Analysis of 1560 Inpatient and Outpatient Escherichia coli Isolates from across Canada—Results from the CANWARD 2007 Study

Thumbnail Image
Lagacé-Wiens, Philippe RS
DeCorby, Mel
Baudry, Patricia J
Hoban, Daryl J
Karlowsky, James A
The Canadian Antimicrobial Resistance Alliance (CARA),
Zhanel, George G
Journal Title
Journal ISSN
Volume Title
OBJECTIVES: Escherichia coli was the most common pathogen isolated in the Canadian Ward Surveillance Study (CANWARD 2007) and remains one of the most common pathogens isolated in all health care settings. An in-depth analysis of all E coli isolates was performed to determine the distribution and demographics associated with resistance to antimicrobials, presence of extended-spectrum beta-lactamases (ESBLs) and multidrug resistance (MDR; concurrent resistance to agents from three or more different antimicrobial classes). METHODS: The CANWARD 2007 study characterized pathogens isolated from inpatient (surgical and medical wards, and intensive care units) and outpatient (emergency departments and clinics) areas of 12 Canadian hospitals between January and December 2007. E coli susceptibility to 12 antimicrobials was determined, ESBL production was determined, and a multivariate nominal logistic regression model was designed to determine if sex, isolation from a sterile site, inpatient versus outpatient status, and age were significantly associated with susceptibility to the tested antimicrobials, MDR or ESBL production. RESULTS: In total, 1702 E coli isolates, representing 21.6% of all isolates collected in the CANWARD 2007 study, were investigated. Of these, 1560 isolates fell within the primary objective of the study and were included in the present analysis. Susceptibilities were greater than 90% for meropenem (100%), ertapenem (100%), tigecycline (99.9%), piperacillin-tazobactam (97.9%), cefepime (97.9%), ceftriaxone (95.4%), nitrofurantoin (95.2%), cefoxitin (94.8%), amoxicillinclavulanate (92.9%) and gentamicin (91.4%). Cefazolin (89.4%), the fluoroquinolones (ciprofloxacin, 79.4%; levofloxacin, 79.9%) and trimethoprim-sulfamethoxazole (75.7%) were less active agents. In the multivariate model, invasive isolates were significantly associated with lower susceptibility rates for trimethoprim-sulfamethoxazole. Increasing age was associated with lower susceptibility to fluoroquinolones, ceftriaxone, cefepime, gentamicin and nitrofurantoin, as well as ESBL production. Sex was not associated with resistance to any antimicrobial or to ESBL production. Inpatient status was associated with higher resistance rates to amoxicillin-clavulanate, cefazolin, fluoroquinolones and trimethoprim-sulfamethoxazole. Isolation of an ESBL producer was only found to be independently associated with age, being more common in older patients. MDR was not found to be associated with any variable measured when ESBL producers were excluded from analysis. CONCLUSIONS: E coli antimicrobial susceptibility varies according to patient factors. Age and inpatient status were the most important determinants in the present analysis and should be considered when prescribing empirical antimicrobial therapy. Fluoroquinolones and sulfonamides should be used cautiously and in consideration of local resistance patterns for infections caused by E coli, due to lower susceptibility rates. Independent factors associated with antimicrobial resistance were age, inpatient status and isolation from a sterile site. These factors should be considered when empirically treating infections likely caused by E coli. Local antimicrobial prescribing practices, in particular the liberal use of fluoroquinolones, and inadequate infection control practices may be reducing susceptibility rates.
Philippe RS Lagacé-Wiens, Mel DeCorby, Patricia J Baudry, et al., “Analysis of 1560 Inpatient and Outpatient Escherichia coli Isolates from across Canada—Results from the CANWARD 2007 Study,” Canadian Journal of Infectious Diseases and Medical Microbiology, vol. 20, no. Suppl A, pp. 49A-53A, 2009. doi:10.1155/2009/784635