The effects of marginal pyridoxine deficiency and high protein intakes on vitamin b6 status and enzymes in intermediary metabolism in rats
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Pyridoxal-5-phosphate (PLP), the active form of vitamin B6 (B6), is a co-factor for enzymes in macronutrient metabolism. Increasing protein intake may affect B6 by increasing PLP-dependent enzymes in amino acid metabolism, which may be more pronounced during moderate B6 deficiency. Decreased B6 status decreases PLP-dependent enzyme activity possibly altering macronutrient metabolism. We examined changing dietary carbohydrate: protein ratios in rats consuming recommended vs. moderately deficient intakes of pyridoxine (PN)-HCl, on plasma markers of B6 status and enzymes in intermediary metabolism. Marginal B6 deficiency decreased all plasma B6 vitamers except for pyridoxic acid. Protein intake (40% energy) significantly reduced plasma PN and tended to decrease plasma pyridoxal with no significant alterations in plasma homocysteine or cysteine. Hepatic cystathionine-γ-lyase, glycogen phosphorylase, plasma aspartate and alanine aminotransferase significantly decreased with marginal B6 deficiency and cystathionine-γ-lyase decreased with increasing protein intake. Marginal B6 deficiency significantly increased hepatic glycogen with no changes in plasma haptoglobin.