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ABSTRACT. Longitudinal dispersion of solute in a channel bounded by porous layers
is studied using the analysis of Taylor [4] with BJ slip condition. The results of
the present analysis are compared with those of Fung and Tang [2] obtained from using
the no-slip condition. It is found that the effect of slip is significant only in
the case when the membrane is permeable to solvent but not to the tracer. However,
in the case when the membrane is permeable to both the tracer and the solvent, we

find that our results coincide with those of Fung and Tang [2].
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1. INTRODUCTION

Flow through and past porous media has attracted considerable interest in
recent years because of its several important applications [1], particularly in
biomechanics [2]. The study of mass transfer in the lung, in particular in the
capillary blood vessels of the lung, is one of the important problems in biomechanics.
These small blood vessels, enclosed in a thin layer of tissues which separate the
blood from the air, may be described as sheets bounded by porous layers [2]. It is
common to assume that blood vessels are circular cylindrical tubes, but in the lung
this assumption may not apply at the alveolar level [2].

This problem was investigated by Fung and Tang [2] using the no-slip boundary
condition and a proper matching condition at the interface separating the flow in the
channel and the porous media. Now it is well known that this no-slip condition is no
longer valid at the mermeable surface [3]. Beavers and Joseph [3] (hereafter called
BJ) have postulated the existence of slip at the interface and they have confirmed it
experimentally. Therefore, the chief aim of the present paper is to extend the work

of [2] to include the BJ condition [3] at the interface. In other words, we study
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the longitudinal dispersion of a tracer in a configuration shown in Fig. 1 using the
BJ slip condition. This gives a technique to measure the blood volume and the volume
of interstitial water in the lung tissue. For this we first calculate the velocity
distribution and then the concentration distribution taking into account both
convection and diffusion. This leads to the calculation of the effective dispersion
coefficient which is useful in determining the flow characteristics under abnormality
conditions.
2. FORMULATION OF THE PROBLEM

The physical configuration and the co-ordinate'system chosen are shown in Fig. 1.
The problem considered here is restricted to two-dimensional flow so that the
physical quantities are independent of y. The flow in the channel and in the
external porous space is assumed to be homogeneous, incompressible and Newtonian and
coupled through the boundary conditions.

The flow in porous space is assumed to be governed by Darcy's law

T R s 2.1
Y1 p X ’ 1 p 3z :
where the subscript 1 refers to the porous layer, uy and w, are the velocities
Ko

in x and 2z directions respectively, p1 is the hydrostatic pressure, k = E_
is Darcy's constant, K is the permeability, p is the viscosity and p 1is the
density of the fluid. The boundary conditions are [2]:

u, =0 at x = 0,L (2.2a)

<
1]

-+
1 0 at z = t(2+6) (2.2b)

(2.3)

(SYf-4

Wy = g [(pz-pl) - c(nz-—nl)] at z = *

where Py s P, are the hydrostatic pressures in the porous space and the channel
respectively, "1 and m, are the corresponding osmotic pressures, 0 is the
reflection coefficient of the wall, h 1is the thickness of the channel, and & is
the thickness of the porous layer. Equation (2.3) is the well-known Starling's
hypothesis commonly accepted in physiology. If the porosity of the porous layer is
assumed to be the same at all times, the equation of continuity is of the form

ow

du
1 1 _
=t -0 2.4

The flow in the channel is governed by

ap op
2 _ 2 2 _ 2
- M v Uy s g =M v v, (2.5)
with the boundary conditions
3 z2
uy =5 U4 ;7) > W, =0 at x =0,L (2.6)
du
2 _«a - - _h 7
= K (uBl Ql) » Wy =wpat z=-3 (2.7a)
du
2 _ _ o - = .
= = e (uB2 QZ) > Wy =W atz + 7 - (2.7b)
Here the subscript 2 refers to physical quantites in the channel, U is the mean
velocity of flow in the channel as given by [2], Up1 and ug, are the slip
o h h
locit = -, 5 L i
veloc 1e? at z 209 Ql and Q2 are - 3 5& » @ 1is the slip parameter.
The equation of continuity is the same as (2.4) with uy replaced by u
9
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3. SOLUTIONS OF FLOW EQUATIONS

(a) Solutions in porous space

Equations (2.1)-(2.4), using the stream functions defined by

Wy P
o1 -1
Y17 7% 0 V1T G-
take the form
2 _ - -
vp, =03 vy, = 0. (3.2)
The solutions of (3.2) for z 2 0 using the conditions (2.2a) and (2.2b) are
_ @ C . h _ .
wl(x,z) = nil a sin (?nx)31nh Xn [(Z-FG) z]/51nhkn6 (3.3)
- Pay h
pl(x,z) = nfl S cos)\nx cosh)\n[ (§+ §) -z]/slnhAn6+bl (3.4)

where An = %1 and b1 is an integration constant which is obtained later using
the matching condition (2.3) at z = % % . For z <0, wl and p, are mirror
images of (3.3) and (3.4).

(b) Solutions in the channel

The continuity equation is satisfied if we introduce the stream function

wz as in (3.1) with the subscript changed. Then (3.2) becomes
2 2 4 4 4

Ealpe, =0, Egro Ll <o (3-3)

9x 9z 9x 91" 9z 3z
To solve these equations, we let

- .. (0) ! _
uy = u, + uy 5 W, L (3.6)
0 _3 2. '
where u, = E~U[l-—4 —5]. 3 ouy and w, are perturbations due to permeability of
Al

the wall. Then the solution of the perturbed stream function wz , with the

condition
1 ]
u, = o, W, = 0 at x = 0,L (3.7)
1 1
with (2.7a) and (2.7b), replacing u, by u, and v, by w, is
v, = £ (A sink x sinh A_z +C_ 22 sinh\_x cosh)_z) (3.8)
2 n=1 n n n n h n n
where
A% h h cothAHG
C =-[AA +—— A tanhA S+a A ———]
n n n ag n n 2 nn h
cosh) +
n2
A_h
2 h, n 4 h, -1
X [F“’ >\n tanhkn 2+F ()‘n+ﬁ tanh)\n 2)] s (3.9)
A_h
a
n h n h } -1
= —_ -4 — + a
A 0 [l+)\nh{2+)\n h tanh)\n 2+ a0 (/\nh 4tanh)\n 2) coth/\n S
cosh(\x =)
n 2
A h
h by, 'n h }—1
x [tanh)n 7 {2+)\nh t:anh()\n 2)+ao (xnh+4 tanh)\nz)
A2 n2

x{x h+-2— ranh(A h)}]'1 , (3.10)
n a0 n 2
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~h L%.-1/2
¢ L(u<)
A}
and )} = %E-. Here we have relaxed the condition Wy =W, = 0 at x =0, L except
n ’

for symmetry with respect to z.

From (3.5) using (3.8), we obtain the pressure distribution

_ 120 ® 4 1
Py = M {— ;5— X + nil h cnxn cosknx coshknz} + b2 (3 )

where b2 is again an integration constant to be determined using the matching
condition (2.3).

A substitution into equation (2.3) yields,

¥ ai cosh x= % LS cosh_ x [up 4 C_X_ coshx h_ 323 coth)x &7
nn n [ n h n'n n 2 k n
n=1 n=1
K _p -y 2Ly _K - 3.12
+ o (b, bl U hz x) 0 0(ﬂ2 nl). ( )

On representing x as a Fourier series in cosknx and assuming that the variation
of the osmotic pressures Ty and ™ due to concentration distribution is very

small (to be discussed later), we can solve (3.12) for a, (n=1,2...) to obtain

uKA Az h2 h h
a, = 1-¢-n" %g %E'% %Z-[A hpn {Anh+ o tanh)n 3 + A h tanhxn E—cothxnh}
n
h Anh h Xi h2
x {tan)n % (2 +An h tanh)\n §+E— {th+l¢ tanhxn 5} ) - (\nh+
+ Kot s #2070, (3.13)
k n n

Note that a =0 if n is an even number this condition together with the

expressions for P, and P, lead to the following interpretations:

b1 = pl(x,z) evaluated at x = % (3.14a)
b, = p,(x,2z) +u sLy evaluated at x = L (3.14b)

2 2 h2 2

- _ - L
o(wz-nl) —(p2 pl) evaluated at x 7 (3.14¢)

Since the filtration flow in the porous walls and the perturbation flow in the
channel are determined by the coefficients a s it would be interesting to see how
a, depends on the geometrical and physical parameters of our model.

4. DISPERSION OF TRACER PARTICLES

We are now concerned with the Taylor's [4] dispersion of tracer particles in
the capillary blood vessels of the lung. These vessels may be described as sheets
bounded by porous layers. Here we are interested in the case when the channel walls
are semipermeable and the assumptions employed by [2] are also true in the present
paper.

When the tracer cloud reaches the alveolar sheet, its dispersion is subjected
to further disturbance by the porous wall. We are interested in the overall
effect of this disturbance, because we can measure the dispersion only in the vein,

after the tracer cloud leaves the alveolar sheet. The required concentration
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distribution is obtained from

dc dc dc _ 2
etV T PV .1

with
u= @/DUL-r(z/m)? , w=0, (4.2)

where U 1is the mean velocity of flow.

To solve this equation we shall introduce the following approximation. Since
the solute flow in the alveolar sheet is quasi-steady, it seems reasonable that the
overall effect of convection can be obtained by replacing the velocities in the convective
term in (4.1) by the average of u(x,z,t) and w(x,z,t) over x from 0O to L.
This transforms (4.1) to
a2

e =3, dc _afe 3%
3t+u 3x+s Py D(' 2+ 2) . (4.3)
9x 3z
Following Taylor's analysis, we obtain
@Gty +u e+ ')=Dﬁ
5c 3 c+c 822 (4.4)

in which ¢ = x-ﬁt , ¢ is the value of c(x,z,t) on the centre line z =0
(hence independent of z), c¢' 1is the deviation from € and u' 1is the

deviation of u from mean velocity u. The boundary conditions are c¢' = 0 when
z =0 and 3c'/3z = 0 at the impermeable boundary. Following Taylor [4], we
assume that ¢ is a function only of & and c¢' a function only of 2z, and then

integrating (4.4), we obtain

' = _
c f(z) e (4.5)
where
z 2z
£(z) = | ( -Ilsu'dz)dz . (4.6)
0 zq
Here, zO = % + 8§ 1if the membrane is permeable to both the tracer and the solvent
only, whereas zg = 5 if the membrane is permeable to solvent only. u is the
.

- ac
average of wu(z,t) over 0 <z < Zg 2 35 " 0 at z = zq-
The rate at which mass is transported through a cross section moving at the

mean velocity is M = Au'c' , where A 1is the cross-sectional area gnd the overbar
dc
dg
that the dispersion follows Fick's law, with a coefficient of apparent difussivity

indicates a cross-sectional mean. Equation (4.5) yields M = Au'f , which shows

*
D given by,

D =-u'f, 4.7)
The mean concentration is then governed by the equation
- 2_
* 3
%= p* <. (4.8)
9g

We can now evaluate the details according to the nature of the tracer relative to the
membrane separating the channel and the porous space.

CASE 1: The membrane is permeable to both the tracer and the solvent

In this case the velocity distribution can be obtained from (3.8) as

=- F (O A sinA_ x coshhA z+) C_ 2% sin\_x sinhA z+
=1 n n n n n nh n n

2 .
5 € sinmd x coshknz). (4.9)
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Now integrating (4.9) w.r.t. x and dividing by L using (3.6), we get

3 =§U(1—4z—2)+l £ [(-1H"-1] 2%
u, =3 h2 A (-1)" - (An cosX z +i=— coshi z
n=1 n
2z, .
+Cn n Slnh)\nz)} for 0 < 2z < % f (4.10)

Equation (4.10) gives the average velocity distribution in the channel space.
Similarly we obtain the average velocity distribution in the porous space from

(3.1) and (3.3) as

R N S n h .
u =1 { nzl t-n"-11 a COShAn[C§+5)-z]/s1nhxn6}
h h
for z7szso+ § . (4.11)
By further integration of 52 from 0 to % and Gl from % to %»+ § , summing
and dividing by % + 6 , we obtain
- A h
a = -L—{l v+ §F [(-1)"-11(-a /A_+ (A /A )sinh ——
h 2 L n n n' 'n 2
(§+5) n=1
+ (C_/x h(A E)]} (4.12)
( n n) cos n 2 ' *
Since & << h , the deviation u' 1is approximately
R L ST CR T e I (4.13)
Now the coefficient of apparent diffusivity, from (4.6), (4.7) and (4.13) is
=2 2
p* = u (h+28)" (4.14)

210 D

The effect of the slip is reflected in u .
From (4.12), we have

a(h+28) - Uh =

[l 1)

° n,r2n An . h Cn h
nil [1-(-1) ][KEH-X; 51nh(xn E) -X;-cosh(xn 5)]-
(4.15)
The values of (4.15) were also evaluated for different physiological parameters.
They all turned out to be nearly zero for higher values of L2p/uk and Lp/pK. 1In
other words :(h'FZG) - Uh =0 for sz/uk =5X 109 and Lp/uK = 5 X 106. This
indicates that the apparent diffusivity for a channel with impermeable wall is about
the same as that of a channel with walls permeable to both the tracer and the

solvent.

