• Libraries
    • Log in to:
    View Item 
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    •   MSpace Home
    • Faculty of Graduate Studies (Electronic Theses and Practica)
    • FGS - Electronic Theses and Practica
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Grounded HVDC grid line fault protection using rate of change of voltage and hybrid DC breakers

    Thumbnail
    View/Open
    Sneath_Jeremy.pdf (1.959Mb)
    Date
    2014-09-02
    Author
    Sneath, Jeremy
    Metadata
    Show full item record
    Abstract
    Different HVDC grid types and the respective protection options are discussed. An earthed bi-pole HVDC grid was modeled in PSCAD, and using simulation results, the necessity of di/dt limiting inductors to contain the rise of fault currents within the capacity of current hybrid DC breakers is demonstrated. The impact of different inductor sizes on current rise was studied. A fault detection and localization scheme using the rate of change of voltage (ROCOV) measured at the line side of the di/dt limiting inductors is proposed. The protection system was modeled and tested under different fault types and locations. The results show that the proposed method of HVDC grid protection is feasible using the current hybrid DC breaker technology. A systematic procedure for setting the necessary protection threshold values is also demonstrated.
    URI
    http://hdl.handle.net/1993/23939
    Collections
    • FGS - Electronic Theses and Practica [25494]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of MSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV