
Genetie Algorithm Based Parts Scheduling
in a Three-Vfachine R.obotic Cell

BY

NOOTNAPANG RAKTAMAKIT

A thesis submitted to the Faculty of Graduate studies
In Partial Fulfillment of the Requirements for the Degree of

MAST'E,R OF'SCIENCE

Department of Mechanical and Manufacturing Engineering
University of Manitoba

Wiruripeg, Manitoba

Copyright O 2008 by Nootnapang Raktamakit

THE LINT\TERSITY OF MANITOBA

FACULTY OF GRADUATE STIIDIES
g¿¿¿¿

COPYRIGHT PERMISSION

Genetic Algorithm Based Parts Scheduling in a Three-Machine Robotic Celt

BY

Nootnapang Raktamakit

,4. ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

MASTER OF SCIENCE

Nootnapang Raktamakit @ 2008

Permission has been granted to the Universify of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (IMI/ProQuest) to microfilm, sell copies and to publish an abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
o\ilner solely for the purpose of private study and research, and may only be reproduced ând copied

as permitted by copyright laws or with express written authorization from the copyright owner.

Acknowledgments

i would like to express my deep and sincere gratitude to my advisor, Professor S.

Balakrishnan, Ph.D. for his encouragement, advice, and guidance. Throughout my

thesis-writing period, he painstakingly reviewed this work and gave assistance and

instruction. His vast knowledge and logical way of thinking has been of immense value

to me. Without his knowledge, ideas, and patience, this work could not have been

completed.

I would like to thank Dr. Q. Peng, who provided inspiring advices and encouragement.

His comments and guidance helped me perfect this work.

I wish to thank my entire family for their supporl; my mother for her unconditional

and being there whenever I needed, my father for his encouragement, my brother

my sister for their understanding and help getting me through the difficult times,

my son and my daughter for their love and laughter.

Lastly, and most importantly, I owe my loving thanks to my husband, Songraj

Raktamakit who's supporl me in every possible way, helped me to accomplish this

work. Without his love, support, encouragement and understanding this endeavor would

have been impossible. To him I dedicate this thesis.

love

and

and

Abstract

This thesis proposes a genetic algorithm for finding parl schedule that produces the best

makespan in a three machine flexible manufacturing cell. The type of production

operation considered is 'differentpart type' problem. Key constraints consideled in the

analysis are: (i) each part has a specific order of sequencing through machines which

cannot be changed, and each parl may not pass through every machine, and (ii)

processing times of parts on machines they visit need not be the same. A pair grouping

and priority procedure is developed to generate the makespan of part families, without

violating any of the constraints imposed. Influence of different genetic parameters on

the resulting makespan are studied and compared using three different test data types.

Results from the studies indicate that good makespan values are obtained for all types of

crossover when (a) the crossover probability take the values ranging from 0.3 to 0.5,

and (b) an 'Arbitrary two-job exchange mutation type' is selected with probability

values ranging from 0.4 to 1.0. Good results are obtained when a population size of 20

to 35 was selected. The number of iterations required for convergence of solution was

found to be the least for the above chosen values. Other choices were found to require

greater iterations for convergence.

T'abåe of Contents

Chapten Page

111

4.2.4 Parent selection41

4.2.5 Genetic operators...............43

4.2.5.1 Crossover44

4.2.5.2 Mutation...48

4.2.6 Evolution...........51

5. Resnlts and Discussion..........52

5. 1 Testing and evaluation of genetic algorithms52

5.2 Comparison between various genetic operators51

5.2.1 Study of crossover operator59

5.2.L1 Crossover study with data type: Short60

5.2.I.2Crossoverstudywithdatatype:Medium63

5.2.1.3 Crossover study with data type: Mix180.............66

5.2.2 Study of mutation operator69

5.2.2.1Mutation study with data type: Shorl70

5.2.2.2 Mutation study with data type: Medium....74

5.2.2.3 Mutation study with data type: Mix180.....76

5.2.3 Study of population si2e......80

6. Conclusions and recommendations......85

References88

1V

l,,isÉ of Figures

Figure Page

3.1 The layout of three-machine robotic cell16

3.2 The sequence of robot moves for part P¿19

3.3 Time chart for part P¿.............24

3.4 Time chart for pair grouping Gl27

3.5 Sequence of robot moves for pair grouping G1.............28

4.1 Flow chart of genetic algorithm..33

4.2 Representation of chromosome C1.............34

4.3 Example of generating initial chromosome C136

4.4 Example of pair grouping method in chromosome C137

4.5 Four alternatives of pair grouping of chromosome C139

4.6 Flow chart of fitness evaluation procedure.41

4.7 Example of one-point crossover44

4.8 Example of two-point crossover (version I)45

4.9 Example of two-point crossover (version IÐ.............47

4.10 Example of arbitrary two-job exchange mutation49

4.11 Example of arbitrary three-job exchange mutation49

4.I2 Example of shift change mutation50

5.1(a) through (d)

Makespan times versus generation number of part family F2

for four genetic probabi1ities................54

5.2 Time charts for the first three group pairs: P06-P02, P16-P03 and P15-P01

-the best chromosome in graph 5.1(b)56

5.3(a) Graph showing average min makespans and Pc for cÍossover type 1 (Short)..61

5.3(b) Graph showing average minmakespans and Pcfor crossover type2 (Short)..61

5.3(c) Graph showing average min makespans and Pc for crossover type 3 (Short) ..61

5.3(d) Graph showing number of generations that produce the min makespans

andPc for crossovertype 1(Short)61

5.3(e) Graph showing number of generations that produce the min makespans

and Pc for crossover type 2 (Short)61

5.3(Ð Graph showing number of generations that produce the min makespans

and Pc for crossover type 3 (Short)61

5.4@) Graph showing the average min makespans from all three part families

and Pc for crossover type I,2 and 3 (Short)...62

5.4(b) Graph showing the average number of generations that produce

min makespans from all three part families and Pc

for crossover type 1,2 and 3 (Short)...62

5.5(a) Graph showing average min makespans and Pc

for crossover type 1 (Medium)64

5.5(b) Graph showing average min makespans and Pc

for crossover type 2 (Medium)64

5.5(c) Graph showing average min makespans and Pc

forcrossovertype3 (Medium).64

5.5(d) Graph showing number of generations that produce the min makespans

and Pc for crossover type 1 (Medium)64

5.5(e) Graph showing number of generations that produce the min makespans

and Pc for crossover type 2 (Medium)64

5.5(Ð Graph showing number of generations that produce the min makespans

and Pc for crossover type 3 (Medium)64

5.6(a) Graph showing the average min makespans from all three part families

andPc forcrossovertype l,2and3 (Medium)65

5.6(b) Graph showing the average number of generations that produce

min makespans from all three part families and Pc

for crossover type 7,2 and 3 (Medium)65

5.7(a) Graph showing average min makespans and Pc

for crossover type 1 (Mix180)67

5.7(b) Graph showing average min makespans and Pc

for crossover type 2 (Mix180)67

5.7(c) Graph showing aveÍage min makespans and Pc

VI

for crossover type 3 (Mix180)67

5.7 (d) Graph showing number of generations that produce the min makespans

and Pc for crossover type 1 (Mix180)67

5 .7 (e) Graph showing number of generations that produce the min makespans

and Pc for crossover type 2 (Mix180)............67

5.7 (Ð Graph showing number of generations that produce the min makespans

and Pc for crossovertype 3 (Mix180)............67

5.8(a) Graph showing the average min makespans from all three part families

and Pc for crossover type I,2 and 3 (Mix1S0).............68

5.8(b) Graph showing the average number of generations that produce

min makespans from all three part families and Pc

for crossover type I,2 and 3 (Mix180).............68

5.9(a) Graph showing average min makespans and Pm

for mutation type 1 (Short)72

5.9(b) Graph showing average min makespans and Pnt

fol mutation type 2 (Short)72

5.9(c) Graph showing average min makespans and Pm

for mutation type 3 (Short)72

5.9(d) Graph showing number of generations that produce the min makespans

and Pm for mutation type 1 (Short)72

5.9(e) Graph showing number of generations that produce the min makespans

and Pnt for mutation type 2 (Shorl)72

5.9(Ð Graph showing number of generations that produce the min makespans

and Pm for mutation type 3 (Short)72

5.10(a) Graph showing the average min makespans from all three part families

and Pm for mutation type 1,2 and 3 (Short)...73

5.10(b) Graph showing the average number of generations that produce

min makespans for all three part families and Pm

of mutation type 1 ,2 and 3 (Short)73

5.11(a) Graph showing average min makespans and Pm

for mutation type 1 (Medium).........75

vll

5.11(b) Graph showing average min makespans and Pm

for mutation type 2 (Medium)75

5.11(c) Graph showing average min makespans and Pm

formutationtype3 (Medium)....75

5.11(d) Graph showing number of generations that produce the min makespans

and Pm for mutation type 1 (Medium)75

5. 1 1(e) Graph showing number of generations that produce the min makespans

andPm formutationtype 2 (Medium)...75

5. 1 1(Ð Graph showing number of generations that produce the min makespans

and Pnt for mutation type 3 (Medium)75

5.I2(a) Graph showing the average min makespans from all three part families

and Pnt for mutation type I,2 and 3 (Medium).76

5.I2(b) Graph showing the average number of generations that produce

min makespans from all three part families md Pm

for mutation type I,2 and 3 (Medium)76

5.13(a) Graph showing average min makespans and Pm

formutationtype 1(Mix180)78

5.13(b) Graph showing average min makespans and Pm

for mutation type 2 (Mix180)78

5.13(c) Graph showing average min makespans and Pm

for mutation type 3 (Mix180)78

5.13(d) Graph showing number of generations that produce the min makespans

and Pnt for mutation type 1 (Mix180)............78

5.13(e) Graph showing number of generations that produce the min makespans

and Pm for mutation type 2 (Mix180)............18

5.13(Ð Graph showing number of generations that produce the min makespans

and Pm for mutation type 3 (Mix180)78

5.14(a) Graph showing the average min makespans from all three part families

and Pnt for mutation type 1,2 and 3 (Mix180).............79

5. 14(b) Graph showing the average number of generations that produce

min makespans from all three part families and Pm

vl11

for mutation type 1,2 and 3 (Mix180)79

5.15(a) Graph showing average min makespans and population size

for data type "Shor1"...............82

5.15(b) Graph showing average min makespans and population size

for data type "Medium".........82

5.15(c) Graph showing average min makespans and population size

for data type "Mix180"82

5.15(d) Graph showing number of generations that produce the min makespans

andpopulationsizefordatatype"Short"................82

5 . 1 5 (e) Graph showing number of generations that produce the min makespans

and population size for data type "Medium".........82

5.15(Ð Graph showing number of generations that produce the min makespans

and population size for data type "Mix180"............82

5.I6(a) Graph showing the average min makespans from all three part families

in each data type and population size83

5.16(b) Graph showing the average number of generations that produce min

makespans from all three part in each data type and population si2e.............83

5.I7 Graph showing the average times that is used to obtain the result

from GA program and population size83

1X

F-.,ist of Tabnes

Tat¡le page

3.1 Part family F120

5.1 Part family F252

5.2 Test data used to perform study on genetic operators...5g

NomremcåaÉune

C Ch¡omosome

Cp Cumulative probability

FV Fitness value of chromosome

G

p Selection probability

P Part name

Pc Crossover probability

Pu, Mutation probability

r

R

,S

,S1

Group of pairing part in chromosome

Number of machine that part will be processed

Number of parts

Random number

Random number for mutation operation

Random number for crossover operation

The first machine that part will be processed

,S2 The next machine that part will be processed after machine ,S1

,S3 The next machine that part will be processed after machine ,S2

T Makespan of individual part

TC Makespan of chromosome

TC^in Minimum makespan of the chromosome

TG Makespan of group in chromosome

Wttr¡ Processing time of parl on 51

X1

wtt)

wts)

Processing time of parl on ,S2

Processing time of part on 53

x11

Chapter X. lntnoduction

f..tr Eac[<gn'ound

The way operations are caruied out in manufacturing system has changed with time. In

early days the tasks in manufacturing depended mainly on operator to manually load,

unload and operate machines. Later on, with the intense market competition as well as

progress in intelligent machines and computer control, the need for human interactions

has reduced. Since operator's salaries tend to increase while the cost of intelligent

machines and automatic control system has decreased, more and more tasks have been

automated l1]. Nowadays, with the considerably shortened product life cycles and more

demand of customized products, manufacturers have discovered that they can no longer

capture market share and gain higher profit by producing large volumes of standard

product for a mass market. Success in manufacturing in next decade requires the

processes with ability to flexibly and rapidly respond to the change of market conditions

l2l. In order to meet the increased demand for customized products and to reduce

production lot sizes, the industry has adapted new techniques and production concepts

by introducing flexibility into the production system so that a variety of products can be

manufactured on the same equipment. Advancements in the area of flexible

manufacturing systems (FMS) have paved the way for gaining competitive edge to

many manufacturing enterprises.

A general FMS is defined as an automated system composed of computer-controlled

machining centers and automated material-handling devices. Parts are produced by

computer-controlled machining centers and are transferred between machines/processes

by automated material-handlings. A traditional FMS is large and very complex,

consisting of dozens of multi-pulpose machines with sophisticated material handling

and controlled by incredibly complex software systems. Since they are very complex

and very expensive, only a limited number of industries can afford the investment.

Cunently, the trend in FMS is toward small versions of the traditional FMS, called

flexible manufacturing cell (FMC). They are less expensive, low risk and also satisfy

many of the benefits gained through FMS. It is the most feasible approach for

automating the job shop manufacturing [4]. A FMC typically consists of internal and

external material handling systems, and one or more flexible machines 14].

In a FMC, the industrial robots are widely used for internal material handling. The

machines in a robotic cell are generally computer numerical controlled machines

(CNCs) and usually equipped with necessary cutting tools capable of performing

different processes including milling, drilling, grinding, tapping and cutting with

minimum set-up time between successive operations. As a result, the robotic cell is

capable of performing different operations on a variety of parts. The layout of machines

in a robotic cell can structured in many different ways and depends on the type of robot.

A commonly used cell layout is called robot-centered cell. It consists of ¡ø machines

which are placed in a circular or semicircular layout with a handling robot at the center.

The machines have to be laid out to be within the reach of a robot so that the robot can

perform all the material handling functions. The material handling functions include

loading, unloading and transferring parts between machines.

The performance of a robotic cell depends on several operational and system

characteristics which include part scheduling, robot and machine characteristics. Since

operations in a robotic cell are automated, effective part scheduling and efficient

sequences of robot moves is crucial. The part characteristics such as their sequence

through machines and processing times on individual machines are the key factors to be

considered in aniving at the part schedule. If the parts in apart family have identical

characteristics, they are refened to as an 'identical part type'. Parts in a paft family

having different sequences and machine processing times, will be referred to as a

'different part type' in this thesis. To determine an efficient part scheduling

methodology in a robotic cell especially in a different part type problem is an imporlant

and challenging task. This research focuses on efficient part scheduling in a three-

machine robotic cell for the different part type problem.

n.2 @hjecúive

The research focuses on the development of a novel genetic algorithm for the 'different

part type' problem in a three-machine robotic cell. The objective of the thesis is to find

the best part schedule that will produce the minimum makespan for the problem

consideled. The solution will consider the two key constraints, namely: (i) each part has

a specific order of sequencing tluough machines which cannot be changed, and each

part may not pass through every machine, and (ii) processing times of parts on

machines they visit need not be the same. A genetic algorithm will be proposed. A pair

grouping and priority procedure will be developed to generate the makespans of part

families, without violating any of the constraints imposed. Different genetic parameters

will be studied and compared using three different test data types. Results from the

studies will be discussed.

tr"3 T'hesis Stnr¡ctrlre

This thesis is organized as follows. A literature review is presented in Chapter 2. The

problem formulation is introduced in Chapter 3. The methodology of part scheduling

using genetic algorithm in a three-machine robotic cell is developed in Chapter 4. The

results and evaluation of genetic algorithm are presented in Chapter 5. Lastly,

conclusions and recommendations are described in Chapter 6.

ChapÉen 2 F-iteraúune R.eview

2"1 R.obotic Cetrls

Decreases in economic growth rate and the increases in dependence upon international

markets are two major factors that have created incentives to improve manufacturing

productivities [5]. Increasing the application of automation in manufacturing is one

way towards improvement. As a result, use of industrial robots for automation is also

on the increase. Robots have been installed in order to increase output, to reduce cost, to

provide more flexibility in manufacturing operations, and to replace people working in

dangerous and hazardous conditions [6]. Their task performances are versatile from

processing operation, assembly, testing to inspection. One of the important applications

is material handling especially in robotic cell. Robotic cells consist of one or more

machines, input/output device, and a robot for loading, unloading and material handling

between machines in the cell.

There have been several studies pertaining to the scheduling of robotic cells [3-9]. Since

the number of machines in a robotic cell is usually no more than four l7], most of the

researches concentrated on two and three machine robotic cell. Scheduling problems in

a two-machine robotic cell for identical parts have been investigation to provide greater

operational flexibility [6]. It has been proved that that there is exacfly m! potential

optimal one-part cycles in an m machine cell [8]. Algorithms for scheduling a robotic

cell that produces a set of pafi types on several machines served by a single robot have

also been reporled l7l Studies related to the scheduling of operations in a

manufacturing cell that repetitively produces a family of similar part on two and three

machines robotic cell have also been investigated [5]. A similar study focused on

finding the optimal one-unit cycle in three-machine no-wait robotic cell when pads are

ciassified as "different part type" [9].

In some manufacturing operations, the order of sequencing through machines is very

crucial. For example, if we want a cylindrical tube of a specific size with two tapped

holes at both ends, the raw material has to be processed in the following order. First, the

raw material has to be turned into the specific size, then, it has to be drilled at both ends,

and lastly the two hóles at the ends have to be tapped. The above example illustrates

the importance of sequencing. The short comings of various studies cited are

summadzed at the concluding section of this chapter.

2.2 GeneÉic,A.{gorithms

Genetic algorithms are global search algorithms and follow the principles of evolution

in nature. It is based on the Darwinian principle of 'survival of the fittest'. Genetic

algorithms use probabilistic transition approach for searching from a given population.

A basic genetic algorithm is composed of two genetic operators; crossover, and

mutation with the goal of hnding the best solution to a problem. Before a genetic

algorithm can be put to work on any problem, it is necessary to encode potential

solutions to that problem in a form that a computer can process. The different coding

strategies or genetic description lead to different results [10]. In fact, genetic algorithms

are a searching process. The coding strategies play an important rule in contributing to

the searching efficiency. If coding strategies are not selected appropriately, the

searching space will be too large to find the optimum solution. In contrast, if the codes

are created suitably, the searching range can be narrowed and the optimum solution can

be found rapidly. In 110-131 different coding techniques have been proposed in order to

satisfu and improve problem solving. After encoding, the chromosomes are evaluated

and selected by using what is known as the 'fitness value'. The promising chromosomes

which have the better fitness value are chosen to perform genetic operators which are

crossover and mutation. Genetic operators especially crossover are regarded as the main

contributing factor in the performance of the genetic algorithms. Therefore, many new

genetic operators have been studied and adapted to accommodate the coding strategies.

A number of genetic operators have been proposed for flow shop scheduling problem

[14]. New ofßprings are created from an initial population. To keep the population size

at a certain level, only the chromosomes that generate better fitness values are selected

to be the new generation. The selection operator and genetic operations are repeated

until a satisfactory solution is obtained or a specified termination criterion is met.

Genetic algorithms (GA) are proving to be popular and have been found to be effective

in solving problems. Even a simple GA appears to be robust and the complexity of

algorithms and the result are irrelevant to the length of genetic string and the original

state of population 110]. Genetic algorithm is also simple that it only involves some

genetic operations. It is so efficient that it can find a near optimum solution even for a

large scale problem. Nowadays, genetic algorithms are one of the most widely studied

searching techniques in manufacturing scheduling problem. Generally, job shop

scheduling problem (JSSP) and flow shop scheduling problem are known to be a typical

NP-complete ol NP-hard problem meaning that no method is known to find a

guaranteed-optimal solution in a reasonable amount of tirne. The two main issues of

using genetic algorithms in manufacturing scheduling problem that have received a lot

of attention are: (i) how'to encode a solution of the problem into a chromosome in order

to guarantee that a chromosome will corespond to a feasible solution l15l; and (ii) how

to enhance the performance of genetic search by incorporating traditional heuristic

methods [15].

Three methods based on genetic algorithms have been proposed to design a nearly

optimum solution for job-shop scheduling problem, a typical NP-complete problem

[10]. The three methods are decimal idle time coding genetic algorithms (DITCGA),

binary idle time coding genetic algorithms (BITCGA) and adaptive idle time coding

genetic algorithm (AiTCGA). The differences between the first two methods were in

the coding strategies. For DITCGA method, chromosomes were coded by several sub

strings that contained data pertaining to parts and idle time that was processed by a

machine. For BITCGA, the structure of the chromosome and the coding strategy were

almost the same as DITCGA except the idle time coding used a binary number of

cefiain bits instead of decimal. The purpose of binary coding is to create the fitter gene

for crossover and mutation operation. For AITCGA method, the concept of self-

adjusting the upper limit of idle time is used. Because genetic algorithms are search

approaches, the proper upper limit idle time can adjust searching space and improve

searching efficiency. As a result, DITCGA and BITCGA provided almost the same

searching efficiency. AITCGA was more complicated. However, as the upper limit of

idle time plays an important rule for the searching space, AITCGA which can adjust

upper limit of idle time (enlarge searching space) had a greater possibility to find the

optimum solution at the expense of needing a larger searching time. In conclusion, these

three methods can satisfy the rapid response requirement in scheduling if the upper limit

of idle time is decided properly.

An adaptive genetic algorithm has been developed to solve the flow shop scheduling

that deals with processing a set of jobs through a set of machines where all jobs have

the same otder of sequencing through machines 116]. One of the well-known drawbacks

that can occur with a genetic algorithm is known as prematuïe convergence. It can

occur if the chlomosomes with a higher fit than the others emerges early in the search.

Under fitness-proportionate selection, they and their descendents will multiply quickly

and it may lead the algorithm to converge on the local optimum that these chromosomes

represent rathel than searching the fitness landscape tho?oughly enough to find the

global optimum [17], [18]. To improve the performance, the adaptive probabilities of

crossover and mutation were introduced. The probabilities of the genetic operations are

dynamically adjusted according to the actual situation of the evolution process. If the

fitness of the individual is higher, the probability of the crossover and mutation

operation should be lower, and vise verse. As a result, the adaptive genetic algorithm

increases the velocity of the convergence of the algorithm and provides better

effectiveness and efficiency than the basic genetic algorithms.

The genetic algorithm for solving flow shop scheduling problem in a type of production

line that had the following attributes has been proposed: (i) parallel machines (a set of

machines that perform operations, simultaneously) and (ii) special procedure constraints

such as some jobs can only be processed on special machines [19]. In this flow shop

scheduling problems, there are rz jobs scheduled to be processed, m sequenced

operations in the production line, and all the jobs have the same flow through machines.

In order to handle special constraints, some techniques were introduced to the

traditional genetic algorithms. For coding scheme, the chromosome was presented in

term of a vector with (m + 1) n ordered elements. The vector represents two pads, a

permutation of the serial number of n jobs and amatrix nxm which denotes a serial

number of machine chosen to perform operation of job. Because the two parts of the

chromosome have different format and meaning, two different crossoveï operators,

mutation operators and their probability are applied for different parts. The comparisons

between genetic algorithms and other algorithms such as shortest processing time

(SPT), largest processing time (LPT), shorlest remaining processing time (SRPT) and

largest remaining processing time (LRPT) were also studied. As a result, genetic

algorithms seemed to provide better results than others when measured for efhciency

and computing time.

A genetic algorithm application to solve the flexible job shop scheduling problem has

been studied [11]. In a classical nxnt job shop scheduling problem (JSSP), there are n

jobs and m machines. Each job must be processed on every machine by following the

assigned operation sequences. In this study, the typical JSSP are extended. Each job

may not have to be processed on every machine and the uncompleted jobs may be able

to pass though the same machine. For chromosome coding, each chromosome is made

up of a chain of operation template. The operation template can be defined as the

mapping between a set of natural numbers and operations which are job number,

opelation number, processing machine and processing time. Because the operation in

each job has precedence constraints, not all the coded chromosome can represent the

feasible schedules directly. A decoding procedure called virtual job shop is developed

10

to decode each chromosome to a feasible schedule. The operating time for each

operation is calculated by Gantt chart. In summary, the utilization of the operation

template and virtual job shop was shown to solve the flexible job shop scheduling

problems easily.

A genetic algorithm to solve the multiobjective optimization of the flexile job shop

scheduling problem has been proposed [12]. The flexible job shop scheduling problem

(FSJP) is a problem of planning and organizing a set of tasks that have to be processed

on a set of resources with variable performances. Two main difficulties associated with

this problem are: (i) the assignment of each operation to the suitable machine, and (ii)

the calculation of the starting time of each operation. In this study, an Approach by

Localization (AL) and a scheduling algorithm have been proposed to assign a set of

feasible solution before applying genetic algorithm. For chromosome coding, Tasks

Sequencing List (T.S.L) is presented. Each chromosome is presented in the form of cell

list which represent the sequencing of tasks on the machines. For the genetic operators,

the Pox operator (Precedence Preserving order based crossover) and the PPS

(precedence Preserving Shift mutation) are introduced. Moreover, the assignment

operators which are the operators that deal with the only assignment properties of the

individuals were also applied. In summary, the solution from the genetic algorithm was

found to be generally satisfactory and promising.

The various genetic operators for flow shop scheduling problem have been studied U4].

In crossover operators, ten crossover operations (which are one-point crossover, two-

point crossover version I, two-point crossover version II, two-point crossover version

III, position based crossover version I, position based crossover version II, edge

l1

recombination crossover, enhanced edge recombination crossover, and paftially

matched crossover and cycle crossover) were compared by using computer simulation

using test problems and user selectable termination conditions. The two-point crossover

version I provided the best result. Similarly, four mutation operations (which are

adjacent two-job change, arbitrary two-job change, arbitrary three-job change and shift

change) were compared. In this case, the shift change mutation operation provided the

best result. However, to obtain the best performance for the problem, the type of genetic

operators as well as the genetic operation probabilities had to be considered [16]. In

addition, the genetic algorithm has been compared with other search algorithms such as

local search, taboo seatch, simulated annealing and random sampling technique. The

results show that genetic algorithm provided a much superior performance when

compared to a random sampling technique. However, the performance was a bit inferior

when compared to other search algorithms.

A genetic-based algorithm to solve the cell formation problem and batch scheduling

problem in Cellular Manufacturing (CM) has been developed 113]. The cell formation

problem is the problem of grouping machines into different cells on ceúain standard.

The batch scheduling problem is the problem of scheduling a number of n-jobs through

a single machine which are capable of handling only a number of job at one-time. In

batch scheduling problem, coding strategy is to divide the chromosome into two parts.

Each chromosome consisted of Par-t A and Part B. The values of genes in Part A

represent the number of job to be scheduled and the number of genes represents the

number of batches. Part B represents the actual jobs to be processed. The number of

jobs to be allocated in each batch depends on Part A. For Pafi A, two types of

T2

operations were introduced which are: (i) a unaïy swapping operator, and (ii) a string

swapping operator. Similarly, two type of operation are used for Part B which are the

order-based operator and the position-based operator. This work concluded that genetic

algorithms can solve batch scheduling problem. It can also provide sequence of jobs to

be processed as well as determine the number ofjobs to be processed in each batch. For

genetic operators, the position-based operators provided the best result.

A genetic algorithm-based parts scheduling in a two-machine and three-machine robotic

cell have been studied [3], 1201. The parts to be scheduled belong to the different part

types. It was assumed that there are no intermediate buffers between machines. For

encoding scheme, the chromosome consisted of a string of number which represents

part scheduling. Since the problem chosen consisted of different part types, there are

two alternative sequences of robot moving in a two-machine robotic cell and six

alternative sequences of robot moving in a three-machine robotic cell. For this reason,

these two and six alternative cycle times are used as a fitness function for two-machine

and three-machine robotic cell respectively. For genetic operators, one-point cut

crossover and arbitrary two-part exchange mutation are applied. In conclusion, the

genetic algorithms provided a practical and effective solution. However, to prevent

local optimum, converging speed of the algorithm had to be controlled. Different

scheme of genetic operator affects converging speed of the algorithm. This aspect of

GA's application to sequencing and scheduling problem witl be fully explored in this

thesis.

13

2"3 Surmmaany

During the past decade, genetic algorithms have been employed to solve manufacturing

schedule problem. A number of researchers dealing with manufacturing schedule

problem using genetic algorithms have been reported in literatures. Manufacturing

schedule problems including flow shop scheduling problem and job shop scheduling

problem are NP-hard combinatorial optimization problems. Normally, these problems

have to deal with multi-objective optimization problems with complex constraints.

Genetic algorithms seem to be suitable for solving such problems because the first and

most important point of genetic algorithms is its ability to explore the solution space in

multiple dilections. Since genetic algorithms have multiple offsprings, many different

routes can be explored at the same time and if one path turns out to be a dead end, they

can easily eliminate it and continue work on the more promising path, giving them a

better change each run to find the optimal solution. Most of the other algorithms are

serial, and can explore the solution space in one direction at a time, and if the solution

turns out to be suboptimal, all the previous works may have to be abandoned and started

all over. Moreover genetic algorithms are parlicularly well-suited to solving problems

where the space of all potential solutions is truly huge - too vast to search exhaustively

in any reasonable amount of time 121]. However, no matter how much strength genetic

algorithms possessed the key to obtaining an efficient solution depends on the efficient

implementation of genetic algorithms. Two main issues namely: how to encode a

solution in the chromosome, and how to enhance the performance of genetics search

always have to be considered. From a review of various researchers cited above, with

appropriate modification to the standard genetic algorithms, it can be concluded that

14

they have the potential to produce efficient results for many complex problems in

manufacturing schedule problems.

From a review of literature it can be concluded that genetic algorithms to solve batch

scheduling problem with a number of jobs though a single machine, and with a single

patt type have been developed. Genetic algorithms to solve 'different part type' have

been the focus only in a very limited number of works. The order of sequencing through

machines of each parl in 'different parl type' has not been developed to an acceptable

level due to the complexity of encoding strategies and fitness calculation. As mentioned

in section 2.1,there are cases when the orders of the operations are very crucial. Only

two researchers [3], 120] have considered material handling between machines and

developed genetic algorithms for a two-machine and three-machine robotic cell.

This r'esearch will develop genetic algorithms for a three-machine circular robotic cell

to deal with scheduling 'different part type'. It is a NP-hard problem and will consider

part scheduling as well as robot scheduling for part handling. The problem has two

main issues: (i) each parl has a specific order of sequencing through machines which

cannot be changed, and each part may not pass through every machine, and (ii)

processing times of parls on machines they visit need not be the same. The objective is

to find the best parl schedule which provides the minimum makespan. A pair grouping

and priority procedure will be employed to formulate the makespan in order to maintain

the order of sequencing through machines of a part. Further detail will be provided in

the following chapters.

15

CEaapÉen 3 Fn"ohlene Formulation

This chapter will present the details of problem formulation for part scheduling in a

th¡ee-machine robotic cell. It includes a description of the three-machine robotic cell

considered, data structute, part scheduling, part grouping and makespan calculation by

using time chart and the priority method.

3"X T'hree-W{act¡ine R.obotic Cell

The three-machine robotic cell consists of three machines: machine 1 (Ml), machine 2

(M2) and machine 3 (M3), an input station 1 (M0), an output station o (M4), and a

central robot as shown in Figure 3.1. The machines and the stations are assumed to be

located in a semi-circle with the robot located at the centre. The exact location of the

machines is not that critical and variations in spacing can be easily incorporated. The

robot transfers parl between machines as well as from input and output stations. At the

completion of all processing requirements, the parts are deposited in the output station.

\
-o'v

o@
Output

Machine

H
<'*..

wmr
Robot

Figure 3.1: The layout of three-machine robotic cell

16

The robot is assumed to be equipped with a one hand gripper and can handle one paft at

a time. There are no intermediate storage buffers in front of machines. Therefore, any

part in the cell is always either in one of the machines or being handled by the robot.

The machines can process one part at a time and the parts in the machine have to be

unloaded before a new part is loaded. The pick-up, loading, unloading, drop-off and

transporlation of part between machines or stations are car¡ied out by the robot. The

robot travel time between any of pair of adjacent stations is equal as a result of distances

between machines being assumed equal. However, it can be changed, if need to be. The

notations that represent robot movements of a robotic cell in this work are shown

below.

Time used by robot to pick up or unload part.

Time used by robot to drop off or load part.

Movement time between any pair of adjacent location.

It is assumed that the setup time is included in the processing time of each part as it

moves through different machines.

3.2 Ðata Structune

There are nparts Pt, Pz...,Pn to be processed through the machines. Each part has a

specific order of sequencing through machines and this cannot be changed. Hence

routing of a parl through the cell is critical. The parls may not need to pass though every

machine and the processing time of parts on each machine may be different. Every part

statts at the input station 1 (M0) and finishes at the ourput station O (M4). At the

begiruring of a production, all the machines are assumed to be idle with no parts in them

and the robot is at the input station 1(M0) ready to pick up a part.

pick :

drop

move

17

A paft schedule is represented using the notationp.,(t),po(2)...,po(r). In other words,

Po(t), Po(2) - . ., Po(r)is a schedule for a given permutation o of n parlts. The information

of each part can be represented to contain the order of sequence through machines and

the corresponding processing time. Any part information(Po1,¡)will be presented in a

standard form shown beiow.

Po(i): St(o-,) (Wçsrr,,¡)) * Sr(*) (W1srr"
r1) - Sr(o-,) (Wçsrr,r¡), where

St(o,) : The first machine thatpartPof¡l will be processed.

st(o,) The next machine thatpartPoli¡ will be processed after machine sr(.,-,).

sr(o,) : The next machine thatpaúPo1i; will be processed after machine sr(o-,) .

W(Sto,) : Processing time of parl Poç,¡ on S,(o.,) .

W(szø,) Processing time of part Po(i¡ on Sr(o-,) .

W(str,,) Processing time of part Po1,¡ on Sr(o.,).

m(o,) : Number of machine thatpart pol,l will be processed. *(o,) = {I,2,3}

T(o,) Makespan of individual parl Po(ù.

T(or)*(o) . +(o-,,) : Makespan of part schedule Po.),Po(2)...,Pr¡(n\.

In the event when nt6¡ is equal to 2, there will be nos¡(o,,) and w6rø,¡) in the

equation representingpartPor,¡. When *@,) i" equivalent to 1, there will be noS3qo,;,

Sr(o,) , W(ssro,) and W(sz@,,; in the equation representing part Po(¡).

18

For example if par1P,, has rhe following data, M2 (5) + M3 (5) -+ Ml(6), ir means thar

the part starts at M2, upon f,rnishing atM2 moves to M3 and then to M1. The processing

times on each of those stations are as shown within brackets. The sequence of robot

moves for this part is shown in Figure 3.2.

P¿ =Mz(s) --> M3 (s) -+ Ml (6)

w@r
Robot

l. Pick up at M0
2. Move to M2 (A)
3. Load on M2
4. Wait at M2
5. Unload from M?
6. Move to M3 (B)
7. Load to M3
8. Wait at M3
9. Unload from M3

10. Move ro Ml (c)
11. Load to Ml
12. Wait at Ml
13. Unload from MI
14. Move to M4 (D)
15. Drop off at M4
16. Move back to M0 (E)

Figure 3.2: The sequence of robot moves for partpl

To illustrate, consider an example where a part family F1 consists of seven pafis:

P1, P2, P3, P4, P5, P6,andPj to be processed through the three machines. For the

example considered, the part family F1 has the following part information.

P1 : Ml (11)) M2 (13)) M3 (9)

P2: M2 (8)) Ml (10)

P3 : M3 (14)) M1 (i2)

P4 : M2 (11)) M3 (7)

P5: M2 (10)

P6: M3 (1s)) Ml (13)) M2 (1i)

Pt : Mi (7)) M2 (e)

The information provided above is also shown in a tabular form in Table 3. 1.

t9

Table 3.1: Part family Fl

PartName
First Process Second Process Third Process

Machine Time Machine Time Maehine Time

P1 M1 11 M2 13 M3 9

P2 M2 8 M1 10 None None

P3 M3 t4 M1 t2 None None

P4 M2 11 M3 7 None None

P5 M2 10 None None None None

P6 M3 15 M1 13 M2 11

P7 M1 7 M2 9 None None

To find the part schedule that provides the minimum makespan for the part family

consisting of many parts in Fi, is very complicated. One part farnily can generate many

part schedules and there are many different options to calculate the makespan.

Moreover the important constraint that the order of sequence through machines of every

part cannot be changed should also be considered. In this work, a pair grouping and

priority method is applied to assure that makespan calculation will meet the constraint

considered. Section 3.3 will provide more details about the part scheduling and the

grouping and section 3.4 will present the priority method and time chart for makespan

calculation.

20

3.3 Fant Scfiredulimg / Grouping

As mentioned in Section 3.2, any part schedule will be represented

asPor¡,Po(2)...,Po(n). If there are n parts P1, P2...,P,, to be processed through the

three-machine cell, the parts can be arranged into many part schedule groups.

Specifically, the number of parl schedules that can be generated is equiv alent to n!,

where ¡z is the number of parls to be scheduled. For example, if there are three parts: P1,

Pl and P3, to be scheduled, pafts can be arranged into six (31) part schedules which

are{P1,Pz,P:\, {Pt,Pt,Pz), {Pz,Pt,Ps\ , {Pz,Pt,Pt}, {Pt,Pt,pz} ,and{p3,p2,4).

However, in each part schedule, there are many different options to calculate the

makespan. For example, to calculate the makespan of parl schedule P1,P2,P3, thele are

four options to calculate makespan. For the first option, it can be formulated by

calculating the individual makespan offf , P2 andP3 , and then summing all three

individual makespans together (makespan of option l:Tpt+Tp2+&,).For the second

option, it can be formulated by calculating makespan of Pi and P, together and then

summing this makespan with the individual makespan ofP3, (makespan of option 2

:74+p2*Tor). For the third option, it can be formulated by calculating makespan of

P2 andP3 together and then summing this makespan with the individual makespan

ofPl , (makespan of option 3:Tpr*p, *To).For the last option, it can be formulated by

calculating makespan of P1, P2 and P3 all together at once, (makespan of option 4

:Tpr*p.*pr). Each option may generate different makespans. This means that there can

be many makespans generated from one part schedule. The difference in each option is

21

the way groupings are formed for the parl. In other words, the different grouping of the

parts in the calculation will provide different results for the makespan. As the number of

parts in the part schedule increase, more grouping option will be generated. The

fundamental issue that needs to be looked at is to determine which grouping option is

the best to use in calculating the makespan. In fact, the makespan that will represent the

makespan of the parl schedule should be the minimum makespan that is selected from

every grouping option generated from the part schedule. However, it is difhcult to

calculate all the makespan from every group option, especially in the case when part

schedule contains a number of parts.

One of the grouping options is a pair grouping. In a pair grouping, every part in the part

schedule will be paired into groups. For example, if paft schedule A

isP1,P2,P3,P4,Ps,Pø, by using a pair grouping, the parts can be grouped into three

groups: {4,P}, {P:,Pq), and {P5,P6} . The pair grouping method is explored further in

this work. A pair is defined as the smallest group that any part schedule can be grouped

into (excluding one). In other words, every part schedule can be divided into groups of

pair, no matter how many pafts ale contained in the part schedule. A computer based

methodology w'as developed to calculate the makespan of any pair grouping. The

program was written using "Java" as the programming language. The choice of

plogramming language was based on the familiarity of the author with "Java". Section

4.2.3 will provide further details of the methodology for a pair grouping.

22

3.4 Fn"ronity Met[rod / T'irme Chant

To calculate the makespan of an individual part is quite simple. A time chart is used as a

tool to determine the makespan. The java language is used to create the graphical

display and the code for the time char1. The time chart consists of the time table of

machine 1 (M1), machine 2 (M2), machine 3 (M3) and robot (R). Since the order of

sequencing of a part through machines cannot be changed, the makespan can be

determined by plotting the processing data of parts as a time chart by following the

given order of sequence through machines. The processing data include the processing

time of parl in the machines and the time of robot activities (loading time, unloading

time, pick up time, drop off time, and moving time between machines) that robot uses in

order to complete the process through a set of machines for a part. The total time

utilized to complete the part in the time chart is the makespan. For example, the data of

part P1 from section 3.2 has the sequence, M2(5)-+M3(5)-+M1(6). Figure 3.3

shows the time chart of partPl. From the time chart, the makespan of partPl is

equivalent to 26 units.

¿)

A priority based method is introduced. The concept of the priority method is based on

"fitst come, first served" principle. This is one of many other scheduling rules normally

followed in scheduling studies. The parts will be attended to in the order that they

anive. It means that the first part of the pair has to be processed before the second part

of the pair. The processing of the first part will have the first priority and any activities

(such as robot movement or machine processing) arising from processing the second

paft cannot stop the processing of the first part. In other words, the part in the first order

of the group will have the priority over the parl that comes later. This assumption does

not however imply that the first part has to be finished before the second part. Since the

order of sequence of the part through machines cannot be changed, this method will

maintain the order of the sequence through machines and the position of a part in the

group.

The process stafis by plotting the processing data of the first part in the time chart (this

process is identical to the process of determining the makespan of an individual part).

Then the processing data of the second parl will be incorporated on the same time chart.

Two processes are employed: (i) insertion and (ii) connection. The process starts with

insertion. The processing data of the second part will be analyzed in order to determine

the insertion position. The computer based algorithm will compute the time interval

(idle times) in the first parl's schedule. If the space is big enough to insert any

processing data of the second part, that processing data will be inserted into the time

chart. In the event when the processing data cannot be inserted into those idle spaces,

the connection process will be used. For the connection process, the processing data

will be input after the processing data of the f,rrst part. In other words, the processing

25

data of the second parl will be inserted into the time chart in the ways that provide the

shortest makespan of the pair without causing any interference to the filst part. That

means the hrst part will be the control parl. The first part does not have to finish before

the second part. The processing of the second part can finish ahead of the first part if the

result will provide a shorler makespan. However the inserting dala has to meet the

condition that the order of machine processing sequence of any part cannot be changed.

The total time to complete all parts in the time chart is the makespan. For example a

pairgroupingGl consistsof Pa(thefirstpartof thepair)and Ps,andiscomposedof

the following part information:

Pa = M2 (5) -+ M3 (5) -+ M1 (6); and

Pe = M1(6) -+ M2(4) .

The process of makespan caiculation from time chart of the pair grouping G1 is shown

in Figure 3.4. The sequence of robot moves for the pail grouping G1 is shown in Figure

3.5.

26

OM Wl *lr
Output

Robot

l. Pick up P, at M0
2. Move P.r to M2 (A)

3. Load P^ onM2
4. Move back to M0 (B)
5. Pick up Po atM1
6. Move P^ to Ml (C)
'7.Load P, onMl
8. Move back to M2 (D)
9. Wait at M2
10. UnloadP, íiom M2

P^ = M2(5)-+ M3 (5)-+ Mt (6)

Pe = M1(6) -+ M2 (4)

I1. Move P, to M3 (E)

12. Load P, to M3
13. Move back to Ml (F)
14. UnloadPo at Ml
15. Move PR to M2 (G)

16. Load Pu onM2
17. Move back to M3 (H)
18. Wait at M3
19. Unload P, liom M3

20. Move P,4 ro M I 0)

21. LoadP,,1 to Ml
22. Move back to M2 (J)

23. UnloadP, at M2
24. Move PB ro M4 (K)

25. Drop offP, on M4
26. Move back to M1 (L)
27 . Wait atMl
2S.UnloadPn from Ml
29. Move Pu to M4 (M)

30. Drop off Pu atM4
3l. Move back to M0 (N)

Figure 3.5: Sequence of robot moves for pair grouping Gl

As stated above, there are many part schedules that can be generated from a part family

and each part schedule may result in different makespan values. The makespan of these

part schedules have to be calculated by using time chart methodology. A single equation

for calculating the minimum makespan could not be found. In case that the part family

consists of many parts, the solution space of the pïoblem will be veïy big and complex.

To find out which part schedule provides the best (minimum) makespan is a challenge.

A methodology based on genetic algorithm is proposed next. Genetic algorithm utilizes

simple and eff,rcient searching techniques and represents a popular approach to

stochastic optimization. Genetic algorithm is most appropdate for complex non-linear

28

models such as the problem considered here. Genetic algorithm has the ability to

explore the solution in multiple directions and hence a powerful tool to find a solution

even in a vast solution space. Chapter 4 will explain the methodology of genetic

algorithms developed for solving this problem.

