• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Size-dependent strength and plasticity in nanocrystalline metal with amorphous intergranular films

    Thumbnail
    View/Open
    neelav_afzal_hossain.pdf (1.905Mb)
    Date
    2018-12-17
    Author
    Neelav, Afzal Hossain
    Metadata
    Show full item record
    Abstract
    Grain boundaries are important in polycrystalline materials as they control the overall microstructural evolution and serve as both sinks and sources for dislocation activities in the material. Substituting crystalline atoms at the grain boundary region with amorphous intergranular films, it is possible to enhance dislocation absorption and so, reduce crack nucleation and growth at the interface. In this study, we have used Molecular Dynamics simulations to investigate the interface energy and their deformation mechanism under various mechanical loading of bi-crystal and polycrystal copper with the amorphous intergranular film. We have found that the presence of amorphous intergranular films reduces the interface energy and orientation dependence cannot be observed anymore. We have investigated both the effects of grain size (3 nm to 17 nm) and amorphous intergranular film thicknesses (0.5 nm to 1.5 nm). We have found a strong effect of the amorphous intergranular films in the strength of the material by causing a shift in the strongest grain size to a larger size. Moreover, we have found changes in the deformation mechanism due to the presence of the amorphous intergranular films from dislocation mechanism to grain boundary activity. Finally, thermal stability has been observed in the nanocrystalline copper with amorphous intergranular films during high-temperature creep.
    URI
    http://hdl.handle.net/1993/33601
    Collections
    • FGS - Electronic Theses and Practica [25535]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV