• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts

    Thumbnail
    View/Open
    13068_2021_Article_1906.pdf (3.638Mb)
    Date
    2021-03-08
    Author
    Ali, Sameh S
    Al-Tohamy, Rania
    Koutra, Eleni
    Kornaros, Michael
    Khalil, Maha
    Elsamahy, Tamer
    El-Shetehy, Mohamed
    Sun, Jianzhong
    Metadata
    Show full item record
    Abstract
    Abstract Background Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production. Results Thirty-eight yeast strains were isolated, molecularly identified and subsequently tested for desired enzymatic activity, lipid accumulation, and tolerance to lignin-derived metabolites. The most promising species were then used for construction of a novel yeast consortium, which was further evaluated for azo dyes degradation, under various culture conditions, dye levels, as well as upon the addition of heavy metals, different carbon and nitrogen sources, and lastly agro-waste as an inexpensive and environmentally friendly substrate alternative. The novel yeast consortium, NYC-1, which was constructed included the manganese-dependent peroxidase producing oleaginous strains Meyerozyma caribbica, Meyerozyma guilliermondii, Debaryomyces hansenii, and Vanrija humicola, and showed efficient azo dyes decolorization, which was further enhanced depending on the incubation conditions. Furthermore, enzymatic activity, fatty acid profile and biodiesel properties were thoroughly investigated. Lastly, a dye degradation pathway coupled to biodiesel production was proposed, including the formation of phenol-based products, instead of toxic aromatic amines. Conclusion In total, this study might be the first to explore the application of MnP and lipid-accumulating yeasts for coupling dye degradation and biodiesel production.
    URI
    https://doi.org/10.1186/s13068-021-01906-0
    http://hdl.handle.net/1993/35380
    Collections
    • Faculty of Agricultural and Food Sciences Scholarly Works [97]
    • University of Manitoba Scholarship [1952]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV