Modeling of energy requirements for fiber peeling and mechanical processing of hemp

Thumbnail Image
Guzman Quinonez, Leno Jose
Journal Title
Journal ISSN
Volume Title
The hemp plant is an attractive source of raw material for multiple products. Processing hemp requires the separation of fibre and core components of the plant. Peel tests were conducted for hemp stems to evaluate the strength required to peel fibre from the core. The average peeling force for the Alyssa variety was 0.39 N and that for the USO-14 variety was 0.87 N. The Ising model was implemented to produce a stochast ic model. The simulated peel test behaved similarly to the experimental peel test. A discrete element model (DEM) of a planetary ball mill was developed to predict the energy requirement of grinding hemp for fibre. Hemp grinding tests were performed on variety USO-31 using a planetary ball mill for model calibration purposes. Power draw measurements increased linearly increasing at greater grinding speeds. The DEM approximated power draw with relative error below 10% for grinding speeds below 400 rpm.
Modeling, DEM, Stochastic, Hemp