• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A deep neural network based regression model for triglyceride concentrations prediction using epigenome-wide DNA methylation profiles

    Thumbnail
    View/Open
    12919_2018_Article_121.pdf (858.1Kb)
    Date
    2018-09-17
    Author
    Islam, Md. M
    Tian, Ye
    Cheng, Yan
    Wang, Yang
    Hu, Pingzhao
    Metadata
    Show full item record
    Abstract
    Abstract Background Epigenetic modification has an effect on gene expression under the environmental alteration, but it does not change corresponding genome sequence. DNA methylation (DNAm) is one of the important epigenetic mechanisms. DNAm variations could be used as epigenetic markers to predict and account for the change of many human phenotypic traits, such as cancer, diabetes, and high blood pressure. In this study, we built deep neural network (DNN) regression models to account for interindividual variation in triglyceride concentrations measured at different visits of peripheral blood samples using epigenome-wide DNAm profiles. Results We used epigenome-wide DNAm profiles of before and after medication interventions (called pretreatment and posttreatment, respectively) to predict triglyceride concentrations for peripheral blood draws at visit 2 (using pretreatment data) and at visit 4 (using both pretreatment and posttreatment data). Our experimental results showed that DNN models can predict triglyceride concentrations for blood draws at visit 4 using pretreatment and posttreatment DNAm data more accurately than for blood draws at visit 2 using pretreatment DNAm data. Furthermore, we got the best prediction results when we used pretreatment DNAm data to predict triglyceride concentrations for blood draws at visit 4, which suggests a long-term epigenetic effect on phenotypic traits. We compared the prediction performances of our proposed DNN models with that of support vector machine (SVM). This comparison showed that our DNN models achieved better prediction performance than did SVM. Conclusions We demonstrated the superiority of our proposed DNN models over the SVM model for predicting triglyceride concentrations. This study also suggests that the DNN approach has advantages over other traditional machine-learning methods to model high-dimensional epigenome-wide DNAm data and other genomic data.
    URI
    https://doi.org/10.1186/s12919-018-0121-1
    http://hdl.handle.net/1993/33493
    Collections
    • Rady Faculty of Health Sciences Scholarly Works [1296]
    • University of Manitoba Scholarship [2009]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV