A model for time-independent and time-dependent damage evolution and their influence on creep of multidirectional Polymer composite laminates

Thumbnail Image
Asadi, Amir
Journal Title
Journal ISSN
Volume Title
Application of polymer matrix composites in engineering structures has been steadily increasing over the past five decades. Multidirectional polymer composites are one class of continuous fiber reinforced polymer matrix composites used in aerospace structures, where the desired mechanical performance outweighs the cost. Their modulus and strength degrade with time (known as creep and creep rupture) during the service, owing to the viscos-elasticity of the polymer matrix. Additional contribution to this degradation comes from various damage modes developed in the plies of the composite with time and identified in this thesis as TDD (Time Dependent Damage). These damage modes may also develop due to process-induced residual stresses, and during loading to the service load, identified as TID (Time Independent Damage). TID influences the TDD, the creep and the creep rupture. The objective of this thesis is to develop a model to predict the evolution of TID and TDD in multiple plies of a laminate and their influence on creep. The predominant damage mode, transverse cracking, is modeled in this study. The model consists of four modules, PIS, QSL, SL, and VA. The PIS, QSL, and SL moduli predict changes in ply stresses for incremental change in temperature, stress, and time respectively, using lamination theory and assuming linear elastic behavior of the plies during an incremental step. In parallel, each module predicts the stored elastic energy in each ply after each incremental step and compares it with a critical stored elastic energy criterion to determine if a ply would crack. If fracture is predicted, the VA module based on variational analysis, is invoked to determine the crack density and the perturbation in ply stresses due to cracking. The perturbation stresses are used by the module that invoked the VA module to determine the ply stresses after cracking during the current incremental step. The model predictions for a [±45/90]s laminate, at two test temperatures (80C and 180C) and four stresses in the range of 20–54 MPa, compare very well with experimental results validating the model.
damage, polymer, time-independent and time-dependent, polymer composite