• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classifying SARS-CoV-2 and common respiratory viruses from genome assemblies

    Thumbnail
    View/Open
    Thesis (900.8Kb)
    Date
    2022-12-13
    Author
    Rahman, Mohaimen
    Metadata
    Show full item record
    Abstract
    Polymerase chain reaction (PCR) testing has widespread use in the systematic identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) strains. However, another approach for identifying the SARS-CoV-2 virus is by the machine learning classification of genome sequences, which has shown promising results. While trained clinicians usually perform the classification of genome sequences, a machine learning classifier can be used to complement the process and provide a short list for further analysis. A machine learning approach can provide a unique fingerprint of base pairs and yield a quick classification. To this end, we investigated a k-mer approach in order to classify genome sequences of SARS-CoV-2 and common respiratory viruses, as well as a Human genome sequence. We aim to provide a simplified classification approach that balances validation time while limiting hyperparameter tuning. Our approach achieved F1 scores in excess of 0.99, and perfect scores between the common respiratory viruses. We demonstrated a simple 5-base sub-sequencing scheme which has the power to differentiate over 7.91 million sequences from almost 20 thousand genome assemblies.
    URI
    http://hdl.handle.net/1993/37034
    Collections
    • FGS - Electronic Theses and Practica [25633]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV