• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    •   MSpace Home
    • University of Manitoba Researchers
    • University of Manitoba Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Magnesium sulfate treatment for juvenile ferrets following induction of hydrocephalus with kaolin

    Thumbnail
    View/Open
    12987_2016_Article_31.pdf (1.106Mb)
    Date
    2016-04-27
    Author
    Di Curzio, Domenico L
    Turner-Brannen, Emily
    Mao, Xiaoyan
    Del Bigio, Marc R
    Metadata
    Show full item record
    Abstract
    Abstract Background Previous work with 3-week hydrocephalic rats showed that white matter damage could be reduced by the calcium channel antagonist magnesium sulfate (MgSO4). We hypothesized that MgSO4 therapy would improve outcomes in ferrets with hydrocephalus induced with kaolin at 15 days. Methods MRI was performed at 29 days to assess ventricle size and stratify ferrets to treatment conditions. Beginning at 31 days age, they were treated daily for 14 days with MgSO4 (9 mM/kg/day) or sham saline therapy, and then imaged again before sacrifice. Behavior was examined thrice weekly. Histological and biochemical ELISA and myelin enzyme activity assays were performed at 46 days age. Results Hydrocephalic ferrets exhibited some differences in weight and behavior between treatment groups. Those receiving MgSO4 weighed less, were more lethargic, and displayed reduced activity compared to those receiving saline injections. Hydrocephalic ferrets developed ventriculomegaly, which was not modified by MgSO4 treatment. Histological examination showed destruction of periventricular white matter. Glial fibrillary acidic protein content, myelin basic protein content, and myelin enzyme activity did not differ significantly between treatment groups. Conclusion The hydrocephalus-associated disturbances in juvenile ferret brains are not ameliorated by MgSO4 treatment, and lethargy is a significant side effect.
    URI
    http://dx.doi.org/10.1186/s12987-016-0031-4
    http://hdl.handle.net/1993/31268
    Collections
    • Rady Faculty of Health Sciences Scholarly Works [1296]
    • University of Manitoba Scholarship [2018]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV