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GENERAL INTRODUCTION

fad

PeCe L. The thesis considers some points in the derivation

of bases for the cubic x%+3Hx+G = 0 and for the quartic
x4+2x5+Qx2+R = 0. The method is an adaptation in particular}
of certain general theorems duve to H. R. Wilson. These

theorems are in preparation for publication)and attack the

‘general problem of deriving bases for algebraic number fields

from an 0pposite viewpoint to the one adopted by the same
author in his paper on "Integers and Bases of a Number
Field."* There the process began with the elements of lowest
degree}and methods were developed permitting gradual progress
to the elements of higher degree. Fractical aprlication

became more complicated the higher the degree of the element.

The later theorems referred to, establish methods for

obtaining the highest degree elements Ffirst and working back

to the elements of lower degree. Where unpublished theorems

are used they are quoted. The treatment falls naturally

into two parts:-
PART 1. The Basis for the Cubic x #3Hx4G = O:

some points in its derivation.

. v
PART 2. The Basis for the Quartic x> +Fxo+Qx +R=0:

some points in its derivation.

* Transactions of American lathematical Society. Vol. XX1X.

Fo. 1. Pp. 111-126




Sec. 2

The form of equation used for the cubic was the usual
x043Hx+G = 0, the second degree term being eliminated.
It is a convenient form in dealing with symmetric functions

of the roots. It seemed desirable, however, because of

“the ideas underlying the later theorems, to manifest certain

relations between fx) and its derivative; hence the form
X4+PX5*QX2+R = 0 was used, thet transformation being

assumed, which eliminates the term of the firgt‘degree-

It'is possible by a linear transformation, to eliminate

211 factors p such that p5/3% and pz/G, from the coefficients

32H and G of XB

+3Hx+G = 0. similarly factors p such that p/F,
p2/2, and p*/R, from the coefficients ¥, Q, R, of
x*4+I%%+qx%+R = 0. When this has been done, the equation is
gsaid to be normal. This normslizing is assumed as done

for the equations we deal with.

Sec. 3. Notation:-

1. The denominator of element of degree i-1 is represented
throughout by Pi"

2. The letter "p" denotes any prime.

3. Ve read p/Q as "p divides Q" and p/Q as "p does not
divide 3",

4. The symbol % means "the greatest integer in

v 1)

5. \We represent the discriminant by AD.
6. Any other notation is used with an obvious meaning in
gach case, or references made to it when it is

introduced.




FART 1.

The basis for the cubic

X5+5HX+G = 0; some points

in its derivation.




IHE CUBIC
The equation is f(x) = xO+3Hx+G
The elements are of the form 1, Eg% and EE;%%!S
The following general relations hold between the denominators
and symmetric functions of the roots. These are based on a
theorem from a paper to be published shortly by N. R. Wilson.
The theorem is: "The symmetric sum of the products of the

squared differences of the roots of f(x) = O, i at a time

* o . . * L ’;2 2 2 H
lu lelSlble QJ I:lfgouooe?io‘

For the cubic P5/3 (x,-x,)? where the latter equals -18K;

| 17%2
o 2P/ Athe discriminant where A= 35(4u%-G2) = 354"
If (EI%) is an integer, then (Ei%)z is also an integer,
» . P
»+ we must have (X*8)% K(xP+bx+c) + integers. The
- ov v p%

coefficients of x must be equal, i.e. p%=KpcV; hence 2&$1h

m

Also since p2V/18H, 2vs$V,, whereV,is the highest power of

p in 18H. PFinally:since I’%P%/A , 2usdv< Vg where \12 is the

highest powér of p ind.
e gather these results

(1)..(s) 2v Su (b) 2v£Vl (¢) 2u+2v$\/2

For H#£ O, the G. C. D. of fix) and f'(x) is SHx+4G.
Repeated division of £(x) by 2Hx+G gives Hx-G as the other

factor. We write SHx+G = q and Hx-G = a.

(2)..Then 2a z 2Hx-2G = q-3G _
(3)..Further 8H%#(x) = 2aq%+84 q-6o' = q®-56q%+5 8 q-c A"



Leta aﬁdﬂ be numbers, X = ___9, and/f ag,
ol u
Then except for p = 2, the conditions that«Xandbbe integers

R

are equivalent. TFor, since p® and 2 are prime we may find

"

k and 1 such that 2k+p¥l = 1

kx +. %wsimple integer.

= 24 (2kep™l)
P
From (3} we have 432 2o A’ ag-2G 4 'a =0

(5)." i.e‘o(g_'_aAd ~2Gﬂa=0
u 2u
b iy
2 2 ' ' _—
or 28 ¢ +340 ag-GA a = 0, giving

(6)... 2. 3 A GA'a
+ 284 G408 =
A 2p 2p~t
From the paper quoted above, we have also that f£(x)

contains a squared factor, mod. p%

which we call g: ¢ is
also a simple factor mod. peW. For the cubic, g must be
linear; so0 that £{x) = 0 mod. p¥, and f'(x) Z 0 mod. pY,
will have s common root. The rise p¥ referred to here is the
last rise. Let this factor be X=Ile Then the theorem,

referred to the cubic case, reads:-

(7)...n5+5Hn+G = 0 mod. peW, %(n #H) = 0 mod. p".

In particular, it is further shown that where a rise ocecurs
’

at the second element, i.e. 3;%; x-n, is a factor of f(x)

mod. poY, of f'{x) mod. pe¥ and of f"(x) mod. p¥: that

we have flx) = 0 mod. p?Y, £'(x) = o mod. po7v, andi%f‘(X) =0

mod. p', with a common solution. Referring to the case in
hand, this reads:-

(8)... n5+3Hn+G 0 mod. pov, Z(n #H) = 0 mod. pRv, 3n, £ 0 mod. p?



(9)..

(10)..

{(11)..

1 when p = 3 and v = 1;

(A1)

.The latter has the solution n,

E = -1 mode. 3, G=(3H+1) = O mod. 27; and requires that

3%/a.

.The solution n, = O requires p%/H and p>/G if p # 3; that
3/H and 3%/G if p = 3, the elements then being 1, %f %;,
unless 3%/H ana 3°/G. | |
;If n, s 0 is a solution for the conditions under (7), then

p/E and p*/G (unless the case comes under the heading(10)).

For the discussion, we will use the following

k

classification, We will let p! and p™ denote the highest

powers of p in E and G respectively. For H # 0, we will

classify:
Case 1. 3i = 2k for p # 2; 3i-2 = 2k for p = 2
Case 2. 3i < 2k for p # 2; 3i-8 £ 2k for p = 2
Case 3 31 > 2k for p # 2; 3i-2 > 2k for p = 2

The transformation x = pkx' will leave these relations

unaltered.




(4) The Cubic: p # 2 and p # 3
We will desl first with the cases where p # 2 and
p # 3. Ve normalize s0 that i and k have their least values
except where 31>2k and k = 2 mod. 3 when we arrange things
s0 that k = i+2.

Case 1o {ieee 31 = 2k) i = k = 0 (since the equation is
, q

normal) and p*[A'. Hence by (5),A = 22% is an integer for

’ b
u = [ﬁg; and also/6= ag,
2 pt v
The element 24 is equivalent to (BHx#G)(Hx=G) ypere u = [:2’5]
P pu-:»z G

Case 2. (i.e. 3i4€2k), if i = 0, k> 0 and .. p%/Aonly if
p=3. Ifi=1, k22 .. by (11) elements are 1, x, EE,

_ , D
Here x® is equivalent to (2Hx+G) (Hx-G) Wwhere u = [5
P pu+2¥ -

Case 3. (i.e. 31)2k), if k 2 0 or k = 1 mod. 3, the
normalized form will have k = 0 or k = 1, and there are

no elements in p. If k =”3m+2, since k = i+2, we have

i =3m=V%. Writing x = p®', we obtain é5+5pmhx'+p?§ =0
where h and g are prime to p; basis 1, %', %2 by (117},
whence the original basis is 1, %m’ %gﬁii' The first is
equivalent to (EHX+G) - {2Hx+G) say. SinceY = 6m+4, the

pém E#+v
latter is equivalent to (2Hx+G) (Hx-G)} yyere u = [%7and

2Y+u 7
v = [« pere '
2.




(B} The Cubic: p = 2

If p = 2, we normalize the equation as before. In

Case 1. (i.e. 3i+2 = 2k) we have ag the only possibility

i=0, k=1, and y)= 1. | .
| , .

Bquation (6) i.c. 8%+ 284 _ Bla - o ig gatisried for

/5::2%-where m =lé§ but not for m = J%ié] (The extra 2

in the denominator of the second term is absorbed by the
q factor of/ganﬁ in the denominator of the third term by G).

Because of the factor 2 in 2Hx+G = q,/gis equivalent to an

x2+bx+e
om=-/
If there is an elenent of maximum degree in 2, let it

element of the form , one under the msximum degree.

pe 210" | (x4d)(xve) et q, = 2H(x+e) and a, = H(x+d). The

om. om
element is 2HZ(x+d)(x+e) j.e. 209.. 7ow if this is an
: om+1 gm+l ,
elsment of the basis, then, since é% ig an integer, we must
o 4
have é% = k(—?&%ﬂ+ integers. The leading coefficients here
2 1

-2
must be equal, i.e. EEE = k(,éé_). Obviously k = 2; and
. om omel

multiplying by 20 we get aq = sqe2®(integers), or

aqsa’qllnod. 21}10oo.aooo.o-o's-ontoo-n(a)

Further, the repeated factor g' is such that q'/f(x) mod. 220
and (q‘)z/f(x),mod. 2% by our general theorem, i.e.

f(x) = a'(q')2+2%(integers).

and 8HOf(x) = 8HZa'(q')2+2m*5(integers).

Now a = Ha' and g, = 2H§' S BE%E(x) = 2@@?+2m+5(integerg)‘

i.e. from (3) 2aq®+34'q-GA = 2%g?+2m*zfintegers).

From this, when 2mpm+3, i.e. m33, we get 2aqg® = qu? mod. 20*3,




Qraziaszdc 4 cccccccc € 8 & 8 ¢ O ‘ceu..wuu’o.ooo‘soﬁwc
11

(fhen m = 1 or 2 we will have special cases). We have,
from (b) and (a)
m+Z

aqg

i1

aq? mod. 2
[

o . m
aq £ aq, mod. 2

ag? = qlaq) = a(qg;2m€integerl)) = qjag)+2m*2(integer2)

+2TF2(

e %%(q~i) =-q(2") (integery) integers).

Since g and g, 6 each contain one 2,we may write

(g-q)= 2®(integery),for 2% is a factor of the
right after division by 2, and . must be of the left and
so of (q-g),since the only 2 in ag, has been removed.

g% q mode 2Metsionenieniictcetneieiasisianeic)
Again,q ;’é‘q mod. 2%* | since in -—g%’;l we could then write
g for q, . | | . |
e may e btake q= q~-2" since multiples of 2P+l can be
discarded from q,-

We already have ag® = qq? mod .20+2

1]

a( q-2")% mog.2™**
z ag®- 2M*lage 2%Pa mod. 2M*%, .\ |

q®( -a-a,) = ~2m*1%g +22ma,mod.2m*2. Since q contains 2

to the first power we may divide through by 22, getting
a=a = 2M(integers) i.e.
a = a}mod;zm
. Y, v Zm
Tow ¢ is a factor of f(x) mod 2 ,and
‘. q is a factor of 2£(x) mod.2 ML ‘
©o g is a factor of 8E%f(x) mod. 280%° 1,6, q-20 is such
a factorfherefore q=2% is & solution of ¢ -320%+3A'g-GA'E 0
plued '

mode also g%/f%(x) mod. 2%,1i.e. q/28"(x) moa. 20+l
H

ie@e q~2m/4H3f'(x) mod. 2W+2,



But 8HO£'(x) = 3Q°°2-6Gqr2+34"+2

Jeogq = Em_is a solution of 5q2~6Gq+5A' Z 0 mod., oI+

We will let A' = n220 (where n is odd). The foregoing

conditions beéOme on substituting, ~i§£;

2PM_3G2R0,3 (ne28M) 2B _g(ne22M) = 0 mog. 2M*3

and
5'22m°6G2mf3(ﬁ‘22m).; 0 mod. 2B*2. Thege are equivalent to

2P 5G-3n20-Gn = 0 mod. 8, and 3°2%-6G+3n°2" = 0 mod. 4.

The latter, by itself, would require only that m»l, since
J

2/G and the other terms are 3°2%(n+l) where n is odd, i.e.
3.2 (some rat. int.).
For m23, the former regquires -3G-Gn = O mod. 8, or -G(n+3)z 0

mode 8, ie.€e n+d = 0 modes 4 (since kX = 1) and nn = 1 mod. 4.

H
O

For m = 2 we would still get the relations 2. 3G+3n2%-Gn =

mod. 8, and 3°20-6G+3n-2™

121

O mod. 4. Let G = 2(8t+l) since
k = 1. We have, from the first,

2232 (2+1)43°0n°22-2(2t+1)n = 0 mod. 8, i.e.

th
(S

2-3(2t+1)+6n~-n(8t+1) = O mode 4, i.c0 -1-6t+6n-2nt-n

mods. 4, i.e. ~1#bn-2t{n+3) = 0 mod. 4.

Since n is 0dd,(n+3) is even . =-l+5n

O mode 4, o« n =1 mod.4
oo for m22 {i.e. g;é) we must have &' of the form ng(4r+l)
or Aof the form 22M+27(4rsl), i.e. 22m€4s-1), for an element

to have the meximumn degree in 2. In such a case, the element

1 1 EE ] N . .
is of the form 2% or 2.9 (since a, = Ha' and H %# O mod. 2)
2l am -

¥ g CF ] -  €)TT H
or 29 (gince a = a mod. 27), or 2de_ (since q, = 2H{q')), or
2111 - 2m+1

. m : .
éé%;%”l where m =[§7. IfAis not of this form, there is no



element of highest degree in 2; and the element is 28

2
(of degree one less than the highest).
Humerical Zxample: ,
‘ 4,,3, ., - - '
x049%+26 = 0; A= 2%-3%72; 3  Ex-G = 3x-26, and

g = 2Hx+G = 6x+26. Our element is a(q-2") _ (3x-26)(6x+22)

which is equivalent to (X"zi(x*l).

HFor m = 1, i.e.g;;2 or 3%, the solution of (7) becomes:

n3-3En-G = 0 mod. 4, and 3 (n2+7)

1]

0 mod. 2 since » = 2 and

. _
w = 1. For n“+H 5 O mod. 2, n, £ 0 is not a solution, since

]

H# 0 mode 2. The solution n, =2%1 is the only possible one,

]

giving I £ -1 mod. 2 (or H = 1 mod. 2)}. n?-zﬁanE 0 mod. 4
gives 1l+3H+4t+2 = O mod. 4 since G is even; i;e‘ 343HZ0 mod.4,
and H = -1 mod. 4. In this event A=z 27(4H5+G2) becomes
27(4{4r-1)5+(4t+2)2), which is divisible by 2%. Hence this
case cannot arise.

In Case 2. (i.e. 3i+2<2k), for a normal equation we

have the possibllities 1 = 0, k21; and 1 = 1, k>»2. Vhen

i=0and k>1,AZ 27(4E%4G6%) £ 0 mod. 4, but = 0 mod. 8




PART 2.
The basis for the Juartic
x4+Px5+%x2+R = Q: some

points in its derivation.




The form of the quartic used was x4+Px5+Qx2+R=O

The elements are of the form 1,x+b, x2+cx+d, X3+ex2ffx+g

- Po Ea P4

Certain relations were found,which exist between the

-

denominators of these elements and symmetric functions

of the roots.The theorem underlying these is from a paper
ia process ef preparation by N.R.Wilson.The statement

of the theorem is

, "The symmetric sum of the products of the squared
differences of the’roots of f(x)=0,i at a time,is divisible
by Eifgyépi.....Pil;

e use this theorem to establish the following:-

{a) PQ/Z (%~ xn)z. We representz(xl-x )2 by 82

For the form of £(x) used,it is found thatAA = 3p°-8q

In general,the method was simply to set up funetlons of
P,q3,R, of appropriate weight,the coefficients of the
possible terms entering then being found.In these functions
P will have welght 1 Q weight 2, R weight 4.

The weight of 4, is 2 & the function is of the form aP+bQ

The equation having roots %1 #*] is x4-2x2+1=0.F0r these

roots the function here is 16; for this equation F=0,
Q® =2, R= 1. Hence b~ -8.

Again ,for roots -1,-1,0,0, the f(x) is x*-2xB4x 2
The function is found as 4;also P=2, Q=1, R=0.

Hence 4=4a-8 and a=3, giving the function as 3P*-82.



(b.) PSP%/ZI(xl-xz)g (Xl—xg)zfxg—xa)z. Wie represent
(xl-xg)g (xl-x5)2 (xg-:{352 by A5 and find A5=2P2Q2—8Q5+52QR-12P23.
The weight of 4, is 6 «» Az = aP?a% 4+ b3 + caR + a2%R + eF Q.

The following numerical work gives the coefficients:
Roots Equétion F Q@ R Fuﬁction
2121 x%-2x%41 = O 0,-2, 1, 0
o 4b 4+ ¢ ® Oevcrcecosnsscseona(l)
£132 x%-5x%44 = 0 0,-5, 4, 360 |
oo =125b =~ 20¢ = B360csccccseoss(2)

A, 1ei, 1-i, xtexOP-3xTek=0 1,-%, %, -3(25)
5 75
And mult. the resulting equation by 8 we get Za-b-2c+4d~4e=-400..(3)
~12iY7F, »14%§, x4+2xB4x7 =120 2, 1,-1, 16
0.0 48+b-0-4d1’16e = 16. * 6 686698 0e (4)
-1, -1, 0, 0 x%e2xdexPz0 2, 1, 0, 0

o

oo 48+D+16€ = Oivevocnnccccasanl
(1} and (2) give b =-8 and ¢ = 32 |
(3) and (4) sinplify to a+2d-2e =-22 and a-d-4de = 14 which give
a-2e¢ = 2 on eliminating 4. |
() becomes a-4e = 2, hence e=0, a=2, d=-12, giving the function

as 2P2Q2-8Q%432qR-1212R.

’ b pRpRre S fe i 12 v )2 12 e 12 v 18
(co) }2P514/2:(X1 %)% (x-%5)° (xy-x,) (x,-%,) (x, x,)
(xﬁ-xé)z. ie represent this byaand findAS=R(16Q4-128Q2R+256R“

+144QPER-4Q3E2 27 PeR,

Let the ro0ts 0F xE4PXOHQET4R = Oeverrrevnnnnennnnnnnns ceeeaa (1),
h be X] X Xz Xy |

el 111

2
Then the roots of Rx%+Qx®+Px+l = 0, & = =
X] ¥g X3 X4



The discriminant of the guartic being of weight 12, the form it

kta"‘-’es‘ forx +Qx2 qg- %20 ...... .,....”...............(2).
2141 143, ., (92 9)3(2)2 Qy(E12 1y 0
is alf ) (= )+b( ) +c( ) (R d(r) (T (F) +f; ?;E (ﬁ)+g(_)
But also thls dlscrlmlnant = (—- ;)2 etc. = (”% 2)2 etec. = 2
X1 %2 X2 X1Xp XX, )

= E% where Ais the discriminant_of xé-Exz-szvR =0

8 = RS (discriminant of (2).)=2Q*R-bR%-cq"R%-ar"Q R-e2*R2-7P2qR% g

But obviously if R = 0 in (1.) we have 2 roots equal to O

«% R must be a factor of the discriminant, . g = 0

and the discriminent of (1.) is a@%R-bR%-cQ?R%-aP?Q’R-er*R®-rp qn”
or R(aQ*-bR%-cq*R-a¥°Q’-eP R-r22QR)

Roots Bquation P Q@ R Disce.

*],#1, x*-2x%41 = 0 0,-2, 1, o0

s 1lb6a+bidc = 0...0,.; ......... N

£1, 41, x%-1 = 0 0, 0,-1, 256

R 1 P e e, e (2)

21,42, x*e5x"44 = 0 0,-5, 4, 5184

o'v 6258+16b+100C ® 1296+ ccccocrcorcoacaonns Cesecesessesaanran s (3)

S1£9/5, 1#i,  xr-x 4xt+42 = 0 -1, 1, 2, 2028

2 .
..0 a+4b+20+d+2e+2f=lOlécoco‘o.--Oooooec0o-oc,tc0....0.000-00»(‘4)

-2,-2, 1#i,  x%42x%-2x%48 = 0 2,-2, 8, | 0
-‘o a+4b+20"2d+88'4:f=0 ooooo 00'00...‘.0..00.0..0.‘.D.O.lo.Q..l(5)

-1;1V5, -1;V§; | xteoxBexBo] = 0 2, 1,-1, ~-240

a.a a+b-0+4d—166-4f=240.o.. ----- .0.0..00lon‘..cton.c.-o...eet(6)
Using (2.), (1.) and (3.) bbcome 16a~4¢c = -256 and 26a-4c = -112.

Eence a = 16, b = 256, and ¢ = ~128.



(4) then becomes d+2e¢+2f = 230, and (5) becomes d-4e+2f = 392,

-

from which e = =27.

[
'
[IsN

(4) is now a+2f = 284, and (6) becomes d-f = -148. Hence 4
and £ = 144, and the discriminant is

R(16Q4+256R2-128Q2R-4?2Q5-2724

R+1442°0R)
A generalized form of the preceding théorem is
"The syﬁmetric sum of the squared differences of the roots
of f(x) = O, i at a time and j at a time, is divisible by
(PiPS...Pi)(PiPS...P?) .
S50 generalized, the theorem may be used to obtain other relations

i

"

analogous to the three preceding. These however, quickly become
complicated,and only the two following were found.

l 2, 2 i} - X 2 2 i
(a). J:E/g_(xl-xz) (XS'X4) . e reprebbntz’.(xl—xg) (x?)—xé) by .
Aé and find 4, = 2Q°-24R. The weight=4; the form is aP*-bQ®-cR-a7Q

Roots : EQuation P Q@ R Function
£1,%i x%-1 = 0 0, 0,-1, -24
.'.-c =—24...I.....0"‘.90...0..0.‘......0.(1)
;g ) | 4 _ 2 . |
# £1,42 X =Bx"+4 =0 0,-5, 4, 146

.‘Q 25b+4c:14:60-...-ooo.oo'-onnauoooo-o-(g)

-1#i/3 125 xe2xex -1 = 0 2, 1,-1, -22
2 2 ‘
) .‘. 16a+‘b-c+4d = -22. s % 0 0 @ . ® @ 0 0 8 % 2 0 D 6 % 6 5 e 8 (3)
. 1 4 "3 2 IS Eali
2, 2,1, -3 x"-9x"#11x°-2 = 0 -9,13,-2, 25
- 52 5
o (Bl)B5,1211-20,89197 25, ..... R ¢
. (“E) a+,Z_b c+=g : (4)

2. Then (3) becomes 4a+d = O and

From (1) ¢ = 24; from (2) b
(4) becomes 8la+22d = O. Hence a = 0 and b = 0, and the function is

2 : ; 4 548,260 1 = 0, having roots 1,1, 1,-1.)
24 +24R (Ché(}ke& for x ZX -Z—-é' - TBE ‘ c;‘ 2 A &



: : ) 4 "
{b) P:/z:€xl-xg)é. de repre$entjffxl-x2) by Aé and find
7 i
By = 3rt420¢5-16R-16270.

The expression,being of weight 4, will have the form

aP44pRecRear®y.
Hoots B Zquation P Q. R Function
41,41 x%-1 = 0 0, 0,-1, 16

oo =G T 16.ceenn cecnesoccos Ceneeean {1)
+1,42 | - x%o5x%44 = 0 0,-5, 4, 436

. 25bde = 436...e.n... e, . (2)
~1iVF, -12(3, x*e2x ex%-1 = 0 2, 1,-1, 20

° “ oo 16a¢b-C#4d = 20.cececerooncen.. (3)
2, 2,1, - x?—§x§+%lx2-z =0 -9,11,-2, 1363
~ 2’8 16
< (81)%a+121,-2c+B8915= 1363. ... ... (4)
T6— 1 8 16

From (1) ¢ = -16, and hence (2) gives b = 20. ZEquation (3) then
becomes 4a+d = -4, and (4) becomes 8la+22d = -109.
From the latter two a = 3, d = ~16; hence the function is-
52%4202°-16R-162°4.

4 5.3, 25 2 1

. . 9. -t = s y 191’-'-;_1_ N
(Checked with equaﬁlon XK 45X -3z = 0, having roots 1,z0%0-x)

These forms are gathered on the following page for reference.




GENERAL RELATIONS

These relations exist between the denominstors of the

3 2
elements of the basis for the field defined by x*+Fx +@x +R=0

and symmetric functions of the roots.

Ey/D,  where &= 327-8Q

3 2
PEEE/A, wnere Dy 2p2Q-8q +32qR-122"R

2 2 2

4 2 2 32 4
EpF E /A where &= R(16Q -128Q R+256R +144Q223-4Q P -27F R)

'
P%/Aé whereA = 20%424R
" 2
Pg/A; where L3 = 3E44200%-16R-16F"Q




The first element in all bases of the type we are considering,is 1.
We suggest first the general question concerning the conditions
which would govern a rise at the second element.

Let us suppose then, an integer of the form « This must

X8
v’
4

satisfy an irreducible equation of the type y +by5

+eyS+dyt+e=0,
where b,c,d,e, are integers.If y were defined by an equation of
lower degree,it would follow quickly that x could be so definéd;
this would contradict x%+Px3+Qx°+R=0 as being irreducible.
Substituting for y in terms of x, and simplifying, we get a
function of x of degree 4 equated to zero. This must equal f(x)
identically, i. e.

£lx) = x%4Px"+Qx%4R = (x-a)4+pwb(x-a)8+pzwc(x-a)2+pzwd(x-a)+p4we
Bxpanding f(x) by Taylor's Theorem, we have

£(x) = flati=a) = f(a)nx-ayfwa)#—?‘-‘_‘é—%——i (a)+ (7_;’ Lx=a)"e™(a) ete.
Equating coefficients, it follows that-%glﬁl =pWb, f[éa) = pR¥e,
£1(a) = p?¥d, and £(a) = p*¥e. Hence ﬁ%éél £ 0 mod. p%,

fléa) 0 mod. p=¥, f£'(a) £ 0 mod. 2%, £(a) = 0 mod. p4w.

For the particular case we are considering, and taking the

1)

minimum w = 1, we must have a8t least
2%472%40a%4R = 0 mod. pEeeeeerinn (1)
0 mod. p5;...,.....(2)

OEX}O&Q E.EQOOGQQOOOQ(:%)

42343Pa”4+2qa

LHE

6a2f3Pa+Q

48+P Omodo Poa'sonoo‘.a'o(é)




We subdivide:- 1. p# 2; 2. p = 2.

Case 1. p # 2
(i) & = 0 mod. p. From (4) we get quickly that P/P;

hence from (3) that p2/Q; hence from (1) that
p%/R. These together contradict the normalify of
the field equation, .. this case cannot arise.

(ii) a %0 mod. p. e may divide (2) by "a" without
disturbing the congruence since a # O mod. p. This
gives 4&2+$Pa+2Q 2 0mode pOeeiiunnnn... cevacueae (5)
Holtiplying (5) by 3 and (3) by 2, and subtfaoting,

gives 3FPa+4Q = 0 mod .« pg

at least. IMMultiplying (4)
by"a’, and subtracting from (5) gives 2Pa+2Q 20 mod. p.
at least. Combining these, we have af = 0 mod. p;
whence p/a or p/P. If p/a we have a contradiction
to our case; if p/P then (4) requires p/a which is

the same contradiction.

(1) & = 0 mod. 2. From (4) 2/F; hence from (3) 22/Q;
hence from (1), 24/R. This case cannot arise since
the field equation is normal.

(ii) a % 0 mod. 2.i.e. the integer iS_Egi .
For a = 1 and p=2 exactly (i.e. no higher power

- of 2) the conditions become

1+E+Q+R £ 0 mod. 2%..........(1)
4+BP42Q 2 0 mode 20..i..iun..(2)
6+#3F+4Q = 0 mod. 22%..........(3)
44F 2 0 mods Seeinveenne..(4)



From (4) 2/F; hence by (3) 2/Q; hence by (2) 28/T.

Going back to (3) , knowing 22/F, it follows 22)g

gince 22f6 Jo @ is an 0dd multiple of 2. Let § = 4n+2.

It follows from (2) that 4+3E+8n+d = O mod. 2°, i.e, 2°/P.

The necessary and sufficient conditions under this heading

are F

O mod. 8, @ = 2 mod. 4, 1+F+Q+R = 0 mod. 16.

Ve aprend an example. Let P =8, @ = 2, R = 21,
Then (1) becomes 32, (2) becomes 32, (3) becomes 32, ana
(4) becomes 12. Our equation is

x-1y4, 12 X =13 52 x-1 2 52 x- 32 .
=0

using b = %%L%% etc. from the general relations of this
type established._(§%l) is obviously an integer here since
all the coefficients are integers. Thq equation simrlifies
to x*+8x%+2x%421 = 0.

(Note:- It still remains a question whethér this field
equation in Which(zéi) is an integer, is irreducible.
rossible roots are+ 3,17, which are easily disproved. It
wag the need for an irreducible equation which prompted'
R=21, instead of the more obvious 5. Taking RZI5 gives
rise to 8 reducible equationl}.

The conditions for E%l being an integer are found to be

2
8/F, and 1-P+Q#R = O mod. 16. This last is equivalent

the same as for Xzl, g is sgain an odd multiple of 2,

to 1+F+Q+R~2F = O mod. 16, and since 16/2F we get

1l+E+Q+R = 0 mod. 16 as before.




#de have shown the possibility of integers of the form

x££l
2

Let the rise be 2U

« The ouestion of a higner initial rise in 2 remains,
q

(i)s as0 mod. 2 contradicts normality as before.

(ii). a#0 mod. 2. The general conditions to be satisfied are:

34+Pa‘+Qaé+R. 0 mod. 24 cesenceeaall)

5 2

H

48°+3%a%420a £ O mod. 2%, ........(2)
6a2+5Pa+Q = 0 mod. 2%, .. .. ... (3)

4a+F = O mod. 8% ... .......(4)
From (4) 2%/P; hence from (3) 2/Q but 2°/0 i.e. Q is of

form 4n+2. Substituting this in (2) we get

[L}]

0 mod. 294
3u

4a5+5?a2+(8n+4}a

ieo. 4a(ag+(2n+1))+5Pag 0 mod. 2

»

Bﬁt "a" being odd, af+2n+l is even, and .. 8/P.

Further, reasoning as before, we get Paz0 mod. 29,
and "a" being od@,zu/Pa But the condition (4), i.e.
4a+P = O mod. 2% will hold for no khigher value of u
than'u = 2. For since 8/F, it would necessarily follow
that 8/4a for u> 3 which contradicts "a" being odd. Hence
we have shown the only possible rise at the second element
occurs when p = 2, and the maximum rise is u = 2. The

. . . +
integer is then of the form Xél or XZEanA the necessary

and sufficient conditions are (1), (2), (3), (4), above
when u = 2.

The following is an example. Let the integer be (gil),



&

Since 8/F, we take F = 8.

Then {4} becomes 12. Trom (3)
we must have 30 - Q = O mod. 16,band from (2)

28-2Q = O mod. 64, i.e. @ = 2 mods 16, and § =-14 mod. 32.
Taking 4 = -14 satisfies both. From (1) R = 5 mod. 256.

We take R = B1l7. The field equation is now _
(Eil)4+ %E{X~1)3+lggx*1)2 %%2 0, in which (X1) is obviously
an integer. The eguation simplifies to x%48x3-14%% +517 = C.
Fossible roots aretll, 47, which are readily disproved

.~ the equation is irredﬁcible. Aé'= 4%4(50) and hence

Pg/ﬂé as regquired. The terms 2OQ2~16R:M1£% equal 44(1?);
the other terms contain 4% at signt; .. P5/A) also as
required.

We do not carry this case any further, but go oun to
outline the other cases. The case p = 2 appears as a
special case throughout, and would have to be considered
separately. 4ll others have rises not sooner than at the
third element. In the general theorems cited, it is
established that f{x) contains a repeated factor mod. p¥,
which is also a simple factor mod. p¥, where p" is the last
rise. In the quartic this repeated factor may be guadrstic
or linear. Hence we make this natural division:-

(A) DRepeated factor gquadratic.

(B) Repe=ted factor linear.



{A.) REPEATED FACTOR QUADRATIC

Under this heading, fix) = X4+PX5+QX2+B, and
£'(x) = 4x°+3Px%+2Qx, have a common quadratic factor.

4xO+3Px2+20x | 4xF+4PXO+40xZ44R | x4F

axb43Px3420x°

PxO+20x 4R
4PxO48Qx°+16R
4Px5+522x2f2FQX

x* (8-31° ) ~2TQx+16R

The common quadratic must be XZ(BQ“5§2)~2PQX+16R.
£ {x) = X(4x2+32x+2Q) &« the repeated factor must be of
the form (1)-x(§+Kf;or must be (2) 4a®+3Px+24.

Case 1. le are considering a factor of the form x(x+K), which
divides f(x) mod.‘pgu and fx) mod. p%, p # 2. Since
x(x+K)/£(x) mod. pgu, x/£(x) mod..pzu

(X(X+K)§2 5 x4+2Kx3+K?x2. Comparing this with f(x), it

’ and % R =1 0 mod. :pzue

follows that P £ 2K mod. p%, and that § = K° mod. p. From
these we get 52 = 4Q mod. pu. '

How Png/zﬁz = 2E2Q2~8Q5+52QR-1292R, and since
R = 0 mod. pZu and ¥y, = 1, we must have P?/EQz(P2-4Q).
We separate (i) p/P, (ii) p)F |
(i) p/F. Since i = 4Q mod. p%, p#e, pg/Q, and <% u
cannot be22. For then p/P, pz/Q, and p4/R, contradicting -

normelitye. The maximum u is % u = l.



Because p/F and 2K = P mod. p, then K £ 0 mod. p, and

. 3;2 '
the element is 5
' 2
Wie test this by substituting from y = % in £(x),
getting piyde (2-F)p3y2s(2Req% ) pyPe2aRpy+RE = O.

Since p4diviaes all coefficients, y answers the conditions
for an integer.

The question of rise in going to the last element will

be discussed later.
(ii) p)®P; and pc%/R.

Since P2 = 4Q mod. p% and p}¥, then p)q, and %
P%/ZQg(Pg-éQ) becomes qu /P2-4Q. An examination of A
gives p4uﬁa if pzu/P2-4Q, hence this condition is satisfied.
Using P? z 49 mod. pe% e may write

4f(x) 5 4x+4PxB4P%%%44R = 0 mod. p2u

: 2
i.e. (2xZ+Ex)®44R = a simple integer

tele (§§_%§§)2+ éga Z a simple integer.

Therefore y = Eﬁ@%ifl ‘is an integer, Since_égu is a
P p
rational integer.

The necessary and sufficient conditions are

| PXP. P}Q, Pgu/R, P254Q mods pzu.

Humerical examples:- .
2 2
Case 1. (i). Integer is % : /P, p/Q, p%/R. y = 18
an integer in the field defined by x4+?x5+7x2449 = 0,

~3

the equation in y being yé-5y5¢5y2+2y+l = 0. It is easily

shown y = %2 is not an integer in this field.



Case 1. (1i). The integer is X(BX#E); pye, pXq, p2u/m,
.

H
[}
Cr

- A1 - ‘?h - - '
= 4dmode p. Takeu =1, p =5, R=25, ¥ =1, Q

" The field equation is xtpxd-6x2 §i§X+1).

2,12 2 5.
4f(x) = 4X4+4X3+X2—25X +100 = 0, &% (ZXZEX) - 25x651“0 =0

ie.e. yg-x2+4 = 0,the necessary equation for y.

+25 = 0, and y =

Case 2. When x is not a factor of the repeated factor q.

4

Then qodx®+3Px+2Q,and q2= 16x+24Px%4(9P2416Q)x°+12P0x+4Q°

and since g~/f{x) mod. p%, we must have: 12FQ = 0 mod. pY;

2 = 4R mod. p¥ since we are excluding

p = 2 9P2+16Q = 166 mod. pu or 932 2 0 mods pﬁ; 24P z 16P

49% z 16R mod. p% or «

or 8P £ 0, or P = O mod. p%.

P5P2/27%02-80%+520Re12F%R = B, i.e. p2%/80 (4R-0"

We separate (i) p/Q, (ii) p/Q

J.

(i) p/Q. The highest power of p in 4 is the first. For
o2

F 2 0 mod. pu, contradicts the normality of f£{x).

4x2+3Ex420 4% +4PxC+44x744R _xBeExe(8Q-3E7)

4

= 4R mod. pY, and if pg/Q then p4/R which combined with

+3Ex+20%°
2

4x

PxO+2ux +4R

4Px2+80x%  +16R

APxO+3D5%2

+2PQx
x2(8Q-3P%) ~2PQx+16R

4x°(8Q+3P%) -8PQx+64R
4% (8432 ) +3(80-3P%)x+2Q(8Q~32)

(923-32P0 ) x+64R-1605 467



o s . u - C .
This remainder must be = 0 mod. pg « The coefficient of

2u .

" x yields FQ = O mod. D The absolute term can be written

16(4R-2%)-6F%Q, which again gives 4R = Q% mod. p2%. e

. 9 ~ o F

. L " St oo oW L l"C)II{X)
~wish to establish %u ag an integer. We have ggu "*EEE—

xgiizPQx+4(Q2e4R) = 8px> _ simple integers
P2u qu '

2.2
Egﬁfgaj- éf_zgﬁéfg + Slmnle integers = -~43~)+ simple int.
P P b P p?
Y €Qu )2 ZFX(Q—) - 0 = simple integers . 3— is an
p%
1nuevsr since it satlsfles the requisite tvpe of equation.

3 2

8Px“+qP

The necessary and sufficient conditions are that p/Q
if u22 _
but no higher power of p divides &; p5/K; and u is the
A

greatest such that pcU/EQ and pgu/Qz-éﬁ

2
*5}X*2Q is an integer where u

(ii) If pla then p)R sna 22
is the greatest such that pzu/P and pzu/Qz-éR.

Numerical Examples:- ‘
Q@ge)%. (i). p/P, p/Q.but no higher power of p than the
1T u~z :
first, p2/R, p°%/PQ, p%/Q®-4R. We take p = 7, u = 2, Q = 1l4.
A

Then F = 7% and R = 49. The irreducible field equation is

2 ) ¢ ) 2 .F’Z
X4+73X3+14X2+49 = 0. Then £X *SPX*ZQ becomes 4x +§81 r2*14,
D ' ,
The centre term may be droppred. Iultiplying by 37, subtracting
123%2 which is an integer, and reducing 1036 by 49, we get
_ y-='x2+7
" Hence y is an integer.

[y

. Substituting x°= 49y-7.in f£(x) we get y2e7xy-x = O.






