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Abstract

A Basis for a Free Malcev Algebra

by Patrick Anderson Macdonald

When studying algebraic systems one is often faced with thé

problem of obtaining a basis for the system. This thesis considers

an approach to solving this problem for free non-associative
algebras, and examines the process in detail for free Malcev
algebras. A brief description is given of a computer program

which may be used to assist in finding a basis for such algebras. %
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A Basis

for
a Free Malcev Algebra

1. Introduction

In (3) a method is given for obtaining a basis of a free Lie
ring. It is our purpose to examine the procedure and the possibility
of extending it to any free non-associative algebra, with particular

reference to Malcev algebras.

2. Preliminaries

2.1 - A non—associative algebra A over a commutative ring R with
unit element is a left R-module such that for each pair (x,y) x,y € A
there is defined a product xy ¢ A for which

2,2 7 (xl + xz)y =Xy Ry

B CREARE R |

2.3 Alxy) = (ax)y = x(Ay) A€.R

2. - A non-associative algebra ié a Lie algebra if“the,multip-
~ lication satisfies
2.5 x =0
2.6 | x(yz) + y(azx) + a(xy) = 0 -
Notice that from (2.5) we obtain
(x+y)°2=x®+xy+yx+y2=xy+yx=0 or
2.7 Xy = -yX,.
Conversely, setting x = y in (2.7) yields 2x° = O so that if the

characteristic is not 2, then (2.5) and (2.7) are equivalent.




2.8 - A non-associative algebra is Malcev (L) if

2,9 .. xx=0

2,10 (xz)(yw) + x((yz)w) + y({zw)x)

+ 2((wx)y) + wl(xy)z) = 0

2,11 - Le£ X be any unstructured set. A free algebra generated
by X is a pair (A,:“L) whére A is an algebra and 1:X - A is a mapping
such that, given any algebra U and any mapping k:X —>U, there exists a
unique homomorphism k':A —U for which k = -ik'

i.e.: i
X — A

k\ } k!
N1 v

‘ U commutes.
2.12 ~ A magma (5) is a set M together with amap M x M —>M

denoted (x,y) —> xy.

2.13 - Let X be any set, and define inductively a family of sets

X, (n 2 1) as follows

a) X =X

= ( e D> .
b) Xn .(pr Xq) p+q=n 32 2

I

Set My = U Xy, and define M_x M —> M by: -

(xp,xq) — (xp

Note (xp,%q) € Xpug

Then Mx is a magma called the free magma on X.

I X eX..
,xq) or xpé pand Xq Xq

2.1y - If N is any magma and £:¥ — N is any mep, then there
exists a unique magma h.omomorphism F:Mx———> N which extends f.
Proof - This follows immediately by defining F inductively as

F(u,v) = F{u)F(v) T u,vE Xp x Xq




2.15 -~ An element w of a free magnma Mx is called a non-

associative word on X. The length, 1(w), of w is the unique n
such that wé X,.

2.16 - Let R be a commutative ring with unit, and A_ the algebra |
over R of a free magma Mk.' A, is called a free algebra on X.

An element a € A, 1s a finite sun & Ayn méM, A € R.
The rultiplication in A, extends the multiplication in M.

2.17 - Let B be an algebra and £:X — B a map. Then there
exists a unique algebra homomorphism F:AX——¢>B which prolongs f.
Proof - By (2.1l4), f can be extended to a unique magma homomorphism
ft:, — B (where B is viewed as a magma under multiplication). By
linearity this map extends to a linear map F:Ax;~¢»B. Now F is an
algebra hompmorphism, and since X genefates Ay, 1t is unique.

2.18 - Let T be the two sided ideal of A, generated by all elem-
ents of the form aa and (a,b,c) a,b,c €Ay, : -

where (a,b,c) = a(be) + blca) + c(ab) | -

The quotient algebra A./T is called the free Lie algebra on S.

2.19 - Let J bé the two'sided ideal of A, generated by all elem-
ents of the form aa and (éé)(bd) + (a,b,c,d) '
shere (a,b,0,d) = a((be)d) + b((ed)a) + of(da)b) + d((ab)c)
" The quotient algebra AX/J is the free Malcev algebra on X.

'..The remaiﬁder of this sectién is mainly a resume of the treatment

of Lie algebras given in (3).

Consider a free Lie algebra L generated by a well ordered set
" = X1y Xog oo of generators x; over a commbative ring R with unit

element.




| , | | L
2.20 - Using the concept of the length of a word (2.15) together

with the ordering on the set -G"', define an order - > between words
Wys Wo € L inductively as follows:
a) if l(wz) > ;J.(Wl), then wy, > wy ‘ |
b) if l(wz) = 1(w) = 1, then W, Wy € B and are ordered -
according to the order on @ .,
e) if Uwp) = Lwy) > 1, then w, = wyWop and wy = wipWy, With
1‘(wij)_ > 1(w) for all i,j,k = 1,2.‘
Now if i) wy; > Wy, then wy, > wy,
or if ii) wyy = wyy and Wy, > Wy, then wy, > wy.
Let S(0”) be the set of all words in L for which either
a) Uw) =1 | |
or  b) if Uw) > 1, then w = wu, € S( ) if wy, w, € S(&) and
Wo > Wy . |
The set S(S) is then ordered under the relation > .
- 2.21 - An "a" reduction on L is a procedure .

_ L = 5 \ St
S= 2 M, —> 8! 2 Aty A A'. € R

in which one of thé following operations is performed.
a) ‘- Ai .o (Wlwg) .. is replaced in S by - >\i (WZ_WJ.) ..
to give S' if wy, wy, € S(6) and wy > wy.
b) A, .. (w) .. is deleted from S to give S'.
If S' is empty, write S' = ¢.
g) >\iw + Ajw is replaced ;n S by { Ag ot ?\j)w to give ST,
d) Ow is deleted from S to give S'.

(where O is the zero element in ¢ ).




2.22 - A "j" reduction is a procedure S —> S' in which

'>\i B w3(wlw2) .. is replaced in S by 7\1 .o WZ(WlWB) + Wl(WZWB) .o

to give S' if w3(ww,) > wg(wlw3)‘ 5 r‘«rl(wzw3).

The paper shows that a sequence of these reduction procedures,-
" when applied to a linear combination of words in L will, in a finite
number of steps, yield a linear combination of words which are in sS(G).
Further it is shown by an induction based on word length that the

resulting linear combination of words is unique up to the order of its

summands.

Let X Ee the ideal of L generated by all élemen‘bs which reduce
to the empty word, and for S, T € L define S T if 52T mod K.
Then L is a free Lie algebra over R under i with the set of irreducible

elements as a basis.

3.. The General Case

Let us now examine the possibility of exteﬁding the treatment of
Lie algebras in (3) to the more general case.

Consider a free non-associative algebra A generated by a well

-ordered set G of generators x5 over a commutative ring R with unit
element. Let the monomlals of A sa’clsfy a (flmte) nunmber of. relations
of the form

g S Ay - A
| f(wl’w? o) = £(w;) b3 %3 0 WysYVy € A, 5 R
e.g.: In the case of a Lie ring we have (2.5 & 2.5)

2
fl(w)=w =0

f2(wl’w2’w3) = wl(wew3) + W2(W3W_l) + WB(WJ.WZ) =
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Given two words w, w, € A define wi < w, inductively as before
(2.20) by o

a) l(wl) < l(w2) Dy < W,
b) 1(wy) = Uwy) =1 = wy, wy€ O and are ordered according

to the order assigned to the set & of generators.
o) ) = 2wy > 1 => =Wy, wy = gy, with
1(w;5) > 1w) for all 4, §, k=1, 2. |

.i) Wi < Wy 2wy < Wy

ii) Wyq T Wy and w.. < W < w

=>
12 4

00 .M 2

For economy of notation the following convention will be adopted
with respect to bracketing:
xl(x2x3 .. xn) = XXXy .o Xy n = 3,L4,5, ...
Consider a relation fq on A and a set of words wy € A for which

£ (wy) = ijvj = 0. Let v, be the element of this set maximal with
IN) : .

respect to the ordering <, and define a relation © tA —> A by
. ! . <!

e AV ?\q’vq - f (wi) | _ |

(Note that v. < v, for all v . in the expression \yvq - i(vi)

J

e.g.: for the case of a Lie algebra with words wy, wo, w3 satisfying

Wy < W, < w3 we have
'f2(wl, w2, 'w3) = WpWoly + WoWgiy + W3WWo = 0

so that o ot W3H Wy —> = (WIWZWB + w2w3wl)\
Let 2 be the set of all words which are irreducible under any
of the possible reductions © . An element is said to be in standard
: - .

~form, or to be a standard element if it is either void or a linear




combination of members of 2 . This set of'stahdard words then serves
'as a set of basis elements. |

We now show that any word can be énmpleteLy reduced in a finite
' nﬁmber of steps: o
z

AN.V.. B v, is
lvl ach

For consider a word w which reduces to 5

composed. of the same generat&rs aS’w; reordéred and/or rebracketed in
some way. - This is also true if any reductién is applied to any of the
vi. Thus at any stage of a reduction process beginning'with a word w,
we have a linear combinétioﬁ of words v; each of which is composed of
the éame generators as w.  Consequently, since 1(w) < = there can be
only a finite number of permutations and rebraketings of the generators
in w. Consequently, . any reduction process hecessarily terminates in a
finite number of steps.

To show that a word w is uhiquely reducibie is proven by induction
over the length of w, in conjunction with the Birkhoff condition (6)
ice.t ' : k ' - ' o .

. Consider a set S on which there is defined a reduction, that is,

a binény rélation a —;>b such that

1) no infinite sequence exists of the form

. ag —> a3 —>a, —> ... -;b |

2) if there exist two reductions a ::; with the same initial
element, then there exists an element d and rediction chains ofAthé

Fform

b — b2 > —"sbp—l'-‘~§. 4
/>




Then the Birkhoff condition states tha£ for any two complete

reductions

a—3 ay -—-3 -—->ar__l—;» Zq . .
: Z1s %o irreducible

a — bl .__> — bs—l > 2,
we have %y = Zoe
Proof - Trivially this condition is necessary for unique reduction.

an
(A}

To see that it is sufficient, consider the set S” of all elements

of S which terminate in a unique irreducible element. S° is non-empty

since it contains all irreducible elements. Suppose a & S - s¥.
Then ‘there exist sequénces |
v 8.1 -‘_> .o "’-> c

a\A
bl '_> ..

By hypothesis there exists a d € S such that

—=>c #£c with ¢ and ¢~ irreducible.

T : av—%co‘%‘ - N
a 1 aplﬂ/\;’d—»d-——-;..——adv‘

e
><

d” irreducible

If a £ S-x-, then all sequences beginning with a, must end in d*, '

1
and similarly for bl' We ‘then have c = d.' = c . Consequently, since

c ¥ c_:w, at least one of a1s bl )Z/ S*. Without loss of generality

assume al /z s”. Repeating the 'preceding argument yields an element
a2 % s* for which a — a7 —> ane Continuing in this way ylelds an

: 1nf1n1te sequence of the form a —> a:L —> a2—> ... which contradicts

the initial hypothesis.
Hence S = S* and each element reduces to a unique irreducible

element.




Returning to the probiem of proving unique reductioﬁ, consider a
word w. A simple indudtion on the length 1(w) shows that w is
uniquely reducible: If 1(w) = 1 then w is irreduci‘ble, and so is
certainly uniquely reducible. If 1(w) =n > 1, then by the induction
hypotheses all subwords of w (which have lengths less than n) are
u_niquély redﬁcible. ConseQuently if the Birkhoff ‘condition is satis-
fied, the induction is co;nplete and w 1s uniquely redudible. Notice
that this induction includes the possibility of w being reduced in two -
(or more) ways by one reduction procedure, and/or the possibility of
being reduced by two distinct reduction processes. Héving verified the
Birkhoff condition we will then have a method of obtaining a basis of a
free non-associative algebra generated by a well ordered set of generators
over a commtative ring with unit element. To this end let us 1ook at

the particular case of a Malcev algebra.

b, Malcev algebras

We first consider an example. Let Wiy Wos w3, wh be words.in a

Malcev algebra satisfying

Wy < 'w2.< W3 < wh < wywW, < Wy, < LPLET
We have by (2.10) that
fz(wl,W‘z,VIB,vrh) = (WlWB)WZWh + wl(w2w3)wu + WZ(WBWh)Wl
+ ol Juw, + w),(wywy)wy = 0
Since v, = (WlWB)WQWh > wl(w2w3)wh, WZ(WB'Wh)Wl ,
WB( W), Wy )w2 s wh( wlw2)w3 .
.then r o (w W )W2WLL - - (w W )vh (WBWh)W

- WB(Wth)WQ - Wh( w1w2)'w3




From (2.7) we have that Py W (w W )vh > WlwhWZWB

- w2( WBW).;)Wl > w2w1w3"wh, - v\rv3(t«r)_lw1)z\r2 > - Wy W)

d -‘wh(wlwz)w3 > IWLLWBWJ.WZ;

Thus (WlWB)WZWh > Wle,WQWB + WZWlWBwb, - W3'W2Wlwh + Wh'WBWlWZ

and no further reduction.is possible.
This reduction was obtained using f (Wi’WZ’WB’Wh)'

Alternately consider f (w3,w2,v ’Wh) from which we obtain

s (w3wl)w w, > B(WZWl)Wh -w (w wh)w - Wl(whWB)WZ

‘Application of (P4 where posmble yields

(Wlw B)W 2'.'\1' Ll- ) - - 35*71'-{\1’1['1' 2 + W 2W 3WlW }-l- - Wl‘W' 2W 3&7)4 - 'WquW Z'W' 3

and no further reduction is possible.

10

- W)-L( W3t ) Wy -

Comparison of these two reductions for (wlw3)w2wh now reveals a

di_ffibulty - the Birkhoff conditioh is not satisfied, 1i.e.:

o possible reductions for the same element.

we have

In an effort to achieve unique reduction, two more reduction

formulas were developed (empirically)
3(w1,t~72,w ’Wh) (w s W3 Wh) + (wg,w 24 ) )
| o (w 35 ¥y, W ) (Wh,wl,WzWB) =0
where (a,b,c) = abd + bea + cab
and fh(Awl,wz,WB,wh) = - (wl,t«rg,WB,vrhj - (Wh,‘:-TB,Wz,‘CrTl)
where (a,b,¢,d) = a{be)d + b(ed)a + c(da)b + d(ab)e.

=0

With the aid of an IBM 1620 computer, it was shown that the

Birkhoff condif,ion is now satisfied using the four reduc‘tions which

derive from f, , £ 32 together with

Ll.’

fz(wl,wg,r ,wh) (w Wy Yu wh o (w w )r«r)4 +w (WBWh)w

+ o (whw )w + Wh(w w ); =0
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and fl(wi’WZ) = ww, +wgn =0

5. Verifying the Birkhoff condition

Verificatioh that the Birkhoff condition is satisfied is reason-
ably straightforward, tedious, and somewhat prone t§'error if done by
hand, i.e.: it is ideally suited to being done by a computer. For
this reason a program is discussed here whiéh was run on an IBM 1620 to
assist in establishing that the Birkhoff condition was satisfied fﬁr
Malcev aigebras.

The purpose of the program is to examine alternative reductions
of a word, and to verify that each of these reductions yields the same
result.

A .word is reduced according to a.particular reduction procedure.
Each word which is obtained as a result of this reduction is tested for
further reduction. VWhen no further reduction is possible, the result
is stored and anothef reduction is testéd. The results of each reduc-
tion are compared to that first obtained. ~ If the two reductions are ‘
not the same, the program is terminated. Otherwise the programmpdn—
tinues until all possible reductions have been tested. Tﬁe program
itself is examined in greater detail in appendex A.

Given the results of the program it is now possible to complete
the verification of the Birkhoff condition. Consider a word
W= oW ooV .. in which u and v are reducible.

Then two possibilities’must be considered:
I. v and v are disjoint -
In this case it is evident that regardléss of whether ﬁ or v is.

reduced first, w reduces uniquely.
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IT. u and v are not disjoint --
In this case either u = v, u is a subword of v, or u contains
v as a subword. Consider for the moment the case in which u = v. There

~ are several subcases:

1w =gy } |

= U, = Vs U, = VAV
_ 2 '3 71 21
v v3v2v1 ]

Here u and v are reducible only by the anti-commmutative law.

T h for < < = < =
hus we have fo Vl v2 vlv2 ul u2 v3

Uty TP -,

-> (vlvz)u2

u - (vzvl)u2

v = v3v2v:L - - \;'3v1v2
-> (vlvz)v3
and the reduction is unique.

2) u-= uqy

'vhv3v2v1

Assume vy € v, < v3. In order that u be reducible we must have

i

v

ul = V3V2Vl < U.2 = Vh.

Reducing u first by the anti-commtative law gives

U ugly -> - Ul T - (v3v2-v1)u2
Reducing vovy by the anti-commutative law we have

- (v3v2v1)u2 -> (v3vlv.,2)u'2.

' From the results of the program we find that for vy < v2<f vy

3°1°2

< v.v.v,. < v), this reduces to
(v3vlv2)vlL -> - v1<"2"3)"h tVovyvav) 4 v2v3vlv)_L

+ .v3(vlv2)vh = Vv,V - Ylv2v3vh + v2(v1v3)vh + (Vlvg)VBVh.'

~Alternately, reducing v first by means .of fh -we have




| 32" 2’3 * % 3 1372
;|' VBVhVZVl + V2V3V1Vh + VlVZVhVB-

Applying the anti-commtative law where pcssible yields

VhV Vv, = VthV V., t V V1V3Vh + v V2thl + th V.,V

v- - vl'(vzvj)vh + VvV - v3v2vivh‘+ (vlv2v3)vh

+ v3(v1v2)vh T VQVRVIV) = VYUY .
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Again, under the specified conditions, the results of the program show |

that (V1V2v3)vh is reducible to Vz(vlv'B)vh- + VoW ¥y = V9V3Vov),
+k(vlv2)v3vh. Consequently (5.li) becomes | ' |
v - - vi(v2v3)vh + VU V3aV), = VoUoViV), vé(VIVB)Vh
+ A vlv3v2vh + (leZ)VBVh + (v3(v1v2))vu+ v2v3vlvh -V VUV,
= - l(v2v3)vll +.v2vlv3vh + v2(v1v3)vh - VqV3V,Y),
+ (vlv2)§r3vh - V3(vlv2)vh + VoT3ViV) = VyVoVsVy
Thus again we have unique reduction, =
Another 35 cases can arise as a consequencé of having two
reducible words which are not disjoint. To illustrate the procedure
when u is a proper subword of v con'siderzb W= WeWg Wy W) Wyl -
with w < wy < w3 < W), < wWywWo ‘< W), < w2w3- < W), W3 Wy < W <.Wg <
Let u = ), U3uioly with L 1'13 = W4y Up =Wy and Wy = wW),W3WoWy .
Then u is reducible by fh' to ulul;uzuB R uzUpU ) - U) U g3
= UgWy Uyl + UsUgug = UpUolaly .
Thus w => (W)_Lw3w2wl)w7w5w6 + wé( wh'wy-rzwl)'hréw? - WéT”TS(“’hWBWQ'“"l)wY

- w7(_ whvr3w2wl)w5w6 - vréw?( x~rhw3wzwl)t~15 - w5w5( t«rhvr3w2wl)w7 - (WLLWBWZWI) WgW4H e

Each term of this reduction contains the subword W)_;WBWZWl which is

W7.

reducible by the anti~-commutative law to - W) W3WoHy and thence (from the

results of the program using the case I} < 12 < 1L < 23) to

WlW}-lW?WB + 'WQWJ-_WBW)-L - W’3W2W1Wh - thlw2w3 - WBW’-LWJ-Wz + WQWBWlWh |

-~




= WyWoWaW) . Consequently

w > (Wlwl;WZWB)WTWSW 6 + WS( 'wiwhwz'%)wéw,? - .Wéws( Wy W W2w3')w7

- w7( Wi’WhWQWB)stVS + (w2w1w3wh)w7w5w6 - (wlwhwzw3)w5w6w7

+ Wsws( W W) Wt ) o
- W6W5( W oW W), ) Wy

- WS(W WA W, W, )w6'w7 |

3"2"1"h

.+ ws‘wé( w2w1t¢3wh)rv7
-+ wgnglugw g w )iy
- WS( WhWIWQWB)WSWT
- # (g w gy weing
+ (v~ruw~°lw2'r,¢3)ws'wéw7
- WS( WBWhW1W2)w6W7
- Ws‘fs( WBWHWIW2)W7A

+ w0 g )WétJT

2°31°L

- wéw'?}(WZWBWIWh)WS
- (w2 Wby wh) w‘S Wg o
+ w7( wlw2w3wh)w5wé

+ ( Wy W 2w3wh)wswéw7' .

- AIW6W7( wlwhw 2w3)'w5 +

+

Wy ( WoWy WBW)-L) Wgig

(w,w.w, w )'w.?wswé -

372°1"h
w7( W3H oW W), ) Wiy

o+

W5W6(W W W W )w7 +

372°1°L

( W), Wi 3 ) Wit

+

WS( W 2'wl.'wah) gy

WgHy ( ‘w2w1w3‘wh) W '

( W?WlWBWh )ws'wéw.?
Wgiy ( W Wy W) ) W

W6W5(th W)W

127377

( Wy wz'wlwh)wgwéw.?

w6w7( Wlf‘erZWB)WS - Wswé( W)W 2w3) Wy

| w7( W3 thlw 2) W’S.‘Wé

Gy iy, )t gy
( Wy thlw 0 ) WGy
w 6W5( w 2w3wlwh) "
wg (i w5003 WL;) 57
gt (i 1, )ity
g (1 w3 Jirg

4

+

+

g WS( WBthl'wz) o
w6w7( w3, W W ) Wy

( w2w3 Wlwh) WaWoig '
- w7( W 2w3wlwu) Wiy

- (wlwgw3wh)w7w5w6

+

wgg (1 W, 3% g

- stré( Wy W 2W3Wb,) W

Alternately, v = vhv3v2vl with vy, = wﬁ,

17"

is (from the program) reducible

vy = W'B', Vo = Wy anc‘1
to_vlvhv2v3 + v2v1v3vh
= V3VoVyV), = V) VqVgoV3 = V3V) ViV + VoV3vyv), - VIVoV3V). Now

W' "> '\_’rf-fwféWSE‘TlWhIﬂTéTﬂTB + w7w6w§w2w1w 3W’h - W7W6WSW3W 2WlWh :

"’ W7W;6W5thlw2w 3 - W'?W' 6W§T’\T 3'!\7’)_I:W1‘W2 + W7W6W5‘W2F‘T 3'W’ lWh

Again from the program it can be seen that each term of this reduc -

tion may be further reduced to give

-

1k




.+
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| W => Coguyrgnsdewgrging + (g wyu Jungiigag. = (rsinginy s, Jigsiging
- (thiWQWB)W7w5w6 - (WBWhWIWZ)W7w§w5 + Qg gy ) ugrging
- (wiw2w3wh)w7wsw6 + WB(WiwhW2W3)W5W7 + w;(wzwiwgwh)w6w7
- wig Cegwiny ) g = v (o vy wowg Jwgw, v (g ) wg iy
w;( W2W3W1Wh)wéw7 - WS( w1w2w3wh)w6w7 - wéws(wlwthWB)w.j
- wgwgwatry wawy Jug + wgweluy wowgw Jwy = W (10 0y 7 w3 Y
+ WéwS(WBWEWiWh)W7 + w6w;(whw1w2w3)w7 +'w6ws(w3whw1w2)w7
W5W5( W2W3T’¢1TAT)-L)W7 W7(W21~T1w3wh)W5W5 ¥ W7(W3W2W1W)J)W7
+ gy wgits Jugig + 1eg Cagwysn wpYugig. = wnp (e, Jogieg
-+ gl gy Jgig = g Gy rgieg g = wginy (i w3, Jwg
N W5W7(W1w2w3wh)ws ¥ W6W7(W)-I-[“le2w3)wg ¥ W5w7( W3w’-l-WlW2)W5
- w6w7(w2w3wlwh)wg +’w6w7(w3w2wlwh)w5 +'w§w6(wlwuw2w3)w7
* wswé(w2W1W3Wh)W7 - wé(w3w2wlwh)w7 - Wgwé(whW1W2W3)W7
B W5W6(W3W&W1W2)W7 i W5w6(w2w3leh)w7 B Wgwé(wiW2W3Wh)W7
B (wiwuw2w3)w5w6w7 B (WZWlWvah)WSW\‘)W? * (WBWZWlWh) RN
¥ (thlWZWB)W5w6W7 i (WBWHWlWé)WSW6W7 B (W2W3wlwh) 56T

+ (W W W, VWL, .
(123h)567 .

Finally, comparison of these two reductions shows that the Birkhoff

condition is once more satisfied. The remaining 3l cases can be treated

in a similar manner.

6. In conclusion

| The direction to go from here would be to delermine necessary
‘and Sufficient conditions that a reduction process ﬁay be derived
immediately from the defining e@uationS»of a given algebra. In any

particular case it is conceivable that a reduction process could be
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obtained by deriving sufficiently many reduction formulas, provided .

the Birkhoff condition was saﬂisfied, but this is not too satisfactory.
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APPENDIX




Appehdix A

Program to assist in verifying the Birkhoff condition

for Malcev algebras

A word L L + wi(wz(wah)) is presented in the form
816263477 . |
Here + is represented by 8 (- would be represented by 9)

1,2,3,h.are the subscripts of the subwords,
and 6,7 represent open (left) and closed (right) brackets.

Note that all brackets and the algebraic sign are included.
Thus for example we have
| Wi(WZWB)Wh = + Wi((WZWB)Wh) <-> 816523747

- (Wiwz)WBWh = - (Wlwz)(WBWh) <> 961276347 ete.

The initial word is placed in minimal form with respect to the
anti-commmutative law and then fecorded, In order to examine this -
reduction in detail, consider the particular cese of the monomial
a(bc)d.‘ Notice that there are three comparisons to be made:

1) a with (be)d, 2) be with d, and 3) b with c.

The location of each of the subwords within the monomial is obtained,
‘and also their relative size (with respect to the order <). The
felevant comparisons.are made and, if necesssary, the subwords are
rearranged in order to minimize the word. 1In this particular case,
ifa< b <c «d < 2b, we have a < bc and so the monomial would

become adbec.




The word is now substituted into one of the reduction formulas
and expanded accordingly.. Again to examine the process in greater
detail, consider the case in which one wants to obtain a reduction
for (ab)ed according to the formila
(w w )ws  * (v W )w + (w wh)w + (WLW )W + Wh(t 3)w

A word of the same form is located in the reduction formula,
and the two words are assigned the same subscripts. In the |
particular case under consideration, the requfred word in the formula
is (W1W2)W3Wh’ Thus the given monomial‘becomes (ale)CBdh' The
relation is then expanded according to the subscripts, which in this
Ease ﬁould yield

(ab)ed + a(chb)d N c(bd)a + b(da)e * d(ac)b.

Each monomial in the expansion is placed in minimal form with
_ respect to the anti-commtative law and compared with the original
word. If thé-original word is less than any of the words in the
expansion, then the word is irreducible by this ﬁsthod. In this
case the reduction under consideration is terminated and the or%ginal
word is éubjected to a second reduction procedure. This.process
continues unﬁil all possible reductions have been applied.

In any case in which the original word_is reducible, the éxban-
- sion is recorded and each wofd in the expansion is tested for further
possible reauctions. The entire procedure is repeated until all |
possible reductions have been applied. Each reduétion is compared
to the first to determine if they are the same. If they are, the
word is uniquely_reducible.A But if any two reductions are not the

same, the word is not uniquely reducible and the program terminates.
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- The program as given has several limitations, First, it can
be used only in connection with Malcev algebras, although the method

of approach should be applicable to other non-associative algebras.

Second, the program only examines words composed of.four subwords.
This does not result in'any loss of generality for words composed
of §nly fwo or three subwords since such monomials are reducible
only bylthe anti-commutative law. Words of length five or greater

are examined four subwords at a .time, so that, given the results of

the program as it now stands, it is not difficult (nor excessively
time consuming) to obtain the reduction of such words with a not
unreasonable amount of hand computation. i

Copies of the program may be obtained from the author. |
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4

X
F oy
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-
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e

SOR

L

f

E‘J"‘l
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o

=

NG

ol

Ny
3

\
N

AN
sIan

AL
FRNI

EXi

aLL

—
[P

i
o ¥

REM

armomoewat
I




GIMED ON KLPH(ZTC) {5, 6
XLSwWi {5,y &),y KCu(22, 7}, 8NSs{

XYy IR(1&)
READ FIXED DATA _
READ {142) (NRWINR), NR = 1,
READ (192) (LIKRWINR, I, K),
FORAAT (8(SIt, 1H 1))

FEAD (115) (KLPH(I*, I = 1,
REaD (1,3) ((ﬁﬁ(ly J)y.J =
FEAD {1430 ((LSWLT, J)y J =

14
FORMAT (6{lH , 12))
ReaAD CASE
READ (1,5) (KASE(I), I =1,
FORMAT (35A1)

IF (KASE({1) - KLPH{10)) &, 177, 175

IS = 1. : .
WRITE {(32,7) (KAESE{1)y, T =1,
FORMAT (1H1, 3541) '
READ WORD

CREAD (1,8) ((KCW{I, K)y K =
FORMAT (100711, 14 1))
READ [142) (IKE{Z, 1y K) K
IF (IKW{2y 1,4 €} = ) 10

SET COUNTERS

IA = 1. -
CFORMAT Y 912}

I8 = TA

IC = ¢

NS = G

IH =0

18 =1 :

DG 13 K =1, 9

JKH (1, 1y K} = IKH{Zy 1A, K)
NR = 0 .

FORMAT (' 1913)
MK(IA)Y = O
NR = NR + 1

L =1 |

NB = NRW(NR) -+ 2
NA = 1

6o TO 37

RECORD MINIMAL FCRM OF WORD

IF (1A - 1) 175, 18, 22

DY 19 K =1, G

IKW(Z, 11 K) = JKﬁ(ly lf.K)
N =1 :

I =1 :

iF (IC) 175, 130, 22

WRITE (2,21) (IKW(1,y, 1, K)sy K

FORMAT (1HD, 841)

DO 23 K = 1, 9

JKW({Ll, 15, K) = JKwW{l,y, 1, K}
NA = 2 :

G0 TG 37

K =5
GO TO 26
K = 6

IC = MK{IA) + 1

IF (IC — NRWINE)) 27, 27, 28

MK(Ia) = 1IC

y &), KESE(TO),

- e
N
~
fo
]
Ui

0001

- G002

00073
0004
0005
0006
0007

- Qo0e

0009
0010
9011
0012
0013.
0014

0015

0016
0017
0018




e R L

4 o= 3

suKwill,y, Ly 1)

temt bt (O (D T

1 .=1 ,
GO TO (46, 24), NA
I = 2 . "
N o= 4 ,
GO TO (46, 52), NA
I = 3 '
N.= 6 ,
GO TUO (46, 22), NA
I =4 : -
N = b6 ‘
GO TO (46, 52), NA
GO TO (45, 2%), NA
I =5 :
N =1
J o= MALI, N) =1
Jao = LSW{I, N)
K =0
K = K + 1
IF (K = 22) 43, 49, 175
DO 50 JB = 1, JA
M= J + JB _ _
IF (KCvi(K, JB) — JKW(l, L, ®)) 48, 50, 48
NSW(L,y N) = K '
=N
= A / Zov
=N/ 2.
F (B - C) 1754 51, 68
FOANSWHILy N) — NSwW(Ly N - 1)) 52, 63, 68
JA = MA(TI, N - 1) - ~
DO 53 K = 1, JA
JKW{ly, L + 1y K)Y = JKK(1l, Ly K)
JB = MA(l, N) - 1.
D3 54 K = JA, JB
CJC = K o+ LSu{I, N) o -
JKWIly L + 1y JC) = JKuWl(l, L, K)
JA = MA(CT, N) O+ LSHLI, N) - 1

U JB = JBT+ 1 R
DC 55 K = JB, JA

268

(KRWINR,
F (JKW(I;
I {NR - 2)

- &) 25y 33,
&) 29, 29, 30
175 '

?

IF (NR = 2) y 175 ‘ _ - 0064
IF (1A - 1) 2,y 82 L . _ 0065
IF (IH) 175, 154, 123 0066
EXPAND FORMULA 0067
D3 34 K = 2, 9 _ S o 0068
I = KRWINR, IC, K) . ' , 0069
JKWlly 2y 1) = JK#ll, 1, K) _ 0070
NA = 1 . . 0071

JRw{l, Ly 1} KRA{NRy L ~ 24 1)

KR%(NR) L - 2' 1)

Wi

PO 36 K = 2, 9

I = KRW(INR, L - 2, K)

JKW(ly Ly K) = JKW(l, 2, I) »

SET WORD IN MINIMAL FCRM WoaRoTs ANTI — COMMUTATIVE LAW
ALSS — SET WORD IN FCFM FOR EXPANDING

IF (JKW{l, Ly 2) ~ 6) 28, 33, 175

IF {JKW(1ly Ly &) — &) 40, 41, 175

1F (JKW(ly L, 5) - é) 421 44, 43




C
K
IF

(1, L +
(JA - ©

JA = JA +

0o
NEY
IF
JHH
GO
JKH
o0
JKw
50
Lo
J KW
00
NS
IF
Wk I

FORMAT (1H 5 1SHREDUCES TC

GO
N =
IF
IF
IF

H]

jon]

W

O e Gt Q) G e
ey

aln

o

C"\
[T

IF
NS
JA

JB

IH
IF
JA
JB
G0
J4
J3

JC
DO

CON
GO
DO

1K

57 K =
(L, L +
{JKW {1,
{1, L +
TG 61
(1, L +
62 K =
{1, L,
TG0 37
64 K =
65 1 =
(Ly ID
(L - 1)
TE (3,6

T 16

N + 1
(N oLEs
(L - 1)

.—'

WV Owv Oy
-
™~

{r

L2 IR e
V2]
-
~»

—
T EZ O
~
U

(IA - 1
= NR

P~
i
W N 3 bt et

no -
(o]
[os]
W

[
N W N

b
} 54

1

JAa,
L,
Ly
1y

1,

K} -

1y

=0
175, &5, 77

7)

Neoj

Ne] I

(e )T}

il

k)
i} - 8)
1) S

1) = 8

JKH L1,

JK#ll, Ly K)

175, 59,

L+ 1,

6) GO TO 47

175, 17, 69
- MNSW(1l,

6)

1)
J)

GG 10

) 175, 79,

CSK——-Z]

TINUE

TU (88,
87 K =
(1, JC,

26

1,
K)

9

= 1) 175, 91, 8

NSvi{L,

NSW L,
M5wily

A

y 911, JB
g
=0

A
-~

K}

70,

5)) 73,

Z X
St gt

IF {IKW(2Z2,y JCs K) — JKH(1l, 15,

&0

LERD)

175, 71

175, 74

Ty 17 .
17, 77

K}) S0, 85, 90




/

Lt

T e

)8

o
-

10

L1
12

L3

.00 100 L = 2, NB

IF (JKW(1l, 15, 1) = Ikvi{l, ™M, 1)) S7, 94, 97

IKWll, 1Ay, 1) = 8
IKW(Z, Ihy 1) = 8
GO TO 98 '
IK(l, I, 1) =
IKW(2, 1A, 1) = ¢

IR=2
I1ST= 15+ 1
Jd =0

DO 111 K =

IR(IS) = 4
NR = N§ -

o]

Dy 8% sz 1, 9 .
IK';‘J(lv JC;_K) = 0
Ii(2, JCy, K} = 0

JC = JC + 1 - )

FF (JC »LEe N)Y GG TG 84
GO TG (163, B0y 175), JA
RizPLACE WORD DY EXPANSION
M= I8 + 1IC
DA 22 K = 1,
IKW{1l, M, K)
IKW(Z, M, K}
Ia = .18

JKW(1l, IC + 2, K)
JKd4(l, IT + 2, K)

oo

14 = IA + 1
IF M- IA) Cf?}y 1009 93

IF (JKwW(l,y, Ly 1) — &) 175, 96, G5

GO T4 98
IKW{l, 1A, 1)
IKW(2y IA, 1)
DO 9 K = 24 G
IKW(Ly TA, K)
IKW(2y 1A, K}
I3 = 1A

KEMUVE SUMS EQUAL TC ZERO -
L = I8 -1

DG 107 1T = 2, L

J =1+ 1~ '

IF (IKW{2y Iy 1) — IKW(Z2, Jy 1)) 104, 103, 104

= J + 1

IF (J - IB) 102, 102, 107

00 15 K = 2,4 G . .

IF (IKw(2y T4 K} — IKW(2, Jy K)} 103, 105, 103
CONTINUE : :

D) 106 K = 1, ¢

IKW(ly Iy K)
IKW{2, I, K)
IKW(1, Jy K)
IKW({Zy Jy K)
CONTINUE ; :

GO TQ {82, 8E&, 163), JA .
RECORD REDUCTIGN ‘

IF (19 - 1) 175, 109, 115

JKH{l, Ly 1)
JKwlly Ly 1)

JKH(L, L, K)
JKAH(YLy Ly K)

(4

TR L T |
oco0oCco

50 112 1 = 1, 187 T .
IF (IKw(Z2y Iy 1)) 175, 112, 110
J=Jd +1

S

1, L
JKE(ISy Jy K) = 1Kd(2, I, K)

IA =1



I3 = 1A
DG 114 K =1, 9

JKALLy 19 K} = IKH{Zy 14 K)

GO T3 16 .

COMPARE REDUCTIONS . I
J = IR(IS)

DD 119 I = 1, IB
IF (IKw(2, I, 1)) 175, 119, 116

DG 118 L = 1, J : :

DT 117 K = 1, ¢©

IF (IKW(2,y, Iy K) = JKW(IS, Ly K)) 123, 117, 123

CONT INUE
GD TO 119

CONT INUE

6a TO 120

CONTINUE

60 TO 113

WRITE (2,121) -

FORMAT (1H , 2CHNON-UNIGUE REDUCTION)

CFORMAT (8(S11, 1H ))

GG 1O 177

WRITE REDUCTICN

WRITE {3,124) : :

FORMAT (1H 4 L1EHUNIQUELY REDUCIBLE)
NA = 1S - :

L = IR{IS) /7 8 _
IF (L) 175, 125, 126
N o= IR(IS)

M =0

680 70 128

Moo= 8

J =1 _

M=dJd -1

I =1

Iy =8 = M + 1

D0 143 K = 14 9

IF {JKW(NA, TU, K} - 2) 131, 132, 133
IKW(l, TUy K) = KLPH{L)

GO TO 143 _

IKW(l,y Uy, K) = KLPH(2)

GO TO 143 -

IF (JRWINA, IU, K} = 4) 134, 135, 136

dKWitl, IU, K) = KLPH(3)

63 T 143 |
IKa(ly JU, K} = KLPH{4)
GO TO 143

IR (JKW{NA, TUy K} - &) 137, 138, 136G

IKW{l,y, TU, K) = KLPH({5)

GO TO 143 ‘

IKW{1l, IU, K} = KLPH{&)

6O TO 143 _ ’

IF (JEW(RA, IU, K) = &} 140, 141, 142
IKW(ly IU, K) = KLPH(T) : V
GO TO 143 R

IKW({l, IU, K) = KLPH(8)

GO TO 143 |

CCONTINUE

IE (NA - 1) 175, 20, 144
I =1 +1




(%1

BRI
o by

&7
&8

=.J + 1 |
IF (J oLEs L) GO TO 127
S,

e

[T

60 TG 127

[T

DO 156 K
JRKH (IS,

i

CONTINUE
GJd TO 160
CONTINUE

IF {(IKwW(1,

0O 173 L

G TO 171
IKE {1, 1A,

GO TG 171

{3,147)

A4

G

?

5)
, 11HIRREDUCIBLE)

1,

K) =

2y
2,9
T4y K)Y =~ Jrwl{l, 1, K))

1y
K)

IA,

IF (1A - 1) 175,
REPLACE WUGRD 8Y

2

+ l B . PN . N .
IF (IKwW{l,s Ny 1) ~ JKW{TIy 1, 1)) 167, 170, 167
~- &) 172, 168, 169

Ly
1)
1)

K}

146,
{{IRV(1,

i non

Nt O it

0

Iy K}, K
] &ﬁly ZH #, 7(1H H Aly

1+ 3,
1.7(1H b Al) 1H ?

152

K}

- 1) 175, 161, 166

165,

1)
L)

K}
K}




WRITE {2,176)

FORMAT

CALL EXIT

END.

- 0362
0363
0364
0365 .
0366




Appendix B

Results from program MALRED




(2(13))4

12 < 3 < {12)3 < 4.

