On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Between 2013 and 2015 Aguayo et al. developed an operator theory on the space c0 of null sequences in the complex Levi-Civita field by defining an inner product on c0 that induces the supremum norm on c0 and then studying compact and self-adjoint operators on c0, thus presenting a striking analogy between c0 over the complex Levi-Civita field and the Hilbert space l2 over the complex numbers field. In this thesis, the author tries to obtain these results in the most general case possible by considering a base field with a Krull valuation taking values in an arbitrary commutative group. This leads to the concept of X-normed spaces, which are spaces with norms taking values in a totally ordered set X not necessarily embedded in the field of real numbers.