqueous ethanol solutions and then lyophilized. Lyophilized crude gliadins were dissolved in 70% (v/v) aqueous ethanol (EtOH) or 4 mM acetic acid (HAc) and the density and ultrasound properties were measured at 20 °C. Good linear relationships of density, ultrasound velocity and ultrasound attenuation with solution concentrations were found. Solvent and sonication effects on the crude gliadins were discussed in terms of the values of the partial specific volume and the partial specific adiabatic compressibility coefficient for crude gliadins. The ethanol soluble crude gliadins had a larger partial specific volume and larger partial specific adiabatic compressibility coefficient than those for acidic soluble crude gliadins. These large values for the physical properties of ethanol soluble crude gliadins were thought to be evidence for the existence of complexes formed by some proteins (ethanol soluble LMW-glutenins and gliadins) and lipids in ethanol solutions and it was also found that the protein-lipid complexes were not destroyed by sonication treatment. Besides, there was no evidence showing that gliadins change with different wheat flours and cause different volume and compressibility properties of crude gliadins.
Description
Keywords
gliadin, ultrasound velocity, adiabatic compressibility coefficient, solvent
Citation