• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of machine learning to computer network security

    Thumbnail
    View/Open
    jason_haydaman.pdf (1.351Mb)
    Date
    2017
    Author
    Jason Haydaman
    Metadata
    Show full item record
    Abstract
    Computer Security covers a wide array of topics, with much of the development in the field happening outside academia. We look at intrusion detection, and evaluate the effectiveness of machine learning in the development of a commercial intrusion detection system (IDS), and compare it with conventional IDS design approaches. We attempt to create novel data sets, and examine the difficulties of extracting new features from network traffic to aid machine learning based systems. Finally, we propose a novel, near-zero overhead method of associating network packets with the process identifier (pid) of their source in real-time and demonstrate a significant performance improvement over existing methods of pid labeling.
    URI
    http://hdl.handle.net/1993/32543
    Collections
    • FGS - Electronic Theses and Practica [25626]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV