An intuitive and flexible architecture for intelligent mobile robots

Thumbnail Image
Liu, Xiao-Wen Terry
Journal Title
Journal ISSN
Volume Title
The goal of this thesis is to develop an intuitive, adaptive, and flexible architecture for controlling intelligent mobile robots. This architecture is a hybrid architecture that combines deliberative planning, reactive control, finite state automata, behaviour trees and uses competition for behaviour selection. This behaviour selection is based on a task manager, which selects behaviours based on approximations of their applicability to the current situation and the expected reward value for performing that behaviour. One important feature of this architecture is that it makes important behavioural information explicit using Extensible Markup Language (XML). This explicit representation is an important part in making the architecture easy to debug and extend. The utility, intuitiveness and flexibility of this architecture is shown in an evaluation of this architecture against older control programs that lack such explicit behavioural representation. This evaluation was carried out by developing behaviours for several common robotic tasks and demonstrating common problems that arose during the course of this development.
Intuitive Flexible Architecture Intelligent Mobile Robots
Xiao-Wen Terry Liu and Jacky Baltes. An intuitive and flexible architecture for intelligent mobile robots. In S. C. Mukhopadhyay and G. Sen Gupta, editors, Second International Conference on Autonomous Robots and Agents (ICARA), pages 52-57. Massey University, December 2004.