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Abstract 

 

The density of states of elastic waves in a porous amorphous “mesoglass” has been 

measured in the strong-scattering regime.  Samples were constructed by sintering 

glass beads percolated on a random lattice.  This structure was investigated via x-

ray tomography, and fractal behaviour was observed with fractal dimension D = 2.6.  

Using sufficiently small samples, the individual modes of vibration could be resolved 

and counted in the Fourier transform of each transmitted ultrasonic pulse.  A 

statistical treatment of the data, designed to account for the possibility of missing 

modes, was developed, yielding a robust method for measuring the density of states.  

In the strong-scattering regime, the data are in good agreement with a simple model 

based on mode conservation, though the density of states significantly exceeds the 

predictions of the Debye approximation at low frequencies.  At intermediate 

frequencies, an average density of states of DI = 47.1 ± 0.3 MHz-1 mm-3 was found, 

with a frequency dependence of f 0.01 ± 0.04.  
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Chapter 1  

Introduction  
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The density of states is the number of normal modes that exist at a given energy (or 

frequency), and is a fundamental property of any system.  In electronic systems, the 

density of states refers to the energy levels that can be occupied by the electrons, 

and this determines the nature of the system – conductors, semi-conductors and 

insulators all depend on the density of states for their conduction properties.  In 

quantum systems, the density of states also determines the transition probability 

between states via Fermi’s golden rule.  The photon density of states (for 

electromagnetic waves) strongly influences the behaviour of photonic crystals, for 

example, and helps to explain phenomena such as blackbody radiation.  In solid-

state physics, the thermal properties of most systems are primarily determined by 

the phonon density of states.  The density of states is, by nature, a statistical 

quantity, used to glean the properties of the entire system when the individual 

modes are too many or too complex to be accounted for individually.  In highly 

disordered systems, the density of states becomes increasingly difficult to derive 

from first principles, motivating new studies that can investigate this ubiquitous 

physical quantity directly. 

In the past thirty years, there has been a renewed interest in wave transport in 

strongly scattering random media.  A huge variety of strong-scattering systems are 

being studied: light scattering in “milky” colloids, microwaves in resonant cavities, 

matter waves in Bose-Einstein condensates and ultra-cold atoms with random 

potentials, plasmons on disordered surfaces, seismic waves in the earth, and of 
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course, elastic and acoustic waves1 in many different types of porous media, which 

are the focus of our research group.  Several books have been written providing 

excellent in-depth descriptions of the theory of wave transport in strongly 

scattering media, including some experimental results [Sheng 1990, 1995; Van 

Tiggelen and Skipetrov 2003; Akkermans and Montambaux 2007], and applications 

have been found, such as diffusing wave spectroscopy (DWS) for light, and its 

acoustic and seismic counterparts, diffusing acoustic wave spectroscopy (DAWS) 

and coda wave interferometry (CWI).  There has been much discussion lately about 

Anderson localization in strongly scattering systems [Lagendijk et al. 2009], and 

given the recent successful observation of this phenomenon in an three-dimensional 

elastic network [Hu et al. 2008], characteristics of elastic wave transport in such 

systems are of considerable interest. 

The principles of wave transport in strongly scattering systems are applicable for 

many types of waves and systems, spanning a huge range of length scales – from the 

sub-nanometre world of quantum mechanics to the kilometre-scale physics of 

seismology.  Because of this, a better understanding of wave transport in strong-

scattering media can provide a wealth of information to many disciplines, and the 

density of states is a fundamental part of this picture. 

                                                        
1 Acoustic waves refer to the longitudinal (pressure) waves that occur in both fluid 

and solid systems; these are encountered daily in the form of sounds we hear, but 

also extend to the subsonic and ultrasonic ranges.  Elastic waves also include 

transverse (shear) waves, which occur over a wide range of frequencies as well, but 

are only found in solids (and some very viscous fluids). 
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Wave transport in strongly scattering systems is often treated using the diffusion 

approximation, wherein the average transport of energy occurs diffusively, much 

like the familiar examples of heat flow in a solid or molecular diffusion in a gas.  In 

this model, the phase of the wave is assumed to be sufficiently randomized by 

scattering that interference effects can be ignored in the ensemble average.  This 

approximation works rather well to describe many features of multiply scattered 

waves, perhaps surprisingly, since interference is such an important aspect of wave 

transport.  In media where the diffusion approximation is applicable, the density of 

states may exhibit anomalous behaviour, which is still not well-understood. 

Percolation theory [Stauffer 1985] provides a useful tool for modelling disordered 

systems.  One feature of percolated systems (above the percolation threshold) is 

that they exhibit fractal behaviour1 over a range of length scales.  There has been 

much discussion on the density of states in fractals and percolated structures 

[Nakayama et al. 1994]; however, some debate still remains, and relatively few 

experimental measurements have been made. 

Percolation also suggests a practical method of constructing a model disordered 

system.  By analogy to the random network of atoms that form a glass, a “mesoglass” 

is constructed by sintering glass spheres that are “percolated” on a random lattice 

by mixing with transitory iron spheres (which are removed after the sintering 

process).  Thus, along with being a highly porous system which strongly scatters 

                                                        
1 That is, the mass of the system scales with system size to a non-integer power, 

c.f. § 2.7.1. 
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elastic waves over a range of frequencies, this medium also serves as a mesoscopic 

model for an atomic glass. 

The advantages of using elastic waves in a system such as this to study wave 

transport are many.  The mesoglass is constructed so that the range of frequencies 

over which strong scattering occurs is easily accessible via piezoelectric transducers, 

and the field (including phase information) can be easily measured and recorded 

using an oscilloscope.  The length scales in this mesoglass are large enough that the 

sample construction can be well-controlled, and the structure can be viewed with 

optical microscopy and x-ray tomography; while still being small enough that 

experiments can be done on a table-top.  Most importantly for this thesis, the 

samples can be made small enough to resolve and count the individual modes of 

vibration, and thereby measure the density of states directly. 

Wave transport in these mesoglasses has been studied extensively by our research 

group.  Ultrasonic attenuation and velocity was studied in a similar system (though 

somewhat smaller in length scale), and the dependence of sample properties on the 

porosity of the material helped to lay much of the groundwork for my experiments 

[Pachet 1990; Schriemer et al. 1996].  In larger slabs of a medium comparable to 

that used my experiments, measurements of the longitudinal phase and group 

velocities, as well as the scattering strength kls  (wave vector times mean free path), 

were obtained from the ballistic (unscattered and/or forward scattered) portion of 

an ultrasonic pulse transmitted through the medium (shown in Figure 1.1 on the 

following page). 
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Figure 1.1: Ballistic Wave Transport Properties – The scattering strength 

kls  and ballistic longitudinal phase p  and group g  velocities are shown 

for samples of various thicknesses L .  The samples were constructed by 

Russell Holmes and measurements were made by James Beck (also for 

Figure 1.2 on the following page). 

Additionally, time-of-flight profiles for the multiply-scattered pulse transmitted 

through this system were used to obtain measurements of the diffusion coefficient 

(Figure 1.2 on the following page).  These previous experiments serve as an 

excellent basis for my own, and provide valuable information about wave transport 

in strongly scattering media; however, the density of states is an important property 

that has remained unknown for these systems, and hence is the subject of my 

investigation. 
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Figure 1.2: Diffusion Coefficient Measurements – The diffusion coefficient 

DB , measured from the time-of-flight profiles (inset example) for two 

similarly prepared samples (of thickness L) are shown.  A plateau is found in 

the strong-scattering regime.  The low-frequency crossover to this regime 

corresponds to the average radius of the largest pores in the medium, and is 

estimated from results in this thesis (c.f. § 2.3.2 and § 4.3). 

In my work, the vibrational modes of the samples are excited by an ultrasonic pulse, 

and the resulting multiply scattered signal, transmitted through the sample is 

recorded.  If the samples are small enough (since the density of states is 

proportional to the volume of the sample), peaks in the Fourier transform, 

corresponding to the individual modes of vibration, will be sufficiently well-

separated to be resolved and counted.  Thus, the density of states can be directly 

measured and averaged over many samples to determine the density of vibrational 

states for elastic waves in this medium. 
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Chapter 2  

Theory  
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2.1 Overview 

In my experiments, the density of vibrational states of a porous “mesoglass” was 

investigated.  It is important to understand the qualitatively different mechanisms of 

wave transport that occur on different length scales within the medium, governed 

by the relationship between the wavelength λ  and the size of the pores and 

constituent particles.  These length scales correspond to different frequency regimes, 

and the behaviour of the density of states 

 

In this chapter, predictions are made for the behaviour of the wave transport and 

the density of states at the various length scales/frequency regimes in the medium.  

Some existing models for the density of states in a strongly scattering medium are 

discussed, and the nature of vibrational modes in such systems is examined. 
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2.2 Debye Model for the Density of States 

A simple model for the density of states in three dimensions is obtained by 

modelling the sample as a homogenous, isotropic closed system, giving rise to 

standing waves inside the sample.  Thus, only waves with wave vector k such that 

there is an integer number of half-wavelengths contained in the sample are allowed.  

This gives rise to a finite number of allowed k values in the range k  k + dk, or a 

density of states in k-space, given by 

 ( )
2

22
D

Vk dk
k dk

π
=D , (2.1) 

where DD is the Debye density of states and V is the volume of the system.  From the 

definitions of phase and group velocity p and g , and accounting for all possible 

polarizations (the subscripts l and t refer to longitudinal and transverse 

polarizations), the density of states can be written as a function of frequency: 

 ( ) 2

2 2

, , , ,

1 2
4

D

p l g l p t g t

f df πVf df
 

= +  
 

D . (2.2) 

If velocity is independent of frequency, the density of states grows as f 2.  To obtain 

the correct total number of modes, an upper cut-off frequency must be chosen, such 

that the total integrated density of states is three times the number of particles in 

the system (c.f. § 2.5).  This cut-off is known as the Debye frequency fD , and 

approximately corresponds, for example, to the smallest allowable wavelength as 

set by the lattice spacing in a crystal.  The Debye model describes the low-frequency 

density of states fairly well in homogenous and crystalline materials, but breaks 

down when the scattering is strong and ballistic wave transport no longer occurs. 
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2.3 Length Scales in a “Mesoglass” 

At large length scales, corresponding low frequencies, the ultrasonic wavelength is 

much greater than the size of the inhomogeneities, and the sample behaves as a 

uniform medium.  In this “effective medium” regime, the wave transport will be 

determined by the average properties of the sintered network, and will be primarily 

ballistic (with lower, “effective medium” velocities).  At intermediate length scales, 

the wavelength is comparable to the pore sizes in the medium, the scattering is 

becomes very strong.  In this “strong-scattering” frequency regime, the energy 

propagates diffusively through the system.  At short length scales, corresponding to 

the high frequency, “bulk material” regime, the wavelength is much smaller than the 

constituent particles of the system.  In this regime, ballistic wave transport occurs 

within the size of the beads, according to the velocities of the bulk glass. 

The medium being investigated consists of a sintered disordered network of glass 

beads (c.f. Chapter 3 and Chapter 4), which can be thought of as a mesoscopic model 

of an atomic glass, or mesoglass.  Both the size of the beads from which the medium 

is constructed and the size of the pores in the medium play a role in defining the 

important length scales in the medium.  Note that the crossovers between the 

various length scales are not abrupt, and the behaviour of the wave transport is 

expected to vary gradually from one length scale to the next. 
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2.3.1 Bulk Material Regime 

When the wavelength is much smaller than the beads from which the sample is 

constructed, the wave transport is expected to behave as it would in the bulk 

material of the beads.  The phase and group velocities, as well as the density of 

states should correspond to that of the bead material in bulk.  Because the size of the 

scatterers (pores) is much larger than the wavelength, a simple ray-tracing picture 

should accurately describe the wave transport.  The bulk crossover length 

as the transition point to this regime from the larger wavelength, 

strong scattering regime, and is estimated to occur when the wavelength is just 

small enough for standing waves within one bead /2 ≈ 2a :

 Ξ 4a≈ , (2.3) 

where a is the average bead radius.  The high-frequency crossover corresponding to 

this length scale Ξλ ≤  is defined as 
Ξ ,

Ξ
p bulk

f = since the bulk 

medium is a solid, transverse and longitudinal polarizations should both be 

considered, and may have different velocities.  The bulk crossover frequency fΞ is 

then calculated from the energy density-weighted average phase velocity 
p E

.  

Since the energy density depends on the density of states (c.f. Equation 2.2), the 

equipartition of energy for one longitudinal and two transverse modes gives:

 
2 2

, , , , , , , ,

1 2 1 2
p E

p l g l p t g t p l g l p l g l

   
= + +      

   
, (2.4) 

 
,

Ξ
Ξ

p bulk Ef = . (2.5) 
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2.3.2 Effective Medium Regime 

When the wavelength is much larger than the size of the inhomogeneities, the elastic 

wave behaves as if it were in a uniform medium, with properties influenced by the 

average porosity and connectivity of the network.  In this regime, one expects to 

observe Rayleigh scattering, which is proportional to λ-4, so the scattering will be 

weak and the transported wave will be dominated by the unscattered or forward-

scattered component.  The wave transport will be primarily ballistic, and will occur 

with the effective medium phase and group velocities.  The transition between this 

regime and the strong scattering, intermediate frequency regime is given by the 

percolation correlation length ξ , which is equal to the average radius of the largest 

pores in the medium (c.f. § 2.7).  The corresponding low-frequency (effective 

medium) crossover is given by 1kξ =  [Aharony et al. 1987; Schriemer et al. 1996], 

which yields (analogous to Equations 2.4 and 2.5): 

 
,

2

p eff E
ξ

f
πξ

= . (2.6) 
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2.3.3 Strong Scattering Regime 

At intermediate length scales Ξξ λ> > , the wavelength is comparable to the sizes 

of the pores, and the scattering is expected to be very strong.  The wave transport is 

expected to occur diffusively (c.f. § 2.4), and the waves may even be localized 

(c.f. § 2.7.2 and footnote page 24).  The material may also exhibit fractal 

characteristics (c.f. § 2.7).  Because of the complex nature of wave transport in this 

regime, an investigation of the density of states in the corresponding frequency 

range ( )Ξξ
f f f< <D  is of considerable interest.  The remainder of this chapter 

deals with the details of wave transport in this strong scattering regime, the fractal 

nature of the mesoglass (and its effect on wave transport) and the expected 

behaviour of the density of states.  
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2.4 Diffusive Wave Propagation 

In the simplest case (which serves to illustrate the essential physics of the system), 

the propagation of classical scalar waves through any linear, isotropic and uniform-

density medium is described by the wave equation: 

 ( )
( )

( )

2

2
2

,
,

p

ψ r t
tψ r t

r

∂
∂∇ = , (2.7) 

where ψ is the wave function (representing pressure in the case of acoustic waves) 

and p r  is the phase velocity as a function of position (which may vary due to 

inhomogeneities in the medium).  In the absence of absorption, the intensity of the 

ballistic wave within the medium decays exponentially with the distance travelled x, 

according to ( ) [ ]0 exp sI x I x l= − , where ls is the scattering mean free path.  Given 

the appropriate boundary conditions, including all details of the internal 

microstructure, wave propagation in any system can be completely described, in 

principle, by solving the wave equation.  In a complex medium such as an 

amorphous material, however, it may be exceedingly complex or impossible to solve 

for the wave function, even if these conditions can be determined.  For example, if 

the scattering becomes very strong, the phase relationship between multiply 

scattered components of the wave may be intractable. 

The diffusion approximation assumes that the phase of the wave is sufficiently 

randomized by scattering that the phase information and interference effects can be 

ignored in the ensemble average.  The phonons can be thought of as undergoing a 

random walk through the sample, and the propagation of the energy density is 
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approximated as a diffusive process.  The equation governing diffusive energy flow 

is: 

 ( ) ( )2, ,BU r t D U r t
t

∂
= ∇

∂
, (2.8) 

where U is the energy density and the parameter DB is the diffusion coefficient.  In 

three dimensions, the diffusion coefficient is given by: 

 
1

*
3

B ED l= , (2.9) 

where E is the average local velocity of energy transport, or “energy velocity” and l* 

is the average distance travelled by the waves until their direction is randomized, 

called the transport mean free path.  Note that in an isotropic medium, ls = l*, and 

g ≈ E, in the absence of scattering resonances [Schriemer et al. 1997]. 

While in the effective medium regime the wave will be primarily unscattered or 

singly scattered (c.f. § 2.3.2), an elastic wave propagating diffusively will be multiply 

scattered within the sample, effectively taking very long paths through the sample 

before finally emerging.  One expects, then, that the energy contained in a pulse 

incident on the sample will diffuse out over very long times (compared to the length 

of the input pulse) if the scattering is strong.  Furthermore, in a diffusive system, the 

energy will be shared equally between all mode polarizations [Weaver 1982; 

Trégourès and van Tiggelen 2002], allowing for the excitation of all polarizations of 

vibrational modes, regardless of the polarization of the input pulse. 
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2.5 Modes and Mode Conservation in Random Structures 

The frequencies and line shapes of the normal modes in any system are determined 

by the size, shape, internal structure and material properties of the system in 

question.  To get an idea of what the modes might look like in a complex system, a 

simple model was constructed.  The model is a one-dimensional system containing 

three driven coupled harmonic oscillators, with only nearest-neighbour coupling.  

The properties of each harmonic oscillator (mass, damping, coupling and driving 

force) were chosen at random.  One of the results of these simulations, showing the 

output amplitude and phase derivative with respect to driving frequency, as 

measured at each oscillator, is shown in Figure 2.1 below. 
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Figure 2.1: Coupled Harmonic Oscillators in 1-D – The response at each of 

the coupled harmonic oscillators is shown as a function of driving frequency.  

The units of frequency and amplitude are arbitrary. 
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The mode shapes and phase response of this coupled system are quite different 

from the familiar result for a system of uncoupled oscillators, where the peaks are 

Lorentzian and there is a phase shift of –   Clearly, fitting a multi-

peaked function (such as three Lorentzians) will not be very successful in locating 

these resonances (note especially the central peak for the third oscillator in the 

above figure).  Furthermore, though it has been suggested that the density of states 

can be measured from the cumulative phase, or phase derivative [Sebbah et al. 

1997], it seems that this would yield strange and inconsistent results for the above 

simulation (for example, the meaning of the peak far from resonance in dφ dω  

– around 6.5ω ≈  – is not understood).  Because of these issues1, a more empirical 

method of locating the modes was used (c.f. § 6.5). 

If the waves propagate diffusively in some frequency/wavelength regime, the 

normal modes are expected to appear at random frequencies [Weaver 1989; Mehta 

2004] 2, and the modal structure of such a system can be characterized by 

measuring an average number of modes in a given frequency range, i.e. the density 

of states.  Regardless of their distribution, the total number of modes in a given 

system must be equal to the number of degrees of freedom of the system.  In a 

                                                        
1 The measured phase also tends to be somewhat noisy in our experiments, and 

therefore provides little useful information. 
2 The eigenfrequencies of the system are not strictly random (as they can be in, say, 

a quantum system), but are determined by the microscopic details of the sample 

structure, similarly to how the eigenvalues of a Gaussian random matrix are exactly 

determined by the values of the matrix.  A very small change in the sample structure 

(or matrix values) will cause the eigenmodes to shift unpredictably, and the system 

is in this sense actually chaotic. 
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system composed of NP particles, the total number of modes must be equal to 3NP 

(3 translational degrees of freedom per free particle, or 3 possible polarizations per 

normal mode).  This condition holds regardless of system size, shape and structure, 

and is known as conservation of modes.  Thus, despite the random nature of the 

modes, the integrated density of states can be known independently from the wave 

transport behaviour of the medium.  
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2.6 Volume Scaling 

The density of states is an intrinsic and fundamental property of any material (or 

type of material).  In practice, in order to measure the density of states directly, the 

samples need to be sufficiently small for the individual modes to be resolved.  

Furthermore, the samples investigated will not all be identical in microscopic detail 

or size, and the data from several samples must be combined in order to measure 

the ensemble average properties of the material. 

In the Debye approximation, the density of states does indeed scale linearly with 

volume.  Furthermore, the total integrated density of states must scale linearly with 

volume, simply by conservation of modes (c.f. § 2.5), provided, of course, that the 

samples are statistically similar. 

There may also be surface modes that exist in these samples, and the number of 

these modes should scale with sample surface area, rather than volume.  This is, 

however, not a concern, since the total surface area of the sample should also scale 

linearly with sample volume, provided that the size of the sample is much larger 

than the average pore size of the sample 3V ξ>>

.  The 

external surface area is negligible by comparison, and will only affect very-low-

frequency modes ξf f<<

                                                        
1 This is analogous to the idea of a unit cell in a crystalline solid.  The ratio of surface 

area to volume is set by that of the unit cell, and is independent of the number of 

unit cells in the sample. 
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2.7 Percolation Theory and Fractal Structures 

A simple model that has been used extensively to study the vibrational dynamics of 

random systems is known as percolation theory.  One common type of percolated 

system consists of a lattice of sites, randomly occupied with probability q1.  In order 

to obtain a continuous network (solid), q must be above a certain percolation 

threshold qc .  For q > qc, these systems are known to exhibit fractal, or self-similar, 

geometry at short length scales, and to be homogenous at long length scales.  The 

transition between these two regions occurs at the percolation correlation length, ξ, 

which is equal to the average radius of the largest pores in the medium 

[Stauffer 1985]2.  Two important quantities that characterize a fractal structure are 

the fractal (Hausdorff) dimension D, and the fracton (spectral) dimension đ.  

Because the samples are constructed by a site-percolation method on a random 

lattice (c.f. § 3.1), these quantities are expected to be relevant to the analysis of the 

experiments. 

2.7.1 The Fractal (Hausdorff) Dimension D 

The Hausdorff dimension of any object can be defined as the exponent by which the 

mass m scales with respect to system size L , 

such that 

 Dm L∝ . (2.10) 

                                                        
1 q is used for the percolation probability (instead of the usual p) to avoid confusion 

with the mode-counting probability, for which p is used (c.f. § 6.4). 
2 This is the characteristic length of the percolation system, and all the properties of 

the system should scale with ξ [Schriemer et al. 1996]. 
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This is intuitively understood for objects with integer dimensionality, such as the 

mass of a rod scaling linearly with length, or the mass of a cube proportional to L3.  

An object may exhibit different Hausdorff dimensions at different length scales, such 

as in Mandelbrot’s famous example of the ball of yarn, wherein the object is a point 

(zero-dimensional) at very long length scales, a sphere (three-dimensional) when 

viewed more closely, a string (one-dimensional) when viewed even more closely, 

and so on [Mandelbrot 1982].  Fractals are characterized by having a non-integer, or 

fractional, dimensionality (this is, in fact, the origin of the word fractal), and as in 

the example just given, the fractal dimension of an object can, itself, be function of 

length scale. 

2.7.2 The Fracton (Spectral) Dimension đ 

Vibrational excitations on a fractal structure have been referred to as fractons, and 

the corresponding fracton dimension is defined by the frequency scaling of the 

density of states [Alexander and Orbach 1982], where 

 ( ) ( )-1đ
f f∝D . (2.11) 

For homogenous, non-fractal structures, the fractal, fracton and Euclidian 

dimensions are all equal, i.e. D đ d= = , and thus, for a three-dimensional structure, 

the standard results of 3m L∝  and ( ) 2f f∝D  are recovered. 

Several predictions have been made for the value of đ in a fractal structure.  Based 

on a scalar elasticity model on a percolated network [Born and Huang 1954], a value 

of 4 3đ =  was conjectured by Alexander and Orbach [1982], along with the further 
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conjecture that all vibrational modes on a fractal will be localized1.  This is 

consistent [Aharony et al. 1987] with the Ioffe-Regel condition, which states that 

localization will occur when [Ioffe and Regel 1960] 

 1skl < , (2.12) 

where k is the wave vector and ls is the scattering mean free path. 

Conversely, a “bond-bending” model (vector elasticity) for vibrational modes on a 

percolating network predicts that 0.89đ =  [Kantor and Webman 1984; Webman 

and Grest 1985; Pachet 1990].  Furthermore, it has been shown that the Ioffe-Regel 

criterion does not necessarily imply localization for acoustic or elastic waves 

[Sheng et al. 1994; Allen et al. 1999; Page et al. 2004].  A direct measurement of the 

density of states in a fractal structure may provide additional insight into these 

ideas. 

 

  

                                                        
1 This refers to strong (Anderson) localization.  Though there has been much recent 

interest in this topic, the theory of localization is beyond the scope of this thesis.  An 

excellent introduction to the subject and review of many important contributions 

thereto has been published recently [Lagendijk et al. 2009], and further information 

can be found at http://www.andersonlocalization.com/canonal50.php. 

 



25 

 

2.8 Level Repulsion and Statistics 

If the frequency of a resonant mode in the strong scattering regime is random, the 

probability of observing a degenerate, or nearly degenerate, mode must be 

considered.  Similar systems to that of this thesis have been observed to exhibit level 

repulsion, which is a reduced probability of observing a mode nearby in frequency 

to another mode [Weaver 1989].  It has been shown that this result is also predicted 

by the application of random matrix theory to eigenfrequencies of chaotic systems 

[Mehta 2004].  This level repulsion is not, however, a Coulomb-type repulsion, but is 

statistical in nature.  This means that the level repulsion does not depend on the 

absolute frequency difference of adjacent modes, but rather, adjacent modes are 

repelled relative to the average mode spacing.  This means that the level spacing 

statistics of samples of different volumes should be statistically similar when 

normalized by the average mode spacing (which should be inversely proportional to 

the density of states and therefore the sample volume).  As long as the samples are 

sufficiently small to resolve adjacent modes, the probability of encountering a (near-) 

degeneracy is very small, and can be ignored safely. 

Level repulsion is expected to break down in the case of Anderson localization 

[Sade et al. 2005].  Though localization is predicted by some of the fractal models 

presented in the previous section, no evidence of Anderson localization has been 

observed in similar samples in the frequency range studied [Page et al. 2004], and 

level repulsion should persist in the samples studied here.  Further investigation 

into the level spacing statistics may be of interest.  



26 

 

2.9 Estimating the Density of States in a Mesoglass 

The mesoglass constructed for these experiments can be thought of as a practical 

realization of a percolated system.  The preceding arguments of this chapter can be 

used to develop a simple model to estimate the density of states in, and nearby to, 

the strong-scattering regime.  This model was originally proposed to attempt to 

explain the anomalous Kapitza resistance for sintered metal heat exchangers 

[Maliepaard et al. 1985]. 

As discussed, in the low-frequency regime f << f , the density of states function 

should behave as in an effective homogenous medium described by the Debye 

model (§ 2.1).  At intermediate frequencies, the medium is fractal on the length scale 

of the elastic wavelength, and the density of states is expected to depend on the 

fracton dimension.  In a practical percolated system like a mesoglass, the bulk 

medium (glass) must be considered along with the percolated structure, and the 

internal vibrational modes of the glass beads must also be included (c.f. § 2.3.1). 

Above the bulk crossover frequency fΞ

 ( ) ( ) ( )
( )

2 4

2

Ξ 23 3 2

2 3 31 2
4

2 1

l t l t

l t l l t

πSf
f df π Vf df

 − + 
 = + +   −   

D φ , (2.13) 
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where S is the total surface area and  is the volume fraction of the sample (such 

that V is the occupied volume of the sample, because the modes of the bulk 

medium are being considered), and where the dispersion in the bulk material (glass, 

in my samples) is negligible p g=  

The density of states in the high-frequency regime is likely not significantly affected 

by the structure at long length scales.  Because of this, a conservation of modes 

argument can be used to estimate the density of states in the strong scattering 

regime.  Because the number of total modes must be conserved and the number of 

modes at high frequencies is given by Equation 2.13 (cut off by the appropriate 

Debye frequency), the total number of modes in the remaining frequency range 

must also be given by the integral of ( )Ξ fD  up to the high-frequency cut-off fΞ, since 

these low- and intermediate-frequency modes can only rearrange (i.e. additional 

modes are not created, c.f. § 2.5).  That is, 

 ( ) ( ) ( ) ( )
Ξ

Ξ

Ξ Ξ Ξ

0 0 0

D D Df f f f

total D

f

N f df f df f df f df= = = +∫ ∫ ∫ ∫D D D D , (2.14) 

where Ntotal is the total number of modes, given by 3NP, where NP is the number of 

atoms in the sample.  Since the total value of the lower-frequency integral (second 

term from the right) above should be independent of the structure of the sample, 

any function that describes the density of states must satisfy the condition 

 ( ) ( )
Ξ Ξ

Ξ

0 0

f f

f df f df=∫ ∫D D . (2.15) 
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In the low-frequency regime, the density of states should be well-described by the 

Debye model of Equation 2.2, and this can be integrated up to fξ to obtain the total 

number of low-frequency modes.  The remaining density of states in the 

intermediate frequency regime can then be estimated by subtracting the number of 

effective medium modes from the total number of modes up to the high-frequency 

cut-off (from Equation 2.15).  If it is assumed, for simplicity, that the number of 

modes is constant, the following estimate is obtained: 

 

( ) ( )
Ξ

Ξ

0 0

Ξ

ξff

D

I

ξ

f df f df

f f

−

≅
−

∫ ∫D D

D , (2.16) 

where the I subscript refers to the intermediate frequency range.  Note that 

assuming a constant density of states in the strong-scattering regime would also 

suggest a spectral dimension of đ=1 (according to Equation 2.11), which is 

comparable to the results obtained for the scalar elasticity 4 /3đ =  and bond-

bending 0.89đ =  models, so this assumption may be reasonable (c.f. § 2.7.2). 

A similar estimate could be made based on a mode-conservation argument wherein 

the constituent particles (glass beads) are treated as perfectly rigid spheres, and 

only the degrees of freedom of these particles are considered.  Again, the idea 

behind this is that the high-frequency modes that occur within each bead will be 

unaffected by the way in which the beads are put together.  In this case, the total 

number of modes of the system below the high-frequency cut-off fΞ is simply given 

by three times the number of beads from which the sample is made NB , and 

Equation 2.16 becomes: 
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( )
0

Ξ

3

ξf

B D

I

ξ

N f df

f f

−

≅
−

∫D
D . (2.17) 

The number of beads in a given sample can be estimated easily from the average 

bead size and volume fraction in the mesoglass. 

Bear in mind that the above expressions are intended to give rough estimates for the 

density of states in the strong-scattering regime, and the parameters required to 

calculate numerical values from them may also be somewhat ill-defined.  

Nevertheless, they should allow for a reasonable estimate of the average density of 

states in the range of interest to be made, based on the properties of the medium. 
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Chapter 3  

Sample Preparation  
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3.1 Overview 

In order to study the vibrational modes of strongly scattering materials, a medium is 

required that will strongly scatter elastic waves in the frequency range accessible to 

via piezoelectric ultrasonic transducers.  Such a medium can be constructed by 

sintering a mixture of glass and iron beads, and subsequently removing the iron 

through etching.  Thus, a highly porous, amorphous mesostructure, or “mesoglass,” 

is created, wherein the length scale of the inhomogeneities is comparable to the 

ultrasonic wavelength in the medium.  Furthermore, the sample is constructed in an 

analogous way to site percolation on a random lattice, with percolation probability 

0.5q = , suggesting that the material may be fractal over a range of length scales 

(c.f. § 2.7).  Since the samples must be sufficiently small to allow the individual 

resonant modes to be resolved and counted, the material is cut into small pieces.  

These small, amorphous samples allow the density of states to be measured directly 

in the strong scattering regime. 

In this chapter, the details of the sintering, etching and cutting processes, and how 

the samples were thereby constructed are presented. 

Before proceeding further, I wish to express my thanks to Russell Holmes, who had 

created the large slab sample1, from which my samples were cut, before my 

research for this thesis was begun.  

                                                        
1 For the experiments described in this thesis, the slab labelled “Sample 9” was used. 



 

3.2 Material Preparation

The medium was constructed using glass beads 

(mean radius a ≈ 64 μm)

Spheres, obtained from Potters Industri

The beads are made of 

2.5 g/cm3.  The longitudinal and transverse velocities of elastic waves in this glass 

are 5.6 mm/μsl =  and 

mixed with iron beads of the same size 

that the packing fraction of random close

approximately  ≈ 0.64 

volume fraction of about 

through etching. 

The glass and iron beads we

the particles from sticking together due to the accumulation of static charges.  Once 

the glass and iron beads were thoroughly mixed, the mixture wa

mould and firmly packed

mould and the material 

                                                       
1 The glass beads used in this ref
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Material Preparation 

s constructed using glass beads with diameters of 106 

μm).  The glass beads used were 2227 Spheriglass Solid Glass 

, obtained from Potters Industries Inc., sieved to the above range of sizes.  

The beads are made of A-Glass, which is a soda-lime silica glass with

longitudinal and transverse velocities of elastic waves in this glass 

and 3.4 mm/μst =  [Page et al. 1996]1.  The glass beads were 

with iron beads of the same size range in a volume ratio of 1:1.

the packing fraction of random close-packed monodisperse 

0.64 [Torquato et al. 2000], this medium is expected 

volume fraction of about  ≈ 0.32 after the transitory iron beads have been removed 

The glass and iron beads were mixed in the presence of ethanol in order to prevent 

the particles from sticking together due to the accumulation of static charges.  Once 

e glass and iron beads were thoroughly mixed, the mixture was poured into a 

mould and firmly packed.  Once the mixture had dried, the cover wa

mould and the material was then ready to be sintered. 

                

The glass beads used in this reference were made of the same material.

Figure 3.1: Sample Mould – Expanded view 

one of the moulds used to construct the 

mesoglass.  The thickness of the middle spacer 

piece determines the thickness of the sample.  

The dimensions the mould used were 10 cm by 

10 cm, with a thickness of 2.38 mm.

with diameters of 106 – 149 μm 

2227 Spheriglass Solid Glass 

sieved to the above range of sizes.  

with a density of 

longitudinal and transverse velocities of elastic waves in this glass 

The glass beads were 

in a volume ratio of 1:1.  Considering 

monodisperse spheres is 

is expected to have a 

≈ 0.32 after the transitory iron beads have been removed 

of ethanol in order to prevent 

the particles from sticking together due to the accumulation of static charges.  Once 

s poured into a 

ver was secured to the 

 

erence were made of the same material. 

Expanded view 

used to construct the 

mesoglass.  The thickness of the middle spacer 

piece determines the thickness of the sample.  

The dimensions the mould used were 10 cm by 

10 cm, with a thickness of 2.38 mm. 
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3.3 Sintering 

In constructing the mesoglass, the aim of the sintering process was to heat the 

mixture sufficiently to cause the particles to fuse together at their contact points, 

without entirely melting the material (This is described as Initial Stage Solid State 

Sintering [Kang 2005].  Essentially, the traditional sintering process is being stopped 

before significant densification occurs).  To accomplish this, the material was heated 

to near its softening point and allowed to “bake” for a fixed amount of time.  The 

material was then removed from the heat source and allowed to cool before the 

glass had melted entirely (note that the melting point of the iron beads is 

substantially higher than that of glass, so there is no risk of having the iron melt at 

these temperatures).  There are several concerns that must be considered in the 

sintering process, as follows: 

1. The material must not be heated too quickly.  Since the thermal 

conductivity of the mixture is rather low, slow heating is required for an 

even temperature distribution within the material. 

2. The material must not get too hot, or remain at a high temperature for too 

long.  This could cause the glass to flow too much and thereby destroy the 

structure of the sample.   

3. The material must not be cooled too quickly.  This helps to reduce strains 

in the material induced during sintering, and due to thermal contraction 

of the glass, iron and surrounding mould during cooling.  Ideally, the 

sample material should be annealed for several hours to relieve any 

residual strain. 
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4. The sintering should be done in a nitrogen atmosphere.  This will prevent 

the iron beads from rusting, which could induce larger strains in the 

sintered glass structure as well as making the iron particles difficult to 

remove later by etching. 

In order to properly sinter the material with the above concerns in mind, the 

apparatus shown in Figure 3.2 was used, following the procedure described below. 

 

 

The mould containing the glass/iron mixture was placed in an airtight steel 

enclosure.  The enclosure was evacuated, in order to remove the air.  Nitrogen gas 

was then introduced, and was allowed to flow through this container throughout the 

sintering process.  This enclosure could be drawn into and out of the furnace, which 

was kept at a constant temperature of about 810°C.  By moving the enclosure into 

and out of the furnace, and by adjusting the flow rate of the nitrogen gas, the 

Figure 3.2: Diagram of the Sintering Apparatus – The material to be 

sintered is contained in the mould, which is placed inside the steel enclosure.  

The temperature of the material is controlled by moving the enclosure into 

and out of the furnace.  To evacuate the enclosure, valve V3 is closed and V1 

is opened.  Nitrogen is then introduced by closing V1 and opening V2, and 

allowed to flow through the enclosure throughout sintering by opening V3. 

N2 

Vac 

V2 

V1 

V3 
Mould 
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temperature of the material could be controlled.  This was necessary because the 

temperature of the furnace could not be changed quickly enough to properly sinter 

the material.  The temperature of the material throughout the sintering process is 

shown in Figure 3.3 below. 
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Figure 3.3: Sintering Temperature History – The temperature of the 

material throughout the sintering process is shown, as measured by a 

thermocouple in contact with the mould.  The two softening points shown 

represent an approximate temperature range for sintering the glass.  Note 

that the material may have been heated and cooled too quickly to produce an 

ideal sinter. 

The quality of the sintered material is very sensitive to the temperature and 

duration of the sintering process.  The sintering temperature of the material can 

range from approximately the dilatometric softening point (log viscosity ≈ 8-9 Pa s) 
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to the Littleton softening point (log viscosity = 6.6 Pa s), which is from about 660°C 

to 730°C for the glass used.  To remove strains in the material, the material should 

be held for several hours in the temperature range of the annealing point to the 

strain point, around 530°C to 560°C for the glass used [Shelby 2005].  A wide range 

of temperature/duration combinations are possible to achieve sintering within 

these temperature bounds.  However, despite this broad working temperature 

range, a change in sintering temperature of only a few degrees or a change in 

duration of only a few minutes can ruin the material by melting the glass sufficiently 

to start flowing, or by having insufficient bonds between beads to hold the material 

together.  A sintering duration of about one hour was chosen for convenience 

(sufficient to achieve good temperature uniformity during sintering, without having 

the process take an extremely long time), and the appropriate sintering temperature 

was worked out through trial and error. 

Several slabs of this type of material were made for use in other experiments, for 

which the goal was to measure the ultrasonic wave diffusion coefficient [Page et al. 

2004].  Because only small samples were required for my mode counting 

experiments, one of the slabs that broke while being removed from the mould was 

used to make my samples.  This breakage may have been caused by heating or 

cooling the material too quickly.  As seen in Figure 3.3, the material was heated 

somewhat rapidly, and may have also been cooled to below the strain point too 

quickly.  One of the pieces of this broken slab was subsequently etched and used to 

make my samples.  



37 

 

3.4 Etching and Cutting 

Once the material had been properly sintered, the iron was removed by etching.  

The material was placed in a 3:1 solution (by volume) of water to HCl (≈12 M), and 

the solution was gently heated and stirred.  As the iron was dissolving, the solution 

became cloudy, and needed to be changed periodically.  After several days of etching, 

the solution remained clear after changing, indicating that the etching process was 

complete. The material was then thoroughly flushed with water and allowed to dry, 

and an open network of connected glass beads remained. 

Because the glass and iron beads were originally mixed in a 1:1 ratio, both the glass 

and iron form a continuous network in the medium.  It is, therefore, very unlikely 

that any iron will remain in the medium after etching due to being trapped by 

complete enclosure by glass.  This was also supported by the results of x-ray 

tomography (c.f. Chapter 4), which showed virtually no evidence of residual iron, 

even though iron beads would be clearly visible, due to their high x-ray scattering 

contrast. 

A piece of the slab sample was then mounted to an aluminum plate using Apiezon 

Wax W mounting wax.  The sample and wax were heated to a temperature of about 

130°C, at which the wax flows quite well.  An abundance of wax was used in hopes 

that the wax would flow into the pores of the sample and strengthen it during the 

cutting process.  The aluminum plate was then mounted on a diamond wire saw 

(shown in Figure 3.4 on the following page), which slowly made a cut into the slab. 
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Figure 3.4: Diamond Wire Saw – This was used to cut the material into 

small samples.  The thin cutting wire can be seen crossing the mounting plate. 

The diamond wire saw was used since it is an excellent method of sectioning small 

samples, minimizing the possibility of inducing additional strains or otherwise 

damaging the samples. 

A grid was cut into a piece of the slab in order to obtain small cubes.  This grid was 

made with irregular spacing between the cuts in order to produce samples with a 

range of sizes, and some pieces were cut again to obtain even smaller samples.  The 

aluminum plate was then heated in order to melt the wax and remove the cubes.  

The cubes were placed in a vial of toluene (a good solvent for the mounting wax 

used), and this was placed in an ultrasonic bath.  The toluene was continually 

changed until it would remain clear after being placed with the samples in the bath, 

indicating that the wax was removed completely.  The samples were then placed 

under a heat lamp and allowed to dry thoroughly. 

The samples ranged in size L  from around 0.8 – 1.8 mm.  Each sample was given a 

two-letter name by which it could be identified, and the samples used (along with 

their volumes) are listed in Table A.1 in Appendix A.  

Sample mounting 

plate 



 

3.5 Summary – Sample Properties

Photographs of one of the 

up photographs were taken using a digital camera connected to the eyepiece of a 

viewing microscope.  The sample appears orange because of the red background on 

which it was photographed.

Figure 3.5: Sintered Glass Bead Sample

material surface (top

shown.  The porous structure of 

samples are shown beside 

2
2

 m
m
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of the larger samples are shown in Figure 3.5 below.

photographs were taken using a digital camera connected to the eyepiece of a 

viewing microscope.  The sample appears orange because of the red background on 

photographed. 

 

Sintered Glass Bead Sample – A close-up photograph of the 

top) and photographs of some cut samples (

shown.  The porous structure of the material is clearly visible.  The cut 

shown beside recognizable objects for scale. 

below.  The close-

photographs were taken using a digital camera connected to the eyepiece of a 

viewing microscope.  The sample appears orange because of the red background on 

 

 

up photograph of the 

(bottom) are 

the material is clearly visible.  The cut 
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Because of the difficulties in lighting and optical contrast when photographing glass, 

x-ray tomography was used to get a better measurement of the mesostructure of the 

samples.  Three-dimensional reconstructions of the samples could then be created, 

yielding images such as Figure 3.6 and Figure 3.7 below and on the following page.  

More reconstructed images, as well as the details of the x-ray tomography and the 

quantitative results obtained thereby, are shown and discussed in Chapter 4: 

Sample Analysis by X-Ray Tomography. 

 

Figure 3.6: X-ray Tomography 3-D Reconstruction of a Sample – The 

structure of one of the samples (BR) can be clearly seen.  The sample appears 

to be somewhat over-sintered, as none of the original glass bead structure 

remains visible.  Many impressions left by the iron beads can be seen. 

≈200 μm 
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From the x-ray tomography images, it is clear that the samples are somewhat over-

sintered.  Rather than a structure of interconnected glass beads fused together at 

their interfaces, a more continuous glass structure exists, and it appears as if the 

glass may have flowed too much during the sintering process.  These samples are 

therefore less like an ideal random percolated structure; however, a very porous 

open glass network remains, which is highly inhomogeneous at the length scales of 

interest.  A large piece of the material was left uncut (shown in Figure 3.7 below) so 

that the average properties of the medium could be investigated. 

 

Figure 3.7: X-ray Tomography 3-D Reconstruction of Medium (Slab) – 

The general porous structure of the sintered glass bead network can be seen. 

≈2 mm 
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From this piece, the density of the mesoglass was found to be ρ = 0.83 ± 0.02 g/cm3.  

This means the samples have an occupied volume fraction of  = 0.332 ± 0.007, 

which is close to the predicted value of  = 0.32 (c.f. § 3.2).  The volume fraction may 

be slightly higher than predicted due to the polydispersity of the beads (since 

polydisperse spheres can pack more tightly than monodisperse spheres) and/or 

over-melting (densification) during sintering. 

The samples were then weighed individually, and their volumes were calculated 

from their masses.  The samples used were found to have volumes ranging from 

about 0.6 mm3 up to about 5.8 mm3 (c.f. Table A.1). 

A summary of the sample properties is shown in Table 3.1 below. 

Bulk Material Soda-Lime Silica Glass 

Bulk Material Density 2.5 g/cm3 

Bulk Material Longitudinal Velocity l,bulk  5.6 mm/μs 

Bulk Material Transverse Velocity t,bulk  3.4 mm/ 

Bead Size 2a  106 – 149 μm 

Mixing Ratio (Percolation Probability) 1:1 = 0.5

Volume Fraction   0.332 ± 0.007 

Sample Density ρ  0.83 ± 0.02 g/cm3 

Sample Volume 0.6 – 5.8 mm3 

Effective Medium Phase Velocity1 p,l,eff ) 1.63 + 0.42 f 

Effective Medium Group Velocity1 g,l,eff  1.3 + 1.2 f 

Effective Medium Longitudinal/Transverse 

Velocity Ratio /l t
 2  

Table 3.1: Summary of Sample Properties 

                                                        
1 C.f. Figure 1.1. 
2 Estimated from experiments in a similar system [Schriemer et al. 1996]. 
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Chapter 4  

Sample Analysis by X-Ray Tomography  
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4.1 Overview 

As mentioned in the previous chapter, the mesoglass was also investigated using x-

ray tomography.  This allowed for a more accurate picture of the structure of the 

samples, and provided an independent measurement of some of the characteristic 

parameters of the medium. 

Most notably, the crossovers between important length scales in the material were 

measured; from the sub-bead-size bulk glass scale, to the intermediate fractal-like 

scale, to the bulk “effective medium” scale.  Furthermore, the fractal dimension of 

the medium (c.f. § 2.7.1) was found. 

These x-ray tomography experiments are considered to be complimentary to the 

primary elastic mode counting experiments discussed in this thesis; therefore, this 

chapter is intended to be somewhat self contained.  
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4.2 Tomography Method and Image Acquisition 

A diagram showing the basic set-up used in x-ray tomography is shown in Figure 4.1 

below. 

 

 

A wide beam of x-rays is transmitted through the sample to a detector plane, 

creating a two-dimensional projection image of the three-dimensional sample.  The 

intensity (brightness) at a given point on this projection is inversely proportional to 

the integrated x-ray attenuation (primarily due to scattering) by the sample from 

the source to this point.  Thus, a projection of the entire internal structure of the 

sample in a particular orientation, based on x-ray attenuation strength, is obtained.  

Figure 4.1: Basic X-Ray Tomography Set-Up – The x-ray transmission 

through the sample is recorded for many angles, and the 3-D sample volume 

is reconstructed by a computer. 

X-Ray 

source 

Sample volume 

Step-by-step 

rotation 

Sample projection 

on detector plane  

Image recorded for each 

step as sample is rotated 

3-D sample volume 
reconstructed by computer 
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By rotating the sample and recording the projections at many angles, the three-

dimensional structure of the sample can be computed and observed. 

An example of three projections (in different orientations) of one of the samples (DY) 

is shown in Figure 4.2 below. 

 

Figure 4.2: X-Ray Projections of Sample – These images show the x-ray 

transmission through the sample volume in different orientations.  The glass 

shows good x-ray scattering contrast.  From these images (at many angles) 

the entire 3-D sample volume can be reconstructed. 

The x-ray tomography was done using an Xradia MicroXCT 3-D x-ray transmission 

microscope.  Images were acquired over a 180  range of angles, in 1  steps.  The  

x-ray source voltage was set to 40 kV (x-ray energy < 40 keV), and the x-ray 

intensity, image dwell time and magnification were all adjusted to suit the sample 

being measured. 

The reconstructed sample volume can be viewed in several ways.  The Xradia 

software allows one to view two-dimensional “slices” of the sample, and can also 

produce various types of three-dimensional renderings of the sample, which can be 

rotated and truncated in order to observe the sample volume from any side, or even 

0° 90° 45° 

= 1 mm 
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“see inside” the sample volume.  Examples of a two-dimensional slice and an SSD1-

rendered image are shown in Figure 4.3 below. 

 

Figure 4.3: Reconstructed Images from X-Ray Tomography – A 2-D slice 

(left) and 3-D SSD rendering (right) of the sample (DY) are shown.  The scale 

bar at the bottom left applies to both images.  These reconstructions are 

obtained from the same image set shown in Figure 4.2. 

The reconstruction was performed by the Xradia software, but the details of the 

reconstruction algorithm are not available (for information on common image 

reconstruction techniques used in computed tomography, see [Herman 1980]). 

                                                        
1 Surface Shaded Display: This type of rendering creates the appearance of a solid 

surface (with an apparent light source).  The surface is defined by a volume of voxels 

with similar reconstructed intensity, and therefore creates a good representation of 

a structure with a uniform, high-contrast x-ray scattering strength.  VRT, or Volume 

Rendering Technique was used for Figure 3.7, and allows for better visualization 

when the image is somewhat noisy. 

200 m 
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The Xradia reconstruction software is also able to remove some artifacts commonly 

present in computed tomography, such as ring and beam-hardening artifacts.  Ring 

artifacts occur when the gain of one or more detector pixels drifts during image 

acquisition, and can be identified by the appearance of rings in two-dimensional 

slice images, perpendicular to the axis of sample rotation.  Beam hardening occurs 

due to the polychromaticity of the x-ray beam.  Since the x-ray attenuation of the 

material is energy dependant, the attenuation of a particular location in the sample 

may vary with direction, since it may have already passed through more or less 

sample before reaching that point.  This gives rise to a non-linearity in x-ray 

attenuation with respect to sample thickness [Herman 1980].  Beam hardening 

artifacts can appear as streaks in the two-dimensional reconstructions, and can also 

worsen contrast and produce noise. 

With care taken to properly acquire and reconstruct x-ray tomographic images, high 

quality two- and three-dimensional images of the samples were obtained, as seen in 

this and the previous chapter.  These images were then used to make both 

qualitative and quantitative observations about the structure of the samples. 



 

4.3 Fractal Dimension and Box Counting

The two-dimensional images obtained by x

and characterize the three impor

Section 2.3.  By using a “box

et al. 1994], the fractal dimension

technique, an image of size 

regions.  The image is then divided into squares of length 

containing at least one occupied pixel 

Figure 4.4: Fractal Box Counting Example

into occupied (green, dashed) and unoccupied (red, solid) boxes of size 

This image has not been segmented, and is shown for illustration only.

ε 
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Fractal Dimension and Box Counting 

dimensional images obtained by x-ray tomography can be used 

and characterize the three important length scales in the medium, as discussed in 

.  By using a “box-counting” technique [Liebovitch and Toth 1989, Huang

, the fractal dimension (c.f. § 2.7) of the images can be mea

of size L is first segmented into “occupied” and “unoccupied” 

regions.  The image is then divided into squares of length ε, and the number of boxes 

containing at least one occupied pixel N ε  is counted as in Figure 4

: Fractal Box Counting Example – The image of size 

into occupied (green, dashed) and unoccupied (red, solid) boxes of size 

This image has not been segmented, and is shown for illustration only.

L 

can be used to identify 

medium, as discussed in 

[Liebovitch and Toth 1989, Huang 

of the images can be measured.  In this 

first segmented into “occupied” and “unoccupied” 

, and the number of boxes 

4.4 below. 

 

The image of size L is divided 

into occupied (green, dashed) and unoccupied (red, solid) boxes of size ε.  

This image has not been segmented, and is shown for illustration only. 
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The power law by which the number of occupied boxes decreases as the box size 

increases gives the fractal dimension of the image1.  Since the image is a two-

dimensional cross section of the material in three-dimensional space, the fractal 

dimension of the material D  is the fractal dimension measured from the image 

plus one [Schriemer et al. 1996], that is,  

 ( )
1D

L
N ε

ε

−
 ∝  
 

, (4.1) 

 
( )

( )
log

1
log 1

d N ε
D

d ε
= + . (4.2) 

The fractal dimension can therefore be easily inferred by plotting N ε  vs. ε on a log-

log plot and measuring the slope in the region of interest, where D = 1 – slope . 

Since segmented images are required for a box-counting analysis, care must be 

taken to obtain high-quality tomographic reconstructions, as free from noise or 

other artifacts as possible.  

                                                        
1 For example, in a bulk material (D = 3), the entire 2-D cross-section is be occupied.  

The total number of boxes covering the image decreases as ε-2, and since every box 

is occupied, N ε  follows the same power law.  D = 2 is measured for the image, 

indicating D = 3 for the bulk sample. 
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4.4 Results 

Qualitative observations based on these tomographic reconstructions have already 

been discussed in Section 3.5.  For the fractal box counting analysis, the images were 

processed and analysed using ImageJ – an open source image processing program 

(freely available at http://rsbweb.nih.gov/ij/index.html).  ImageJ has a built-in 

fractal box counting function, and macros can easily be created in order to process 

large batches of images.  The results of the fractal box counting are shown in 

Figure 4.5 below. 
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Figure 4.5: Fractal Box Counting Results – Results are shown for three 

samples and three different levels of magnification.  Many more samples and 

tomographic reconstructions were also analyzed and found to be consistent 

with the above results, and omitted only for clarity of display.  The power-

law fits and crossover points are estimated by eye. 
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From the fractal box counting analysis, the important length scales in the medium 

can be identified, and the fractal dimension can be measured in the intermediate 

regime.  The gradual nature of the crossovers makes it difficult to precisely define a 

fitting region to measure the power-law dependences in Figure 4.5 and because of 

the effects of finite pixel and image size, it was difficult to assign a quantitative 

uncertainty to the data.  For these reasons, the fits were done by eye, and the values 

measured are approximate.  Nevertheless, a good understanding of the nature of the 

samples can be obtained from these data.  The power-law fits with reasonable 

uncertainty estimates yield D = 2.60 ± 0.05, ΞF = 11 ± 4 μm and ξ = 240 ± 80 μm. 

(Here the subscript F on the bulk crossover length ΞF indicates this crossover as 

measured by fractal box counting.  C.f. Figure 4.6 and related discussion.)  Previous 

measurements on similarly constructed samples show the percolation correlation 

length to be about 7 bead radii, or ξ ≈ 7a [Schriemer et al. 1996].  In my samples, a 

value of ξ ≈ 4a is found, which may be another indication of over-sintering (c.f. § 3.5). 

As discussed in Section 2.7, the percolation correlation length ξ  should represent 

the average radius of the largest pores in the medium.  The exact physical meaning 

of the measured bulk crossover length ΞF  is somewhat less clear.  Perhaps it can 

simply be said that below the measured ΞF, the material behaves as the bulk glass 

and that beyond this length, the fractal nature of the material begins to become 

important.  This result is somewhat surprising, as one might expect the bulk 

crossover length to be related to the constituent bead radius as in Equation 2.3, or 

Ξ ≈ 4a ≈ 250 μm.  To get a better idea of how these length scales relate to the sample 
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features, boxes corresponding to the crossover lengths are shown with a two-

dimensional reconstruction of one of the samples in Figure 4.6 below. 

 

The bulk crossover length measured via fractal box counting appears to correspond 

with something akin to the average size of the smallest feature of the medium.  This 

length will not correspond to the bulk crossover frequency as per Equation 2.5, as 

the elastic properties of the bulk medium must clearly begin to dominate on a length 

scale comparable to the bead size, and this should be considered in any subsequent 

analysis. 

Figure 4.6: Illustration of Crossover Lengths – Boxes corresponding to the 

crossover lengths are shown with one of the 2-D reconstructions, to compare 

with sample features.  (Note that the grey area is occupied by glass, while the 

black area is unoccupied.) 

2 
ξ
 

2 
ΞF 
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When segmenting the greyscale images obtained, the correct threshold must be 

chosen to separate the occupied and unoccupied pixels.  This was done as 

objectively as possible, by simply choosing the minimum in the image histogram as 

the image threshold.  An example of one of the greyscale images along with its 

histogram is shown in Figure 4.7 below. 

 

 

This quantitative method of image segmentation yields good agreement between 

the occupation percentage and the previously measured volume fraction, suggesting 

that the image is indeed being segmented correctly. 

Figure 4.7: Reconstructed Image with Histogram – This image is a good 

candidate for segmentation, as shown by the two-peaked histogram of the 

greyscale values (x-axis on histogram, where the greyscale value is shown in 

the bar at the bottom).  The threshold of such images was chosen to be at the 

approximate minimum between the two peaks.  The resultant occupation 

fraction is about 35%, reasonably consistent with the measured volume 

fraction of  = 0.332.  

Threshold 
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Chapter 5  

Mode Counting Experiments  
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5.1 Overview 

In the experiments presented in this thesis, the density of states of sintered glass 

bead samples was measured using a direct mode-counting technique, which is 

described in this chapter.  In order to identify the modes of the samples, the 

resonances of the sample had to be excited and detected.  This was done by placing 

the sample in direct contact with two ultrasonic transducers, where only one or at 

most a few points on the sample surface were in contact with each transducer.  A 

short ultrasonic pulse was produced by one of the transducers to excite the 

vibrational modes of the sample.  A second transducer in contact with the sample 

was used to record the transmitted elastic wave, and the Fourier transform of the 

recorded signal was used to identify and count the modes.  
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5.2 Transducer Holders 

The experimental set-up is shown in Figure 5.1 below.  The transducer holders are 

an adaptation of an apparatus previously used to investigate ultrasonic velocity and 

attenuation in similar samples [Pachet 1990]. 

 

 

Figure 5.1: Sample Stage – The sample is in contact with a generating and 

receiving transducer at a few points.  The transducer spacing is controlled by 

springs and micrometers in order to make light contact with the sample.  The 

dashed red box on the top left diagram is the region shown in the bottom 

photograph, where the diameter of the transducers is about 7 mm. 

Micrometer 

Spring 

Receiving Transducer 

Screw 

Generating 

Transducer 
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The micrometers were used to adjust the spacing of the two transducers, such that 

the transducers made light contact with the sample (the effect of contact pressure 

on the acquired spectra will be discussed in § 6.3.2).  The micrometer “feet” sat on 

glass plates affixed to the bottom holder, to isolate the two transducers electrically.  

Low-frequency ultrasonic waves can be transmitted through the holder itself and 

picked up by the receiving transducer.  Because of this, for experiments in the 

lowest frequency range investigated, the glass was replaced with soft plastic, in 

order to damp these vibrations.  A comparison of the low-frequency signals 

transmitted through the holders under these conditions is shown in Figure 5.2 on 

the following page.   

The plastic adequately damps the low-frequency vibrations.  Note that some care 

must be taken to choose the correct damping material, as too soft a material may 

cause some instability between the top and bottom transducers, which can present a 

hazard to the sample.  Additionally, closed-cell materials are also not useful, as they 

tend to expand when placed under vacuum, changing the transducer separation.  

Polypropylene was found to be a suitable plastic for this application. 
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Figure 5.2: Sample Holder Resonance – The signal (top) from the 

generating transducer is transferred to the receiving transducer through the 

sample holder, and the spectrum (bottom) shows several strong low-

frequency modes.  Replacing the glass “foot pads” with plastic pads 

significantly reduces the transmitted signal.  The signals shown were 

acquired under vacuum with no sample present.  The initial RF pulse 

(c.f. § 5.3.3.4: RF Pick-Up) is not shown.  Both of the spectra on the bottom 

have been normalized by the maximum peak intensity for the signal acquired 

with the glass plates in place.  
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5.3 Signal Path and Electronics 

In order to measure the density of states over a broad range of frequencies, several 

pairs of generating/receiving transducers were used, as each transducer has a 

limited bandwidth about a specified central frequency.  The generating and 

receiving transducers were always chosen to have a common central frequency, in 

order to maximize efficiency.  A short, tuned pulse was sent through the sample, 

exciting a broad range of frequencies.  The transmitted signal was picked up by the 

receiving transducer and sent to a digitizing oscilloscope.  To minimize the effects of 

digitizing (bit) noise and electronic noise, the pulse was repeated and averaged.  A 

basic representation of the signal path is shown in Figure 5.3 below. 

 

 

The following sub-sections deal with each step along the signal path in the order of 

propagation.  Since these experiments were performed over the course of several 

years, the data acquisition procedure and electronics used were modified as the 

experiments were improved.  Note that since RF signals were being used throughout 

these experiments, input, output and cable impedances had to be matched.  Cable 

lengths were also minimized to reduce noise pick-up and signal reflection effects. 

Figure 5.3: Block Diagram of Basic Signal Path – The signal path is shown 

with arrows.  The two transducers were actually in contact with the sample; 

the diagram is meant to show signal propagation via elastic waves. 
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5.3.1 Signal Generation 

The input signal was generated using an Agilent 33220A Arbitrary Waveform 

Generator (AWG).  To generate a large bandwidth pulse in the frequency range of 

the transducer pair being used, the output from the AWG was chosen to be a single 

sine wave oscillation, at the central frequency fc  of the transducers.  A pulse 

repetition time of 10 ms was used in these experiments, in order to ensure that any 

noise or echoes from the previous pulse had died off before the next pulse was 

produced.  The signal produced by the AWG and the corresponding Fourier 

transform are shown in Figure 5.4 below. 
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Figure 5.4: Input Pulse – The input signal (left) as produced by the AWG 

and its Fourier transform (right).  The central frequencies fc  of the 

transducers used were 0.5, 1.0, 2.25, 3.5 and 5.0 MHz (c.f. § 5.3.3.1).  The 

AWG output amplitude used was either 50 or 100 mV, depending on the 

generating transducer used.  The region shown in red (shaded) is 

approximately the frequency range used to obtain mode-counting data in my 

experiments.  Both graphs have been normalized by their respective maxima.  

The peak frequency in the Fourier transform is shifted below the frequency 

of the sine wave used to produce the single oscillation, in agreement with the 

analytic result.  
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5.3.2 Signal Amplification 

The signal was amplified using an Amplifier Research Model 250L broadband RF 

amplifier.  The input and output impedances of this amplifier are specified to be  

50 , but the input impedance appeared to be matched properly only when the gain 

was set to maximum (otherwise, cable reflections were observed).  The amplifier is 

quite robust, and is capable of operation without damage using any input or load 

impedance, and can be used in pulsed or continuous-wave mode.  Though a pulse 

was sought, significant distortion was introduced when using a gating/blanking 

signal, therefore, the amplifier was used in continuous wave mode, and the pulsing 

was accomplished by the signal generation electronics, as described in the previous 

section.  The amplifier is operated at its maximum gain setting, which yields a gain 

of approximately 62 dB.  The output Figure 5.5
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Figure 5.5: Amplifier Output – The pulses sent to the generating 

transducers (left) and their Fourier transforms (right) are shown.  The larger 

pulses were used for the transducer pairs with fc = 500 kHz and 3.5 MHz .  

The approximate region of interest is shown in red.  The spectra on the right 

are normalized by their maxima. 
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The signals on the previous page were acquired by connecting the amplifier to a 

50  resistive load, and using an impedance-matching splitter to tap off a small, 

proportional voltage which could be recorded by an oscilloscope.  Note that the 

voltage applied to the generating transducer is approximately double for the 

500 kHz and 3.5 MHz ranges.  The experiments performed at these frequencies were 

done later, after it was found that a higher voltage could be applied to the 

transducers safely.  Since the amplifier must be operated at its maximum gain 

setting for proper impedance matching, the output voltage applied to the generating 

transducer was controlled by the AWG output voltage.  
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5.3.3 Transducers 

5.3.3.1 Design and Construction 

In these experiments, piezoelectric immersion transducers are used for generation 

and detection of ultrasound.  The transducers are designed for underwater usage, 

and are therefore acoustically impedance-matched to water.  These transducers are 

chosen for their broadband response, rugged construction and availability.  

Diagrams (obtained from the manufacturer) of the internal construction of the 

transducers are shown in Figure 5.6 below. 

 

Figure 5.6: Transducer Construction – Elements of the appropriate 

thickness and acoustic impedance are selected in order to maximize the 

efficiency, signal fidelity and bandwidth in a specific frequency range 

[Panametrics 2006]. 

The active element in these transducers is made from lead zirconate titanate (PZT), 

which is a high acoustic impedance piezoelectric material.   The PZT has a thickness 
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of one half-wavelength at the nominal central frequency of the transducer, such that 

constructive interference produces a strong signal in the desired frequency range.  

The transducer backing is a high-density, highly attenuative material that is 

acoustically impedance matched to the PZT element.  This prevents “ringing” in the 

transducer, and gives the transducer a good broadband response.  The wear plate 

on the front of the transducer is designed to provide a better impedance match 

between the transducer element and water, as well as protecting the piezoelectric 

element.  The wear plate is designed to have a thickness of one quarter-wavelength, 

in order to minimize losses due to back-reflection.  It is worthwhile to note that in 

the experiments conducted for this thesis, the transducers were not used in water 

but in direct contact with the samples, and therefore were no longer matched for 

proper acoustic impedance.  This may have affected the performance and frequency 

response of the transducers. 

Each transducer has a nominal central frequency fc  which corresponds to the peak 

frequency response when used in immersion.  In this thesis, transducer pairs are 

referred to by this nominal central frequency in order to indicate the approximate 

frequency range being studied; however, this does not necessarily reflect the peak 

frequency response of the transducers when used as in these experiments. 

The central frequencies fc  of the transducers used were 0.5, 1.0, 2.25, 3.5 and 5.0 

MHz, with element sizes ranging from ¼” to 1”. 
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5.3.3.2 Reference Waveforms 

Reference waveforms were recorded from each transducer pair, in order to observe 

the signal used to excite the sample.  These references were taken by aligning the 

transducers with a small air gap in between.  The references were taken through air 

(rather than through water or a solid material) because the very low acoustical 

impedance of air was thought to provide a load on the transducers similar to the 

experimental conditions, wherein the load on the transducers was mostly vacuum 

(zero impedance) with a very small area of the transducer face in contact with the 

sample.  The reference waveforms are shown in Figure 5.7 below. 
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Figure 5.7: Transducer Output – Reference pulses through air (left) and 

their Fourier transforms (right) are shown.  The magnitude decreases with 

frequency, due to attenuation in air and reduced transducer efficiency.  The 

overlap in bandwidth between transducers allows the density of states to be 

measured across the entire frequency range.  Some signals have been 

omitted from the left graph for clarity, but were qualitatively similar.  The 

spectra on the right have been normalized by their respective maxima. 



67 

 

The reference signals through air become weaker with increasing frequency.  The 

increased attenuation of air and reduced transducer efficiency at higher frequencies 

decrease the pulse amplitudes when moving to higher frequency ranges, and shift 

the central frequency of the pulse to below the transducers’ central frequency.  

Because of this reduced efficiency and the large acoustic impedance mismatch (for 

air references and when a sample is present), experiments became increasingly 

difficult at higher frequencies, where signal-to-noise ratios were drastically reduced. 

The bandwidth of the transducers in air (given a single-oscillation input pulse – 

bandwidth ≈ 100%) was approximately 15-30%.  The test forms provided by the 

manufacturer show the transducer bandwidth to be about 65-90%.  This suggests 

that the inefficiency due to improper acoustical impedance matching narrows the 

transducer bandwidth, in addition to reducing the amplitude of the pulse.  

Nevertheless, several transducer pairs were used with sufficiently close central 

frequencies and sufficiently wide bandwidths to allow observation of signals 

through the samples across a broad frequency range without gaps. 

5.3.3.3 Electrical Impedance 

The electrical impedance of the transducers was also measured using an Agilent 

4294A Precision Impedance Analyzer, and the results are shown in Figure 5.8 on the 

following page.  Though the nominal impedance of all the transducers is 50 , the 

measured impedance varied greatly from this value, spanning several orders of 

magnitude.  The amplifier and receiver are designed for 50  loads, so this electrical 

impedance mismatch may account for some of the pulse distortion.  Notice also that 
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the impedance is generally closer to 50  at lower frequencies, and this may 

partially explain the enhanced response at low frequencies, as shown in Figure 5.7.  

Note that there are two different traces for each central frequency, corresponding to 

the generating and receiving transducers.  Due to availability, these transducers 

were not necessarily matched in size and make/model, and hence the electrical 

impedance of transducers of the same central frequency is not necessarily the same. 
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Figure 5.8: Transducer Electrical Impedance – The electrical impedance 

of the transducers used is shown.  Note the large deviations from the nominal 

value of 50 .  
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5.3.3.4 RF Pick-Up 

In these experiments, the generating and receiving transducers were in very close 

proximity (≈ 1 mm) in order to be in physical contact with the small samples.  Each 

transducer acts as a weak antenna, and a signal is transmitted electromagnetically 

to the receiving transducer, which was observable at early times in the recorded 

waveforms.  As is often the case with RF pick-up, this signal was very sensitive to 

small changes in the configuration.  Factors such as transducer position (separation 

and parallelism), axial rotation and ground connection between generator, receiver 

and vacuum chamber all affected the shape, magnitude and duration of the RF pulse 

significantly.  These factors were adjusted to minimize the pick-up signal; however, 

the RF pulse often had significant amplitude in my mode counting experiments, and 

care was taken to minimize its effect on the acquired spectra (c.f. § 6.2.1).  Two 

sample RF pulses are shown in Figure 5.9 below. 
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Figure 5.9: RF Pick-Up Signal – Two examples of RF pick-up signals are 

shown.  Note the differences in frequency, duration and amplitude.  The RF 

pick-up became increasingly problematic at higher frequencies.  
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5.3.4 Receiving Electronics 

A receiver was required to amplify the signal from the receiving transducer to a 

sufficient level to be efficiently captured by a digitizing oscilloscope (minimizing bit 

noise).  Initially, a Matec Model 605 Receiver was used in conjunction with a Matec 

Model 253 Broadband Preamp and a Telonic 8143A Variable Attenuator.  This 

receiver/preamp combination did not allow for any gain adjustment, so the 

attenuator was used to adjust the magnitude of the received signal to minimize 

digitization noise while avoiding clipping of the waveform.  In later experiments, a 

Ritec Model BR-640A Broadband Receiver with a Ritec Model PAS-0.1-20 Broadband 

Preamp was used.  The Ritec receiver has adjustable gain and a better signal-to-

noise ratio than the Matec receiving electronics.  The Ritec broadband preamp was 

eventually abandoned, as the receiver alone was found to provide sufficient gain 

without additional noise.  Approximately 50 dB of gain was required of the receiving 

electronics. 

High- and low-pass filters were also used to reduce noise outside the frequency 

range of interest.  The Ritec receiver has the advantage of switchable high- and low-

pass filters, eliminating the need for external filters. 
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5.3.5 Signal Acquisition 

The signals were acquired using a digitizing oscilloscope, so that they could be 

averaged and downloaded for analysis.  Initially, a Tektronix TDS 544A Digitizing 

Oscilloscope was used to capture and average the signals.  This oscilloscope has a 

resolution of 8 bits, and can perform up to 10,000 averages.  In later experiments 

(especially at higher frequencies, where more averaging and higher resolution was 

required), a Gage Compuscope CS14200 digital oscilloscope card was used with 

Gagescope Professional software to acquire the signals.  The Gage card has 12-bit 

resolution, and the number of averages that can be done internally on the card is 

dependent on the record length required. 

The averaging of the Gage card is much faster than that of the Tektronix scope, and 

the Gagescope software enables the automatic saving of acquired signals.  

Furthermore, the Tektronix stores the averaged waveform in 16 bit, while the Gage 

can store the averaged waveform in 32-bit (if “Co-Add” mode is used).  Despite the 

relative difficulty of using the Gagescope (especially involving issues with proper 

wave scaling and data format conversion), the increased speed and precision made 

it the superior choice for signal acquisition, especially when dealing with very small 

signals, or when large amounts of averaging were required.  The Gagescope also 

allowed for clock synchronization with the signal generation electronics, eliminating 

any possible phase jitter. 
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5.4 Vacuum System 

The experiments were performed under vacuum in order to eliminate the signal 

propagating through air, as well as to reduce the damping within the sample (since 

acoustic waves cannot propagate in a vacuum, eliminating the air surrounding the 

sample eliminates any possible coupling of elastic energy out of the sample except 

through the contact points with the transducers).  It was observed that only a 

moderate vacuum was required to accomplish these goals (≈ 100 mTorr), and a 

simple rotary vacuum pump was sufficient.  The separation of the transducers was 

adjusted until contact is established with the sample, and the entire apparatus was 

placed inside the vacuum chamber, shown in Figure 5.10 below. 

 

Figure 5.10: Vacuum Chamber – The transducers and holders can be seen 

through the chamber window.  Electrical pass-throughs and vacuum 

connections are also visible.   
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The effect of performing the experiment under vacuum is shown in Figure 5.11 

below.  Note that with even a moderate vacuum, the air signal is no longer visible, 

and the scattered signal through the sample persists for much longer times. 

� �� ��� ��� ��� ��� ���������������
���� ���	
� �
����
 �
���� �	 
��

 

 

� ��� � � �� �� �
� 

!"#$ %µ&' � �� ��� ��� ��� ��� �����������������
�����	
� �
����
 �
�����	(�� )
*��� 

!"#$ %µ&'
 

Figure 5.11: Effect of Vacuum on Signal Transmitted through Sample – 

When air is removed from between the transducers and from the sample 

pores, the reflections through air disappear and the magnitude and duration 

of the signal through the sample increases, due to decreased damping.  These 

signals were averaged 1000 times, and the signal through the sample under 

vacuum was taken at a pressure of 200 mTorr. 
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Chapter 6  

Data and Analysis  
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6.1 Overview 

When the elastic modes of a sample are excited by a short ultrasonic pulse, peaks 

are found in the Fourier transform of the transmitted signal, indicating the normal 

modes of vibration of the system.  If the sample is small enough, the peaks 

corresponding to the individual modes will be sufficiently well-separated to be 

resolved.  Once these modes are located, they can be counted and binned to yield the 

density of states.  An example of a signal through one of the samples and its fast 

Fourier transform (FFT) are shown in Figure 6.1 and Figure 6.2 below. 
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Figure 6.2: Fourier Transform of Transmitted Signal – The peaks 

corresponding to resonant modes of the sample are clearly resolvable. 

Figure 6.1: Signal Transmitted 

through Sample – The signal 

persists for a long time, showing 

evidence of multiple scattering.  

The signal has been averaged 

10,000 times. 
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From the above example, one might expect that a simple counting and binning 

procedure (as well as averaging over many samples, in order to measure the 

average properties of the medium) is all that is required to properly measure the 

density of states.  One must ensure, however, that all the modes in a given sample 

have been accounted for.  For example, in one given orientation of a sample, certain 

modes may only be very weakly coupled to one or both of the transducers, and 

therefore may not be observed in the FFT.  Despite the unlikelihood of degeneracies, 

or near-degeneracies, due to level repulsion (c.f. § 2.8), adjacent modes may still not 

be sufficiently separated to be resolvable, if the density of states or peak width is too 

great. 

Much of this chapter is dedicated to addressing the above concerns, wherein a 

statistical approach to mode counting is shown to be necessary, and is therefore 

developed. 
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6.2 Signal Processing Concerns 

In order to maximize the usefulness of the acquired spectra, care was taken to 

properly process the signal to minimize distortion and artifacts.  Proper truncation, 

zero-padding (oversampling) and windowing were essential to getting the best 

possible spectra for subsequent analysis. 

6.2.1 Truncation and RF Pulse Removal 

In the signals acquired in my experiments, an electromagnetic RF pulse was always 

present (c.f. § 5.3.3.4: RF Pick-Up) before, or at the beginning of, the actual elastic 

signal.  Electronic noise was, of course, present through the entire length of the 

acquired waveforms, but dominated at long times, when the elastic signal had 

mostly died off.  It was therefore useful to truncate the beginning and end of the 

time domain record, so that the region used for the FFT had the minimum amount of 

noise and the maximum elastic signal.  The appropriate truncation point for the RF 

pulse removal was easily estimated by eye1.  A baseline amount of electronic noise 

(post-averaging) was measured by recording a short pre-trigger region with each 

signal.  The signal was truncated approximately when the signal-to-noise ratio (after 

averaging) fell to unity.  These features are shown in Figure 6.3 on the following 

page. 

                                                        
1Often the RF pulse was greater in amplitude than the acoustic signal.  Since this 

portion of the signal was truncated, the waveform was freely allowed to clip in this 

region, thereby maximizing the useful resolution of the digitizing oscilloscope for 

the acoustic signal.  
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Figure 6.3: Truncation Details – The important features used to determine 

the truncation points are shown.  The original signal is shown in the upper-

left, the truncated signal in the bottom-right.  In the upper-right panel, the RF 

pulse begins to die off before the bulk of the elastic signal arrives, making 

this a good choice for truncation.  In the bottom-left, the pre-trigger noise 

level is used to determine when the signal-to-noise ratio is approximately 

unity, indicating a good region to truncate to reduce electronic noise 

contributions. 

The effect that the truncation has on the spectrum can be seen in Figure 6.4 on the 

following page.  Note the decreased baseline magnitude (especially at high 

frequencies) and increased smoothness. 
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Figure 6.4: Spectrum Showing Effects of Signal Truncation – The 

spectrum from the truncated waveform (blue, dashed) shows a significant 

improvement in terms of smoothness and reduced baseline noise over the 

spectrum from the original waveform (black, solid).  The magenta and red 

boxes show the zoomed regions.  Note the presence of side-lobe oscillations 

in the bottom left spectrum (red box). 
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The figure on the previous page shows that proper truncation can help make the 

peaks more easily identifiable by reducing the noise that may confuse the 

resolvability of closely-spaced or small-amplitude peaks. 

6.2.2 FFT Padding and Windowing 

When spectra are obtained from real data, one must deal appropriately with the 

inherently finite record length and sampling rate.  The finite sampling rate can cause 

aliasing; however, an analog low-pass filter (with frequency less than the sampling 

rate) was used to avoid this possibility, as well as to minimize high-frequency 

electronic noise.  Padding and windowing are two common ways of minimizing the 

effects of finite record length. 

Padding simply increases the record length of the waveform by adding zeros at the 

end of the record.  This, in turn, increases the frequency resolution of the FFT, 

allowing for a more accurate observation of peak shapes and other sample features.  

Because the FFT algorithm works more efficiently when the record length is an 

integer power of 2, the signals were all padded to contain 2N+1 points, where 2N is 

the nearest integer power of 2 greater than the record length of the sample. 

A signal with a finite duration is analytically equivalent to multiplying an infinite 

signal with a “top-hat” or “boxcar” function.  The boxcar function is defined as 

 ( )
1, 0 Δ

,Δ
0, otherwise

t t
B t t

≤ ≤
= 


 (6.1) 

for a signal of duration Δt.  If an ideal (infinite duration) signal is given by G t , the 

measured Fourier transform will be convolved with a sinc function.  That is, if 
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 ( ) ( )g f G t ≡  �F  (6.2) 

(where F denotes the Fourier transform operation), then 

 ( ) ( ) ( ),Δ Δ  sinc Δb f B t t t πf t ≡ = F , (6.3) 

and from the convolution theorem, 

 ( ) ( ) ( ) ( ) ( ) ( )g f G t G t B t g f b f′ ′ ≡ ≡ × = ∗ F , (6.4) 

where g’ f  is the measured Fourier transform.  Thus, a finite record length Δt will 

cause oscillations in the spectrum adjacent to each peak (known as “side lobes” or 

“spectral leakage”), with spacing 

 1Δ
Δ

f
t

= . (6.5) 

This means, for example, with a record length of approximately 300 μs (as in 

Figure 6.3, bottom right), the spectrum from the truncated waveform (Figure 6.4 – 

blue, dashed) should show oscillations with a spacing of approximately 3.3 kHz, and 

this is clearly seen at around 3.10 MHz in the graph on the bottom left in Figure 6.4. 

To minimize the spectral leakage (and thereby maximize resolvability), the original 

time-domain signal was multiplied by a window function, which smoothly 

approaches zero at the beginning and end of the record.  There are many different 

types of window functions commonly used, and often spectral leakage is reduced at 

the cost of increased peak width; Therefore, the window function should be chosen 

based on the application [Harris 1978]1.  For the analysis of my experiments, a 

                                                        
1 A good introductory discussion on the use of windows, as well as some other 

concepts found in this section, can be found at 

http://www.steema.com/FFTProp/FFTProperties/FFTProperties.htm. 
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“-74dB 4-term Blackman-Harris” window was chosen as it provided very good side 

lobe reduction and minimal peak broadening.  The effect of windowing can be seen 

in Figure 6.5 below. 
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Figure 6.5: Spectrum Showing Effects of Windowing – The spectrum from 

the windowed waveform (red, dashed) shows a significant improvement 

over the spectrum from the original waveform (blue solid).  Notice the 

increased resolvability and lack of side lobe oscillations, despite the reduced 

overall magnitude.  
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The spectrum from the windowed signal shows increased resolvability and no 

noticeable side-lobe oscillations.  Any short-lived, highly damped modes that may 

exist will be given less weight, as the window significantly reduces the amplitude of 

the signal at early times.  This may actually be beneficial, as the strong damping of 

these short-lived modes might indicate that they are greatly affected by coupling 

with the transducers, and may not well represent the actual modes of the sample. 
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6.3 Spectrum Reproducibility 

As indicated in the overview of this chapter (§ 6.1), one would like to be sure that all 

the modes present in a particular sample have been accounted for.  If the spectra 

acquired for a particular sample are the same (or reasonably close) under varying 

experimental conditions, one could have some confidence that all of the normal 

modes were indeed being seen.  In the following section, the effects of various 

experimental conditions on the reproducibility of the spectra will be investigated. 

6.3.1 Sample Reorientation 

When the samples are mounted between the generating and receiving transducers, 

there are several experimental factors that may affect the transmitted signal.  

Though the mesoglass studied is indeed isotropic, the points on the sample surface 

that are in contact with the transducers may differ under different orientations, and 

this may affect the coupling to different modes and/or affect their damping.  For 

example, the nodes in the speckle pattern on the surface of the sample will appear at 

different frequencies for different positions, implying both that some modes will 

likely be missed for any given orientation and that the sample can cause different 

modes to be missed.  Also, the transducer displacement is not uniform across its 

surface, so the sample’s position on the transducer surface can also affect the 

transmitted signal.  An example showing the spectra acquired from the same sample 

in two different orientations is shown in Figure 6.6 on the following page. 

Some features of the spectra persist under reorientation, but several peaks appear 

to be shifted or missing from one spectrum to the other.  Furthermore, identifying 
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common features between such spectra becomes increasingly difficult as the density 

of states increases (e.g., for larger samples).  Thus, the mode counts from a single 

spectrum are insufficient to determine the actual density of states for a given sample. 
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Figure 6.6: Effect of Sample Reorientation – The spectra from the same 

sample in two different orientations (that is, with different points in contact 

with the transducers) are shown.  Though the spectra look quite similar at 

some frequencies, the location and number of modes is not consistent. 

6.3.2 Contact Pressure 

The contact pressure between the transducers and the sample also had a significant 

effect on the signals.  Increased contact pressure caused the modes to broaden 

significantly, decreasing the resolvability of the spectra.  Because of this, the samples 

were mounted with the minimum contact pressure required to produce an 
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observable signal1.  Furthermore, changing the contact pressure caused the modes 

to shift in frequency unpredictably, making it difficult to exactly reproduce a signal, 

even if the sample and orientation are the same.  The effect of contact pressure on 

the acquired spectra is shown in Figure 6.7 below. 
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Figure 6.7: Effect of Contact Pressure – Increasing the contact pressure 

causes the modes to broaden and shift (and increase in magnitude).  Some of 

the modes can no longer be resolved when the pressure is increased (upper 

trace).  Note that these data were not windowed, so that the peak widths and 

shapes could be more meaningfully compared. 

                                                        
1 Properly mounting the sample often required some trial and error – the true signal 

was sometimes not observable until the air signal was removed by closing the 

vacuum chamber and pumping down! 
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Again, because this experimental condition had a large effect on the resolvability 

and location of the modes, a single spectrum was insufficient to determine the 

density of states for a particular sample. 

6.3.3 Vacuum Pressure 

Though only a moderate vacuum was required to remove the air signal, the vacuum 

pressure did have some effect on the acquired spectra, as shown in Figure 6.8 below. 
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Figure 6.8: Effect of Vacuum Pressure – The spectra for the same sample 

mounting under different vacuum pressures are shown.  Though both 

spectra are of similar quality, the peak locations and magnitudes appear to 

depend on the vacuum pressure. 

The spectra shown in the above figure were taken from the same sample mounting; 

the higher pressure signal was simply acquired first, and then the chamber was 

further evacuated.  While neither spectrum shows a clear advantage in terms of 
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resolvability, the peak amplitudes and positions are still somewhat different.  This 

again shows the large effect that the experimental conditions can have on the details 

of the spectra, further illustrating the need for a statistical approach to analysing the 

mode-counting experiments.  
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6.4 Statistical Mode Counting 

Based on what is shown in the previous sections, one cannot be confident that any 

single spectrum displays all the modes of a sample in the frequency range of interest.  

Not only do some modes not appear in some spectra, but the locations (frequencies) 

of the modes also change with experimental conditions, making unambiguous 

identification (and therefore easy enumeration) of the modes impossible, even with 

multiple trials.  Instead, the true density of states must be statistically inferred from 

the distribution of modes counted. 

Assume, first of all, that in any one data set for a particular sample, there is a 

probability p of detecting any one of the n total modes in the frequency range 

observed.  For each mode, there are only two possible outcomes: either the mode is 

detected or it is not.  Therefore, the binomial distribution should be used as a parent 

distribution for the number of modes observed.  That is, the probability P of 

detecting x of the n total modes is given by [Bevington and Robinson 1992]: 

 ( ) ( )( )

( )
! 1

; ,
! !

n xxn p p
P x n p

x n x

−
−

=
−

. (6.6) 

The mean µ  of the distribution is simply given by 

 μ x np≡ = , (6.7) 

and the standard deviation σ  of the distribution is given by 

 ( )1σ np p= − . (6.8) 

If several spectra are acquired, corresponding to different orientations and contact 

points of the same sample, µ and σ can be measured for the mode counts in each set 
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of measurements.  From these, the total number of modes n  (as well as the 

probability of finding a mode p ) can be calculated by solving Equations 6.7 and 6.8, 

yielding 

 
2

2

μ
n

μ σ
=

−
, (6.9) 

 
2μ σ

p
μ

−
= . (6.10) 

If there are N trials (for a particular sample), the uncertainty in the mean and 

standard deviation are given by 

 Δμ

σ

N
= , (6.11) 

 Δ
2

σ

σ

N
= . (6.12) 

Using standard propagation of uncertainties, this yields the following for p and n: 

 
( )2 22

2

2
Δ

p

σ μσ

μ N

+
= , (6.13) 

 

( )
( )( )2

2 2 2

2
2

Δ 2 2
n

μσ
μ σ μ σ N

σ μ
= − +

−
. (6.14) 

This gives an estimate (with a measurable uncertainty) of the true number of modes 

in a given frequency range for a particular sample.  The data from all the samples 

then needs to be combined in order to get an idea of the average properties of the 

medium.  Note that the uncertainty in the number of modes given by Equation 6.14 

represents only the uncertainty in measuring the number of modes for a given 

sample; however, the samples are also inherently different from one to the next.  
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That is, even if the samples could be measured perfectly, there would still be statistical 

fluctuations from one sample to the next.  To account for this, a factor of  should 

be included1 in the uncertainty in n, so Equation 6.14 becomes 

 
( )( )

( )

2
2 2 2 2 2

4
2

2 2
Δ

n

μ σ μ σ μ σ
n

N σ μ

− +
= +

−
. (6.15) 

To combine the data from several samples, the results from each sample must be 

normalized by volume (since the density of states is expected to be proportional 

thereto; c.f. § 2.6) and the ensemble average can be calculated, weighted by the 

inverse of the uncertainties.  The average probability p  of observing a mode in a 

given frequency range can also be found, though no volume-normalization is 

required. 

The volume-normalized peak counts are given by 

 
( )

2

2

n nρ μ ρ
η

V m m μ σ
≡ = =

−
, (6.16) 

with uncertainty from standard error propagation and Equation 6.15: 

 
( )( )

( )

2
2 2 2 22 22 2 22

22
2 2

2 2Δ ΔΔ Δ Δ
1

ρ ρn m m

σ μ σ μ σ
δ

η n ρ m ρ mNμ μ σ

− +        
≡ + + = + + +        

        −
. (6.17) 

The weighted average and its uncertainty are then obtained in the usual way, i.e., 

                                                        
1 This is the appropriate uncertainty for counting experiments, wherein the data 

represent the number of observed events per unit interval [Bevington and Robinson 

1992].  In the experiments of this thesis, the events are the presence of modes, and 

the unit interval is the sample mass and frequency-bin width. 



92 

 

 
( )
( )

2

21

i i

i

η δ
η

δ
=

∑
∑

, (6.18) 

 
( )

2

2

1

1
i

δ
δ

=
∑

. (6.19) 

The average probability p  of observing modes is also calculated, but using an un-

weighted average, in order to get an idea of how likely the modes are to be counted, 

independent of the measurement uncertainties. 

The above calculations are done for each frequency bin independently and the 

resultant set of η , scaled by bin width, yields the density of states. 

6.4.1 Treatment of Empty Bins 

Before combining the data from various samples, one notable exception to the above 

formulae should be dealt with.  For sufficiently small samples and sufficiently 

narrow frequency bins, there may be some cases where no modes appear in a given 

bin for all trials of that particular sample.  This would yield 0μ σ= = , and leave n, p, 

Δn and Δp indeterminate (from Equations 6.9, 6.10, 6.13 and 6.15).  One might 

consider setting Δ 0nn = =  for this case, but this would essentially give the zero-

value infinite weight in the weighted sum of Equation 6.18, and still leave p and Δp 

undefined.  This means that a density of states of zero would be “measured” at a 

particular frequency, even though there is a statistically significant probability of 

finding a mode at that frequency in other samples.  This should be accounted for, so 

that it might be properly included in the weighted average. 



93 

 

For any one trial, with no a priori knowledge of the uncertainty, it is reasonable to 

assume Poisson statistics, since one is simply counting modes1.  To estimate the 

expected mean and uncertainty in a zero-measurement, the probability of observing 

0μ =  (in a single measurement) when the actual value is 0ν ≠ 2 must be found.  This 

is given by the Poisson distribution 

 ( );
!

μ
ν

P

ν
P μ ν e

μ

−≡  (6.20) 

evaluated at 0μ = : 

 ( )0; ν

PP ν e−= . (6.21) 

The probability of observing zero every time if N measurements are made is then 

given by 

 ( )( )0;
N νN

P
P ν e−= . (6.22) 

Summing over all possible ν, the probability of consistently observing zero for N 

measurements with an unknown 0ν ≠  is given by 

 ( )
1

1
0; , 0
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νN

N
ν

P N ν e
e

∞
−

=

≠ ≡ =
−∑ . (6.23) 

The probability that the actual value is zero 0ν =  is then simply given by 

subtracting the above quantity from unity: 

 ( ) ( ) 1
0; , 0 1 0; , 0 1

1N
P N ν P N ν

e
= = − ≠ = −

−
. (6.24) 

                                                        
1 That is, if only one trial was conducted and μ modes were counted, it would be 

reasonable to assume an uncertainty of . 
2 ν is used as the mean value of the Poisson distribution, to avoid confusion with the 

measured mean μ. 
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The best estimate for n is then given by the expected value of ν (the “actual” value) 

when zero is consistently measured: 

 ( ) ( )( )
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1 1
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n ν ν P ν νe
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−

∑ ∑ . (6.25) 

The best estimate for Δn, should be given by the expected deviation of ν, so the 

second moment of the distribution is used to obtain the RMS uncertainty for a 

measured value of zero: 
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Therefore, when no modes are observed in a frequency-bin for a particular sample, 

a reasonable value and uncertainty can be assigned to n based on the number of 

trials performed.  For large N, Equations 6.25 and 6.26 both tend to 
Ne−

, which 

intuitively seems to be a sensible value and weighting factor in Equation 6.18, for 

the case of a zero-measurement. 

The most probable value for p could also be calculated based on the above 

assumption of Poisson statistics.  However, that assumption was only intended to 

give a rough idea of how to assign an appropriate value to n in the case of a zero-

measurement, in order that it might be sensibly included in the average.  There is no 

obvious reason to infer a particular value for p, given that one simply does not know 

if there are actually no modes in the given frequency range, or if they have simply all 

been missed.  For this reason, in the case of a zero-measurement, a uniform 

probability distribution for p is simply assumed, yielding: 

 ( ) ( )0 Δ 0 0.5pp = = . (6.27) 
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6.5 Peak Finding 

One of the most challenging aspects of the data analysis for my experiments was to 

accurately and objectively identify the peaks in the spectra amongst the background 

noise.  The peak shape, width and height were all found to vary greatly, as is typical 

for many coupled harmonic oscillators with different masses and degrees of 

coupling and damping (c.f. § 2.5).  A method of peak-finding was eventually 

developed wherein a “confidence level” was established for each local maximum in 

the spectra, based on the relative height to the adjacent local minima1.  The peaks 

were then accepted or rejected using a threshold for this confidence level.  The value 

for the threshold was set by the properties of the individual spectra, as well as by 

allowing this parameter to vary and searching for the result that yielded the most 

self-consistent set of results for the system.  Though there is still some subjectivity 

involved in this method, it was found to yield reasonable and consistent results.  

Furthermore, there should be some leniency in choosing the threshold, since the 

analysis already assumes a finite probability ( )1 p−  of missing modes (c.f. § 6.4).  

The details of the peak-finding process are discussed in the following two sections. 

6.5.1 Noise Rejection and Thresholding Method 

After the signal was processed (as discussed in § 6.2), the peaks were located using 

the following steps: 

                                                        
1 The advantage of windowing can be clearly seen by considering this method of 

analysis in light of the example of Figure 6.5. 
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1. The spectrum was smoothed using adjacent-point averaging, in order to 

eliminate small point-to-point fluctuations.  Usually ± 4 points were used to 

compute the average, but up to ±6 points were sometimes used, depending 

on the noise level and resolution of the spectrum. 

2. All of the local minima and maxima were located, by looking for changes in 

sign of the two-point derivative. 

3. A “confidence level” was established for each maximum by taking the sum of 

the differences between the amplitude of the maximum and adjacent minima. 

4. The average confidence level for the entire spectrum was calculated, and all 

maxima with a confidence level below a given minimum percentage (“noise 

threshold”) of the average were discarded.  This percentage level could be 

input by the user, but was 0.2% by default, though the values used ranged 

from about 0.1% to about 2%.  (The goal of this stage was to ignore all local 

maxima that were definitely noise).  This parameter was usually easily 

established by looking at the spectrum, and rarely needed to be varied. 

5. The average confidence level was recalculated with only the remaining peaks. 

6. All peaks with a confidence level greater than the “peak threshold” were 

counted.  This threshold was given as a percentage of the new average 

confidence level, and its chosen value was found to vary widely (from around 

0% to 60%) based on the quality of the spectrum as well as the variance in 

peak heights.  It is this parameter that was adjusted when searching for the 

appropriate threshold to give the most reasonable and self-consistent results 

for calculating the density of states. 

This “double-rejection” method of peak finding was found to be more robust to 

variable peak densities and amplitudes in the spectra. 
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6.5.2 Interactive Threshold Choosing 

In order to choose the correct threshold for identifying peaks, a process was used 

wherein the effects of different threshold values on the number of peaks found and 

the calculated value for n could be easily assessed.  In this process, the peak 

threshold parameter was varied, and the resultant values for n, Δn , μ and σ were 

graphed as a function of threshold value (usually this was done for a wider range of 

frequencies than the bin width used for the final calculations, in order to obtain 

better statistics – the possible frequency dependence of the density is of less 

concern at this stage of analysis).  The motivation for this was to find a range of 

values for the peak threshold where the measured value of n is locally unaffected by 

small changes in the threshold value (suggesting that the modes are being found 

probabilistically 1 , and the threshold value is appropriate), and where the 

uncertainty Δn is relatively small.  After choosing the threshold (for a particular 

sample), the spectra with the “counted” peaks marked were viewed, to verify their 

accuracy.  If the modes were obviously miscounted, a new threshold was chosen 

before moving on to the next sample, and if one of the trials looked significantly 

noisier than the others, it was excluded from the analysis.  The chosen threshold is 

then used for all trials of the sample in question, in order to keep the analysis as 

consistent as possible. 

Once the appropriate parameters were chosen, the peak counts were binned and 

analysed according to Section 6.4, yielding the density of states. 

                                                        
1 According to § 6.4, the number of modes calculated n  should be locally 

independent of the probability of finding a mode p , which is affected by the peak 

threshold chosen. 
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Chapter 7  

Results and Discussion  
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7.1 Overview 

In this chapter, the results of my mode-counting experiments are presented.  Some 

important features of the acquired spectra and analysis are noted, and the measured 

mode-counting probability is shown.  The density of states and fracton dimension is 

shown for the range of frequencies measured, and quantitative estimates based on 

the models presented in Chapter 2 are given.  The results are also compared to other 

theoretical predictions and measurements made in similar systems. 
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7.2 Notes on Acquired Spectra 

Before looking at the results of the measurements in greater detail, it is worthwhile 

to note some observed features of the acquired signals.  First, the spectra acquired 

were heavily weighted toward the low-frequency side of the transducer response, 

and this effect became more pronounced when using higher frequency transducer 

pairs.  This effect may be due partially to the electrical impedance mismatch of the 

transducers (c.f. § 5.3.3.3), and a qualitatively similar low-frequency bias was found 

when measuring reference signals through air (c.f. § 5.3.3.2); however, this bias was 

even greater when the actual experiments were conducted (that is, in a vacuum, 

with the transducers in contact with the sample).  This low-frequency bias is likely 

due to the acoustical impedance mismatch between the transducer and the load 

(vacuum/sample).  The usable frequency range of each transducer pair is listed in 

Table 7.1 below. 

The spectra acquired from the different transducer pairs also show differences in 

terms of peak width.  The width of the peaks in the acquired spectra determines the 

resolvability of the modes, and thereby limits the measureable un-normalized 

density of states.  Approximate average peak widths and quality factors were 

measured for each transducer pair, and the results are shown in Table 7.1 below. 

Transducer Frequency fc MHz  0.5 1.0 2.25 3.5 5.0 

Usable Frequency Range MHz  0.3–0.7 0.5–1.3 1.0–2.6 0.5–3.5 2.0–4.0 

Approximate Peak Width kHz  2.0 4.0 5.5 15 10 

Approximate Average Q 250 225 325 135 300 

Table 7.1: Properties of Acquired Spectra for Each Transducer Pair 
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There is a general trend of increased width and low-frequency bias for higher 

frequency transducers.  The 3.5 MHz pair shows an abnormally large range of 

useable frequencies and the peaks are especially wide; this may be related to the 

fact that these transducers also had a significantly larger surface than the others.  

Spectra showing a narrow range of frequencies (100 kHz) for each transducer pair 

are shown for reference in Figure 7.1 below. 
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Figure 7.1: Sample Spectra Showing 

Peak Widths – The FFT magnitude 

over a narrow range of frequencies is 

shown for a sample spectrum from 

each transducer pair.  The symbols 

shown for each fc correspond to those 

used in other graphs.  The samples 

represented are of intermediate sizes. 
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7.3 Peak Thresholding Values 

As discussed in § 6.5.2, the dependence of n, Δn , μ and σ on the “peak threshold” 

(c.f. § 6.5.1) was plotted, and a region was found where the calculated number of 

modes n is relatively independent of the number of peaks counted μ, and where Δn is 

reasonably small.  The appropriate threshold was chosen near the onset of this 

region (to avoid missing modes unnecessarily), and the results of the peak-finding 

program with this threshold were viewed and verified.  One example is shown in 

Figure 7.2 on the following page. 

The presence of the plateau indicates that the statistical mode counting method is 

working as expected, and that the missed peaks are being properly accounted for.  

The results of the peak-finding program agree quite well with the peaks that one 

might identify by eye, with perhaps a few modes missing. 

The threshold level for each sample was chosen using the method described in 

Section 6.5.2.  The appropriate threshold was not always quite as easy to identify as 

shown in the example of Figure 7.2.  The plateau region was often smaller, and 

sometimes several plateau regions could be seen.  In cases such as this, the results of 

the peak-finding program were used to help choose an appropriate value.  It is 

worthwhile to note that the number of modes calculated was quite robust, as long as 

the chosen threshold was reasonable according to the stated criteria. 
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Figure 7.2: Choosing the Appropriate Threshold for Peak Finding – The 

mean number of peaks counted μ  and the calculated number of modes n  

are shown as a function of peak threshold (left).   A plateau in n (while μ is 

decreasing) is observed, signifying the correct range for the peak threshold 

(red line shown as a guide to the eye).  The threshold chosen is indicated by 

the arrow, and the results of the peak-finding program for this value are 

shown (right).  Note that though some modes may be missed, they are 

accounted for by the method of analysis.  
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7.4 Volume Linearity 

As discussed in Section 2.6, the density of states is expected to be proportional to 

sample volume.  To verify this, the calculated number of modes n was plotted 

against sample volume for each frequency range.  One example is shown in 

Figure 7.3 below��
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Figure 7.3: Volume Scaling – The density of states is plotted against sample 

volume for the fc = 5 MHz range.  The data are not well-represented by the 

straight line fit. 

One can clearly see that the measured density of states does not appear to scale 

linearly with volume.  This can be understood by looking closely at the spectra 

obtained from the larger samples.  In these spectra, no “dead” frequencies exist.  
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That is, all the modes are immediately adjacent to each other, and this suggests that 

there may in fact be a significant amount of overlap and the mode spacing is smaller 

than their resolvability.  To illustrate this point, spectra obtained in the fc = 5 MHz 

range from one small and one large sample are shown in Figure 7.4 below. 
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Figure 7.4: Comparison of Spectra from a Large and Small Sample – The 

larger sample may not be sufficiently small for the density of states to be 

measured directly.  This is partially evidenced by the lack of any “dead” 

frequencies – each mode is immediately adjacent to the next.  The peaks in 

the small sample, however, are easily identifiable.  In this frequency range 

fc = 5 MHz , the peak width in the larger sample is greater than the average 

mode spacing, and the sample was not included in subsequent analysis. 
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This was further evidenced by the fact that even when a peak threshold of zero was 

chosen (c.f. § 6.5), the volume-normalized density of states was still significantly 

lower than that of the smaller volume samples.  No other explanation of why the 

density of states might not scale with volume (c.f. § 2.6) is known for this system, so 

the conclusion that this lack of linearity must simply be due to a saturation in the 

measureable density of states seems reasonable. 

To correct for this artifact, the larger samples were removed from the analysis one-

by-one (beginning with the largest) until the remaining samples were well-

described by a straight line on the volume scaling plots.  Though this procedure is 

somewhat ad-hoc, the appropriate samples to include/exclude were quite easy to 

identify, as in Figure 7.3 above.  Furthermore, this leads to a consistent result for the 

density of states in the overlapping frequency ranges from different transducer 

pairs, as seen in Figure 7.6.  This correction was only necessary for the two highest 

frequency ranges studied, where the modes were found to be significantly wider 

(c.f. § 7.1). 

The corrected volume-scaling plots show reasonably good agreement with a 

straight line fit for all frequency ranges, and are shown in Figure 7.5 on the 

following page.  Note that the slope of the linear fits gives the average normalized 

density of states for each frequency range. 



107 

 

� � � � � �������������
���	
 ���
 ���
�� ��� ������ 

�����

± � �χ
ν

�  !"#���$
± � �χ

ν

�  %"!��#
± � �χ

ν

�  %"&��#"$
±
!"� �χ

ν

�  !"!!��#!
±
� �χ

ν

�  %"��

'()*+,-./( 0(/1-/*.2 3f45677 89:; <9:=>=6 <9:?>6 <9:6 <9:@A

B
 

Figure 7.5: Corrected Volume Scaling – The density of states vs. sample 

volume is shown for all frequency ranges, with some of the larger samples 

removed as discussed.  The slope of the linear fit gives the average 

normalized density of states for each frequency range.  The data are well-

described by the linear fits. 
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7.5 Mode-Counting Probability 

The analysis discussed in Section 6.4 gives an estimation of the average probability 

p of observing any given mode, via Equations 6.10 and 6.13.  This probability was 

found to vary widely, depending on the mass of the sample and transducer pair used, 

and was often smaller near the edges of the useable transducer bandwidth; this 

variance far outweighed any regular dependence on frequency that may have been 

present.  Though this is an encouraging indication that the statistical mode-counting 

analysis developed is robust (since n is independent of p within reasonable limits, 

c.f. § 6.4), it does not allow for a very precise estimate of the true number of modes 

present based on the number of modes counted in one experiment.  Still, the (un-

weighted) average of p and its variance can be used as a rough estimate of the final 

results, based on a single measurement in a similar type of experiment.  A value of 

p = 0.7 ± 0.2 is measured, where the uncertainty shown is given by the variance of p, 

which is equal to the average of the measured uncertainties Δp. 

Recall that the larger samples at higher frequencies were excluded from the final 

analysis.  The value of p obtained can only be used as a rough estimate of the mode-

finding probability if the samples are sufficiently small that the number of modes 

counted is not significantly limited by the resolvability of the modes.  
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7.6 Measured Density of States 

The density of states was measured over a broad range of frequencies by the 

methods presented in this thesis, and the results are shown in Figure 7.6 below. 
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Figure 7.6: Measured Density of States – The normalized density of states 

over the range of frequencies measured is shown.  The result is nearly 

constant, with a mean value of D = 46.6 ± 0.2 MHz-1 mm-3. 

Note that that agreement between measurements in overlapping frequency ranges 

from different transducer pairs is very good.  These measurements are the result of 

direct mode-counting experiments done on 28 samples, each in 4 – 14 orientations 

(c.f. Table A.1).  The error bars shown are statistically significant, and result from a 

careful treatment of the uncertainties in the experiments (c.f. § 6.4). 
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7.6.1 Comparison with Estimates 

In order to compare the experimentally measured results with the predictions 

discussed in Chapter 2, the correct inputs to the given expressions in the context of 

these particular samples must be known, and many of the relevant sample 

properties can be found in Table 3.1. 

For Equations 2.13 and 2.16, the total surface area S  of the samples must be 

known, and can be estimated as follows.  Based on the observed structure of the 

mesoglass (via x-ray tomography, c.f. Chapter 4), the medium might be roughly 

modelled by a network of interconnected “tubes” or cylinders, whose radius is 

approximately equal to the average bead radius a .  The surface area of the tube 

would be given by

 2TS πaL= , (7.1) 

where L is the length of the tube.  The volume of a tube  is given by 

 
2

T
V πa L= . (7.2) 

Thus, the total surface area of a sample can be estimated from the volume, via 

 
2T

T

S V
S V

V a
= =

φ
φ , (7.3) 

where the factor V represents the occupied volume of the sample

fΞ  also enters into the estimate of Equation 2.16.  As 

discussed in Section 4.4, this crossover frequency may be better estimated by 

Equations 2.3 and 2.5 than by the smaller fractal bulk crossover length measured via 

box counting, and therefore, the values given by these equations are used. 
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The estimated density of states is shown in Figure 7.7 below, with measured results 

included for comparison. 
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Figure 7.7: Comparison of Measured Density of States with Estimates – 

The measured density of states at low frequencies is significantly greater 

than the prediction of the Debye model.  In the strong scattering regime, the 

density of states agrees fairly well with the estimated value.  The mean 

density of states measured in this range is DI = 47.1 ± 0.3 MHz-1 mm-3, and a 

power-law fit yields f 0.01 ± 0.04, or a fracton dimension of đ = 1.01 ± 0.04.  The 

uncertainty shown in fξ is from the estimated uncertainty in ξ (c.f. § 4.4). 
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The graph on the previous page shows the predictions for the density of states as 

discussed in Chapter 2.  The low-frequency estimate is given by the Debye model 

(Equation 2.2), with the frequency-dependent velocities shown in Figure 1.1, and 

values listed in Table 3.1.  The high-frequency estimate is given by a Debye-like 

model with the inclusion of a surface term (Equation 2.13), with the surface area 

given by Equation 7.3, and the crossover frequencies are derived from the measured 

percolation correlation length and the constituent particle radii, according to 

Equations 2.6 and 2.5. 

In the intermediate frequency (strong scattering) regime, the density of states 

nearly constant and has a measured mean value of DI = 47.1 ± 0.3 MHz-1 mm-3.  This 

is quite similar to the predicted values of DI = 55 MHz-1 mm-3 (from conserving the 

total number of modes, as in Equation 2.16) and DI = 69 MHz-1 mm-3 (from the 

“rigid bead model, as in Equation 2.17).  In fact, the relative agreement of the two 

predicted values (based on somewhat different assumptions – c.f. § 2.9) suggests 

that the picture used to estimate the behaviour of the density of states in this regime 

is relatively self-consistent and robust.  A power-law fit to the data in this range 

yields an f 0.01 ± 0.04 dependency, giving a fracton dimension of đ = 1.01 ± 0.04 for a 

fractal (percolation) model applied to this mesoglass (c.f. § 2.7). 

The low-frequency estimate is given by the Debye model (Equation 2.2), with the 

frequency-dependent velocities shown in Figure 1.1, and values listed in Table 3.1.  

The measured density of states in this low-frequency (effective medium) regime is 

significantly higher than the Debye prediction, and only a slight downward trend at 
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low frequencies may be inferred from the first point1.  Since the Debye model only 

predicts the density of ballistic modes, the enhanced density of states in this regime 

is consistent with the existence of diffusive modes even at these low frequencies.  

Even in this range, the acquired waveforms were found to persist for very long 

times (observable signals lasting up to 1 ms), showing evidence of multiple 

scattering.  From the scattering strength kls  measured for this mesoglass 

(Figure 1.1, top), the mean free scattering time can be calculated from the equation 

2s s sτ l kl πf= = , and is of the order of 1 μs at 500 kHz.  A comparison of the 

record length with the mean free scattering time shows that multiple scattering is 

occurring due to the inhomogeneities in the sample, and that the long duration of 

the waveform is not simply the result of reverberant scattering from the sample 

surfaces.  Though the samples may be too small for the diffusion approximation to 

be applicable to the data measured at these frequencies, modes of a diffusive nature 

will exist in larger samples.  It is expected that at even lower frequencies, the 

density of states must agree with the Debye prediction, and this may be an 

interesting future experimental pursuit. 

There is still a large range of frequencies within the strong scattering regime where 

the density of states has not been measured, and the crossover to the high-

                                                        
1 A careful observation of the spectra at low frequencies suggests that there is also a 

slight possibility that some of the resonances of the transducer holders (c.f. § 5.2) 

are still showing up in the frequency range of the first bin, despite efforts made to 

avoid this.  This would mean that too many modes are being measured at low 

frequencies, though this is unlikely for the first bin, and very unlikely for any others. 
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frequency, bulk material regime has not been observed.  These may be interesting 

subjects for further experiments. 

7.6.2 Comparison with Other Theories and Measurements 

The estimate of the density of states is based on a model proposed to explain the 

thermal properties of sintered metal powders [Rutherford et al. 1984; Maliepaard et 

al. 1985].  This simple model invokes an f 0 dependence for the density of states, in 

agreement with my experiments.  This result also agrees with a the measurement of 

đ = 1.04 ± 0.05 for the fracton dimension in similar glass bead sinters, though this 

value was obtained through a different method [Schriemer et al. 1996].  Comparison 

with the fractal models discussed in Section 2.7.2 gives better agreement with the 

“bond-bending” model prediction of đ = 0.89 than the scalar elasticity prediction of 

đ = 4/3.  A numerical simulation of a percolation system on a cubic lattice 

[Sheng and Zhou 1991] may show qualitative agreement with my measurements at 

intermediate frequencies.  Predictions and measurements for the density of states in 

an atomic glass may also provide a useful comparison to the results obtained for this 

mesoglass. 

All of these comparisons warrant some discussion.  First, the agreement of the 

fracton dimension with that of other similarly constructed glass-bead sinters is not 

surprising, but is an encouraging result, considering the very different technique 

used in that measurement, and the different bead sizes used in those two sets of 

experiments.  Second, the density of states model developed for the sintered metal 

powders also shows good agreement with the measured result.  Preparation of the 
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metal powder sinters differs from the method used here in that no transitory 

material is used for “percolation”, but rather, the volume fraction of the sinter is 

simply determined by packing the powder more or less densely before sintering.  

Nevertheless, the model was applied with some success over a wide range of volume 

fractions (comparable to those of the present experiments), and gives the correct 

frequency dependence of the density of states for the mesoglass.  Thus, this model 

may additionally be somewhat applicable to percolation-type systems.  Note also 

that the model of Maliepaard et al. simply estimates the effective medium crossover 

when the wavelength is around ten particle diameters λ = 20a , for sinters with the 

same volume fraction as the mesoglass of this thesis.  Estimating the crossover 

frequency in this way yields (for the lengths and velocities in the mesoglass) a 

crossover frequency of fξ = 1.28 MHz, relatively similar to the result obtained from 

Equation 2.6 and the fractal box counting analysis of Section 4.3, which yields 

fξ = 1.03 MHz. 

Comparison of the medium studied here with percolation models should be done 

with some caution, as the sample no longer appears as a percolated structure when 

observed with x-ray tomography (c.f. Chapter 4); the individual beads are not 

simply joined at the edges, but the glass has flowed together to form a continuous 

network.  Nevertheless, the occupied volume of the sample is still primarily 

determined by the locations of the glass beads in the glass/iron mixture before 

sintering (an excellent example of a percolation system on a random lattice), and the 

material does show fractal behaviour (i.e. non-integer Hausdorff dimension, 

c.f. § 2.7.1) over more than a decade of length scales (shown in Figure 4.5). 
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The prediction of scalar elasticity model does not require a fractal structure, but can 

be derived directly from the Ioffe-Regel condition [Aharony et al. 1987]; however, it 

has been shown that the Ioffe-Regel criterion for localization does not necessarily 

hold for elastic waves [Sheng et al. 1994; Allen et al. 1999; Page et al. 2004], and 

though the scattering is strong, there is no evidence so far of localization in the 

medium used here (via previously measured time-of-flight profiles, c.f. Figure 1.2, 

inset).  The percolation simulation of Sheng and Zhou [1991] is also based on scalar 

elasticity, and has some qualitative agreement, but shows a very “bumpy” 

appearance for the density of states at intermediate frequencies, possibly indicating 

that a simple power law and crossover may not be sufficient to describe the density 

of states in this range, even for the modestly sized systems of the simulation.  (Each 

simulation in this reference contains 793q ≈ 250,000 particles, for percolation 

probability q = 0.55.  The samples studied in the present experiments contain 

between about 120 – 1500 glass beads each before sintering.)  Furthermore, scalar 

elasticity cannot strictly apply to a system like a porous sinter, where the vector 

displacements within the medium are important [Webman and Grest 1985], so 

perhaps it is not surprising that good agreement is not found with these models. 

The bond-bending model is expected to be a better representation of a sinter or 

mesoglass system, and has made excellent predictions for other elastic properties in 

sintered metal powders [Maliepaard et al. 1985].  Despite this, agreement with the 

predicted value of đ = 0.89 is not found; this may be due to the stiffening of bond-

bending modes due to over-sintering.  The measurements of the density of states in 

the present experiments are not, however, sufficiently precise to rule out this value, 
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and further measurements at higher frequencies are needed to examine this 

question.   

The results of a measurement and simulation of the density of states in amorphous 

silicon [Allen et al. 1999] shows little similarity to the plateau found in my 

experiments.  Notably, a peak in the density of states is found near the low-

frequency crossover from ballistic modes, a characteristic found in density of states 

measurements for many glasses.  Such a peak is not seen in present measurements, 

nor is it seen in simulations of fractal models [Nakayama et al. 1994].  This may 

suggest that the density of states is sensitive to differences in the microscopic 

details of the elasticity in the mesoglass compared with the particular atomic glass 

considered in the simulation. 

The low-frequency results of the density of states measurements were somewhat 

surprising, and the enhanced density of states may be due to the presence of 

diffusive modes, even in this low-frequency regime.  Similar results were obtained 

when the density of states was measured in an aluminum foam, by a similar method 

[Lobkis and Weaver 2001], where it was concluded that an effective medium model 

did not well-represent the behaviour of the density of states.  No model was found 

that predicted this behaviour, and this feature continues to be of considerable 

interest. 
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Chapter 8  

Conclusions  
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From the Fourier transform of an ultrasonic pulse transmitted through a sufficiently 

small sample, the individual modes of vibration are separated well enough to be 

resolved and counted.  By doing so, the density of states in a porous mesoglass has 

been measured directly in the strong-scattering frequency regime. 

Using glass beads, samples were constructed for these experiments based on a 

percolation model for a random lattice.  Though the bead structure was no longer 

apparent after sintering, the medium showed fractal behaviour over a length scale 

spanning more than a decade: approximately 11 – 240 μm.  The fractal dimension 

measured in this range was D = 2.60 ± 0.05. 

The density of states was nearly constant in the frequency range studied, and a 

mean value of D = 46.6 ± 0.2 MHz-1 mm-3 was found.  The measured results were fit 

to a power law in the intermediate frequency regime, and a frequency dependence 

of f 0.01 ± 0.04 was found, indicating a fracton dimension of đ = 1.01 ± 0.04.  The 

average probability of observing a mode present in the sample was p = 0.7 ± 0.2. 

A simple model was presented to estimate the density of states across three distinct 

frequency regimes, with two variations on the model (Equations 2.16 and 2.17) in 

the intermediate range.  The measured the frequency dependence of the density of 

states and its average value are similar to the estimates of the models at 

intermediate frequencies.  In the low frequency regime, the measured density of 

states was significantly higher than the value predicted by the Debye and effective 

medium approximations – a surprising result that may be attributed to the presence 

of diffusive modes at low frequencies.  The plateau of the intermediate frequency 
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regime extends well below the estimated low-frequency crossover, and shows little 

(if any) convincing evidence of decreasing at the lowest measured frequencies, 

though it is thought that a crossover to Debye-like behaviour must eventually occur.  

Measurements also were not performed at sufficiently high frequencies to observe 

the crossover to the bulk medium (glass) regime.  Additional experiments at both 

ends of the spectrum may be of interest. 

At intermediate frequencies, comparison with the results of other measurements 

and simulations shows a strong similarity with the estimates made for the density of 

states postulated for sintered metal powders, and the measured result may be 

consistent with a fractal model based on vector elasticity (“bond-bending”).  The 

predictions of the scalar elasticity model and the measurements and simulations for 

amorphous silicon both do not agree with the measured results for the mesoglass 

studied.  At low frequencies, no model was found the predicted the observed 

behaviour, though the results are similar to those obtained for the density of states 

measured in an aluminum foam. 

Thus, the density of states in a highly porous, amorphous mesoglass has been 

investigated, and this system exhibits some characteristics similar to other sinters 

and fractal structures, though care should be taken in comparing this mesoglass to 

atomic glasses.  A clear departure from the simple Debye model is seen in both the 

effective medium and strong scattering regimes, and additional insight is needed in 

order to explain the behaviour of the density of states. 
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The behaviour of the density of states in the frequency regime associated with the 

fractal length scale may be part of a consistent picture for wave transport in a fractal.  

The scattering strength (kls, Figure 1.1), diffusion coefficient (DB, Figure 1.2) and 

density of states (Figure 7.6) all are nearly independent of frequency, and this may 

reflect the self-similar nature of the fractal structure.  However, similar behaviour 

has been found in an aluminum foam, which is not believed to have fractal structure.  

Both of these observations suggested the need for a more detailed, fundamental and 

unifying microscopic model for the density of states in strongly scattering, 

amorphous systems. 

Perhaps most importantly, this work has established a robust methodology for 

directly measuring the density of states of elastic waves in a strong scattering 

system.  The method of sample construction presented illustrates a practical way to 

construct a highly porous random network with percolation and fractal 

characteristics.  X-ray tomography has also proved to be a useful tool in probing the 

structure of these materials, both qualitatively and quantitatively, and thus 

identifying the important length scales in the medium.  Through the careful 

experiments described in Chapter 5 and the new statistical method presented in 

Chapter 6, the density of states can be measured in a reliable way, even when some 

of the vibrational modes may not be observed.  To my knowledge, no other 

experiments to date have directly measured the density of states in an elastic 

network with the same degree of rigour, and the hope is that these experiments will 

provide a good foundation for further research on this important topic. 
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Appendix A: Samples Used 

The table below lists the samples used for the experiments described in this thesis.  

Each sample was given a two-letter name for easy identification.  Sample volumes 

were calculated from the measured mass of each sample and the measured density 

of a large piece of the sintered material.  The frequency range(s) for which each 

sample was used is also included for convenience.  An asterisk next to the sample 

name in the table below indicates that the sample was omitted from the analysis, as 

per Section 7.4. 

Name 
Volume 

mm3  

Uncertainty 

mm3  

Frequency Range 

fc MHz  

Number of 

Trials 

AD* 3.25 0.12 5.0 8 

AE* 4.87 0.11 3.5 10 

AF 3.24 0.08 2.25 9 

AG 3.54 0.09 0.5 8 

AJ* 3.20 0.08 5.0 5 

AM* 3.48 0.09 3.5 7 

AP 2.05 0.06 2.25, 5.0 10, 8 

AU 3.11 0.08 1.0 8 

AX 5.81 0.13 (tomography only)  

BD 0.73 0.05 0.5 5 

BH* 4.78 0.11 5.0 9 

BK 1.86 0.06 0.5 7 

BL 0.66 0.05 5.0 9 

BM 2.70 0.07 2.25 9 

BP 2.65 0.11 1.0 8 

BR 1.53 0.06 (tomography only)  
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CA 1.83 0.06 5.0 11 

CF* 3.13 0.12 5.0 6 

CH 3.13 0.12 1.0 6 

CL 1.67 0.06 3.5 7 

CP 1.08 0.10 1.0 6 

CQ 1.67 0.06 0.5 7 

DA 1.08 0.10 1.0 14 

DB 0.72 0.10 1.0 7 

DD 0.78 0.10 1.0 13 

DE 0.82 0.05 1.0 9 

DG 0.86 0.05 2.25 14 

DH 1.05 0.05 2.25 10 

DK 0.82 0.05 2.25 9 

DM 0.66 0.05 1.0 4 

DS 0.59 0.05 2.25 7 

DW 0.93 0.05 0.5 8 

DX 1.04 0.06 3.5, 5.0 9, 10 

DY 0.36 0.05 (tomography only)  

EB 5.12 0.11 0.5 5 

EI 5.33 0.12 0.5 8 

Table A.1: List of Samples Used for Experiments Described in This Thesis 
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Appendix B: Table of Variables 

The following table of variables is intended to be a quick reference guide for the 

reader.  Frequently occurring variables and subscripts, those which show up in 

more than one section, and those of importance are listed, in approximate 

alphabetical order. 

Symbol Description 

a average glass bead radius (≈ 64 μm) 

bulk subscript – referring to bulk medium (glass) properties 

d Euclidian dimension 

D fractal dimension 

D subscript – referring to the Debye model 

DB diffusion coefficient (Boltzmann) 

đ fracton dimension 

D density of states 

Δx uncertainty in x 

E subscript – referring to energy velocity 

eff subscript – referring to effective medium properties 

ε box size (for fractal analysis) 

F subscript – referring to fractal 

fc transducer central frequency 

 volume fraction 

g subscript – referring to group velocity 

I subscript – referring to the intermediate frequency regime 

k wave vector (2 /λ) 

l mean free path (l*: transport m.f.p.; ls: scattering m.f.p.) 

l subscript – referring to longitudinal polarization 

λ wavelength 
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m mass 

μ mean number of modes counted 

n number of modes that exist in a small frequency range for one sample 

N number of measurements performed 

NP number of particles in the system 

N ε  number of occupied boxes (for fractal analysis) 

“actual” number of modes (when zero are counted) 

p probability of observing an existing mode 

p subscript – referring to phase velocity 

q percolation probability 

qc percolation threshold 

ρ sample density 

σ standard deviation of number of modes counted 

t subscript – referring to transverse polarization 

 velocity 

V volume 

ξ percolation correlation length 

ξ subscript – referring to effective medium (low-frequency) crossover 

Ξ bulk crossover length 

Ξ subscript – referring to bulk (high-frequency) crossover 

Table B.1: Common Variables and Subscripts Used in This Thesis 

 