CASE 2: The membrane is permeable to the solvent but not to the tracer

In this case, only flow in the channel needs to be considered. u = 62 is
given by

2 ® n An h Cn h
= U+ n r [(-1) -l][;— sinh (An E) + ;;—cosh(ln 3)].

n=1 n

e

If we assume the approximation

W -0 -u :%ﬁ [1-1222/0%7,

then the coefficient of apparent diffusivity is
2h2
10D °

p* = U

[
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The values of D*/(thz/D) are tabulated in Table 1 for different values of
sz/uk and Lp/uK. It is seen from the Table 1, that there is significant effect
of slip on co-efficient of apparent diffusivity for small values of sz/uk , Lo/uK
and for large values of &/L.
5. DISCUSSION ) W) ) Lpl N '

The results of v, =T and P, = T at z = 5 are plotted in figs. (2) and
(3) for several specific values of the dimensionless parameters. From these figures
it is observed that the effect of slip is significant only when the parameters
sz/uk and Lp/uK are small and its effect is negligible for their large values.

The analytical solution of the co-efficient of apparent diffusivity of
longitudinal dispersion of a tracer in a channel bounded by porous layers is obtained
for the two cases and the results are given Table 1. This table pertains to the
case when the membrane is permeable to the solvent but not to the tracer, where the
co-efficient of apparent diffusivity is D* = zth/ZIOD. From this it is clear
that D*/(hZUZ/D) decreases with increase in §&/L and increases with an increase in
Lo/uK. In the case when the membrane is permeable to both the tracer and the solvent,
we find the effect of slip is not so significant and hence they are not reported
here. This may be due to the fact that the BJ condition [3] is applicable to a
situation where the thickness of the membrane is large compared to the width of
flow in the channel. In many bio-mechanical problems, including the one we have
discussed here, this condition may not be valid. In that case the BJ condition has

to be altered and the work in this direction is under progress.

14

Porous space Permeable wall

Channel space h/2
N\
V/////////////////////////////////////)’////A
e

Impermeable . I Impermeable
wall U L wall

Permeable wall

Figure | Schematic drawing of the idealized system Fluid flows n
the channel between z=h/2 and z=h/2 n the
region O sXSL
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the parameter L28/yk
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TABLE 1: Values of D*/(thz/D), when the membrane is permeable
to the solvent but not to the tracer.

h/L = 0.02, a = 0.1
2o/uk = 5x10%,  Lo/uk = 5x10°

§/L values with values without
slip condition slip condition

0.001 0.4241695x10 2 0.4244318x10™2
0.002 0.3763006x10™2 0.3814161x10™2
0.003 0.3321234x1072 0.3450856x10 2
0.004 0.2813788x10 2 0.3140601x10™ 2
0.005 0.2538809x10™ 2 0.2873280x10 2
0.006 0.2184673x102 0.2641097x10™2
0.007 0.1879983x10™2 0.2437985x10 2
0.008 0.1593492x1072 0.2259212x10™ 2
0.009 0.1334070x102 0.2100999x10™2
0.010 0.1100651x10™2 0.1960175x10 2

h/L = 0.02, a = 0.1
L%o/uk = 5x10%,  Lo/uk = sx10°

§/L values with values without
slip condition slip condition

0.001 0.4530775x10"2 0.4530103x10™2
0.002 0.4454217x10™2 0.4458083x10 2
0.003 0.4415753x1072 0.4422741x1072
0.004 0.4392608x10™ 2 0.4401736x102
0.005 0.4377157x10"2 0.4387822x102
0.006 0.4366102x1072 0.4377915x102
0.007 0.4357804x102 0.4370514x1072
0.008 0.4351347x1072 0.4364766x102
0.009 0.4346178x102 0.4360187x102
0.010 0.4341946x102 0.4356429x10 2
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