1(2(341)
IRREDUCIBLE

1{3(24))

IRREDUCIBLE

1{(23)4)

IRREDUCIBLE

©2(1134))

IRREDUCIBLE

243(14))
- IRREDUCIBLE

(1(23))%

. UNIQUELY REDUCIBLE ‘ 4

- (1(23))4 = — 2((13)4) — 3(2(14)

UNIQUELY REDBUCIBLE
- {2(13))4 = = 1((23)4)

3(1(24))

101233104
UNIQUELY REDUCIBLE

4 ((12)304 = + 1{(23)4) = 2{1(34))
: | - (12)(34)
C(12)134)
IRREDUCIBLE
£13)(24)
UNIQUELY REDUCIBLE , :
+ (13)024) = - 3(2(14)) = 2(3(14))
(23) (14}

UNIQUELY REDUCIBLE
- £231414) = + 3(1(24))

-+

1(3(24))

3

1(31424)) .

2{3{14))

2{3(14))

3((1234)

3((1214)

-+

20(13)4)
IRREDUCIBLE

3({1214) B
IRRECUCIBLE

3{2(14}))
IRREDUCIBLE

3{1(24))
IRREDUCIBLE

{12) (34)

(12)(34)

3((12)4) + 1(3(24)) + 1{2(34)) - 2((13)4)

103(24)) + 10(2(34)) - 2({1314) - (12)(34)

2(3(14)) - 2(1(34)) + 1(123)4) - (12)(34)




- UNIQUELY REBUCIBLE -

12 < 3 < 2(13).< 4 < (12)3

R R S I

1{2(34))
IRREDUCIBLE i
; ' _ )
1131(24}) o o : , 2((13)4) 5
IRREDUCIBLE R ‘ RRIEE R TRREDUCIBLE ‘
1{(23)4) | RS S S BI240)
IRREDUCIBLE : . IRREDUCIBLE
201(34)) L . o o 3(2(14)) .
IRREDUCIBLE N ‘ . IRREDUCIBLE
“203014)) P o - 3((1234) :
IRREDUCIBLE - IRREDUCIBLE
{1(23))14 ;
UNIQUELY REDUCIBLE ,
- {L123))4 = = 2((13)4) = 3{2(14)) + 1(3(24)) - (12)(34)
{2(13))4
UNIQUELY REDUCIBLE ,
= (2113104 = = 1{(23)4) = 3(1(24)) + 213(14)) + (12){(34)
. ’ /
4§{12)3)

~ 40112)3) = + 1{{23)4) - 2(1(34)) - 2(3(14)) — 3{(12)4) + 1(3(24)) + 1(2(34)) - 2((13)4)

- {(12)(34) .

(123 (34)

IRREDUCIBLE

(13) (24) i

UNIQUELY REDUCIBLE : | : .

+ (13)(24) = - 3(2014)) — 2(3(14)) — 3((12)4) + 1(3(24)) + 1{2(34)) - 2{((13)4) — (12){34) @%
' L A

{23)(14) | | 2

"UNIQUELY REDUCIBLE o o . | ;

~ (23){14) = + 311{24)) + 1{3(24)) — 3{{12)4) = 2(3(14)) — 2(1(34)) + 1({23)4) - (12)(34) :




12 € 3 < 1{23) < &4 < 2(13)

C1(2(34))

IRREDUCIBLE

~ 382410)
" IRREDUCIBLE

S 14(23)4) ’
IRREDUCIBLE

2(1(34))
IRREBUCIBLE

S 2(3{14)) :
IRREDUCIBLE

{1(23)14 ,
UNIQUELY REBUCIBLE
= {1{23))4 = - 2(({13)42

4(2(13))
UNIQUELY REDUCIBLE
+ 4(2(13)) = -~ 1({23)4)

4(112)3) -
UNIQUELY REDUCIBLE
- 4({12)3) = + 1{(23)4)

= (12)(34).
(12)(34)
IRREDUCIBLE
{13)(24)
UNIQUELY REBUCIBLE
+ {(13){24) = - 3{2(14))
(233114}

~ UNIQUELY REDUCIBLE

- (2310(14) = + 3{1(24))

3(2(14))
3{1{(24))

201(34))

2{3{1413)

1030(24))

1{3(24))

2{3(14))

2{3{14))

31(12)4)

3((12)4)

+

+

2((13)4)
IRREBUCIBLE

311(24))
IRREDUCIBLE

3{2(141)
IRREDUCIBLE

3{(12)4)
- IRRECUCIBLE

{12)(34)

(12){34)

30(12)4) + 1(3(24)) + 1(2(34)) - 2({1314)

1(3(24)) + 1(2(34)) = 2({13)4) - {12)(34)

2(3(14)) = 2(1(34)) + 1({23)4) - {12)(34)

~




12 < 3 <23 < 4 <1{23)

U 1(2034))

- IRREDUCIBLE

- 1(3(24))

- IRREDUCIBLE

10(23)4) '
IRREDUCIBLE

L 2{1(34))
IRREDUCIBLE
2{3(14))

IRREDUCIBLE

4(1123))
UNIQUELY REDUCIBLE
+ 4(1(23})) = - 2{{13)4)

4{2(13))
UNIQUELY REDUCIBLE

+ 4(2(133) = - 1((23)4) -

41(12)3)
- UNIQUELY REDUCIBLE -
~ 4{{12)3) = + 1{(23)4)

- {12)(34)
C{121(34)
IRREDUCIBLE
{13)(24) -
UNIQUELY REDUCIBLE
S+ {13)(24) = - 3{2(14))
{23)(14)

“UNIQUELY REDUCIBLE

- (23){14) = + 3(1(24))

3{(2(14))

3(1(24))

2010343)

2(3(14))

1(3(24)) -

2{({(13}4) ,
IRREDUCIBLE

e 3(1(24))
IRREDUGIBLE

342(14))
IRREDUCIBLE .

3((12)4) '
- IRREDUCIBLE

1{3(24))
2{3(14))

2{3({14))

3((1214)
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