29

Cåeapten 4 Methodology

4.1 Ou¡Élime of GemeÉic AlgonitErrns

Genetic algorithms were formally introduced in the United States in the 1970s by John

Holland and utilize probabilistic search approaches. They mimic the evolutionary

process. The basic concept of genetic algorithm is designed to simulate the Darwinian

principle of survival of the fìttest. As per Darwinian evolution, all of the creatures are

constantly evolving. They are continually adapting themselves to all changing

environments to survive. The weaker creatures tend to die. Only the stronger and the

f,ttter creatures live to mate and to create offspring and ensure the continuing survival of

the species.

Genetic algorithms are techniques that mimic biological evolution as a problem-solving

strategy. Genetic algorithms begin with a set of solutions called initial population. The

population consists of chromosomes, with each chromosome representing a solution to

the problem. After initial populations are created, each candidate chromosome is

evaluated by using some measure of fitness. To form a better population, only the fitter

chromosomes are selected as the parents and allowed to reproduce the new

chromosomes as the ofßpring. The more suitable they are, the more chances they have

to reproduce. The offsprings are created by two basic genetic operators; crossover and

mutation. After the operation, the new population consists of two groups: (i) the

preceding chlomosomes and (ii) the new offspring. To maintain population size, only

the fitter chromosomes of the new population are selected to take part on evolving the

life cycle. Every evolutionary step is known as a generation. The ne'uv generation is

produced from the surviving chromosome and the better offsprings from the previous

30

generation. By this way, the new generation will become stronger than the last

generation. Then, the new generation is used to reproduce its next generation. The

population evolves again and again, containing more and more highly fit chromosomes.

When aceftain convergence criterion is reached, wherein no signihcant further increase

in the average f,itness of the population results, the best chromosome produced will be

seiected to determine optimal solution to the problem.

4"2 T'he [xmplemrenÉatiom of Gemetic Algorithm

A typical genetic algorithm consists of six processes: (i) encoding, (ii) initialization, (iii)

fitness evaluation, (iv) parent selection, (v) genetic operations and (vi) evolution. In

each process, there are different methods for implementation. For example, in the

encoding process, solution can be encoded in several ways such as permutation

encoding, binary encoding, or tree encoding, 1221. It depends on the nature of the

problem to decide which method is suitable for the problem. For instance, permutation

encoding is suitable for the ordering problem such as traveling salesman problem

(TSP), l22l as well as the problem focused in this work. Therefore, in order to obtain an

efficient solution of any problem, every process of genetic algorithms should be

implemented to suit the problem considered. In this section, the implementation of

genetic algorithm for part scheduling for the three-machine robotic cell considered is

presented.

Java language is used to code the proposed genetic algorithm. At the start, the essential

data about pafts to be produced in the robotic cell, namely : number of pafts, the

processing sequence, and the processing time at machines for each part, robot loading

31

and unloading time, and robot movement time between machines will be input.

Similarly the necessary information about genetic operations which are population size,

number of generations, the type and the probability of crossover and mutation will also

be input. The program provides several functions to create initial population, to evaluate

fitness, to select parents, to perform genetic operations and evolution with the goal of

finding the optimal part schedule which provides minimum makespan. Figure 4.1 shows

the flow chart of genetic algorithm implementation.

32

lnitialízation

Fitness Evaluation

Parent Selection

New Generation
Chromosomes

Figure 4.1: Flow charl of genetic algorithm

aa
JJ

4.2"1Ðmcoding

Before a genetic algorithm can be applied to solve a problem, a method is needed to

encode potential solutions to the problem in a computer implementable format. The

process is called "Encoding". It tepresents the potential solution to the problem in the

form of a clu'omosome. Specifically, part schedules are represented by chromosomes. In

this work, permutation encoding is adopted, 1221. Permutation encoding is particularly

suitable for sequencing problems. In permutation encoding, every chromosome consists

of a string of genes. Each gene is an integer that represents a part and the position of

each gene represents the position of the part in the part schedule. Therefore, if there are

n parts to be scheduled, each chromosome will consist of an integer from I to n with the

sequence of numbers being different from chromosome to chromosome. In short, the

length of the chromosome is equivalent to the number of parts. Figure 4.2 shows

chromosome "Cl" which is represented as 13 628 4 5l.It means chromosome "Cl"

has part schedule that starts with processing of part 1 f,rrst, followed by part 3,6,2,8,4,

5 and 7 inthat order. Each part goes through a variety of machine in a certain sequence,

as contained in the data for each par1.

Chromosome: C1

Figure 4.2: Representation of chromosome C1

Part

/

6 ."Part I

d

P

34

n 3 6 2 I 4 5 7

4"2.2 lnåtiaåizatio¡r

To statt the genetic algorithm, a group of chromosomes are required. The group of

chromosome that is used to staft genetic algorithm is called "initial population".

Initialization is the process to generate the initial population. The first step is to define

the population size. The initial population will be generated, represented as an integer in

a two-dimensional array. Each row of the affay represents a chromosome which is a

part schedule. The number of rows which is the number of the initial chromosomes is

equivalent to the population size. As stated in Section 4.2.7, each chromosome contains

an integer I to n where ¡¿ is the number of parts. The process to generate initial

population contains the following steps.

(1) Generate chromosome q

C :1,2,3,4...n, where z: number of parts and i: I,2 ... population

size.

(2) For each C,, generate random number (r¿), from a range [0, 1],

where k: I,2 ... number of part and i: I,2 ... population size.

(3) Group the random number (r¿), with the integer inÇ .

("1); : I, (rz)¡ :2.... (rn)¡: n

(4) Use bubble sorl method to sort (r¡)¡ in descending order.

(5) Sort the integer in Ç according to the sorted (r¡,)¡from (4).

Figure 4.3 shows the example of generating initial chromosome Cl.

35

Chromosome Cl

Random number

Bubble sort method

Sorted random number

Initial Chromosome Cl

Figure 4.3:Erample of generating initial chromosome C1

To generate initial population, first, the chromosome is created as an array of integers

from 1 to n, where n is number of parts. Next, the number from 0 to 1 is generated

randomly. Each random number lepresents each gene (integer) in the chromosome.

Then, by using the value of the random numbers, the genes in the chromosome are

sorted in descending order by using bubble sort method. The next chromosome is

generated using the same procedure until the number of chromosome is equivalent to

population size. In this way the chromosomes for the initial population are created.

4"2.3 F ntness Evaluatåon

Fitness evaluation is a method to measure the fitness value of a particular chromosome.

In order to select the fitter chromosome to progress to subsequent process of genetic

algorithms, each candidate chromosome has to be evaluated by using some measure of

fitness. For part scheduling in a three-machine robotic cell problem, the makespan is

used as a fitness measurement. Specifically, the reciprocal value of the makespan is a

1 2 a
J 4 5 6 7 I

0.2 0.1 0.6 0.8 0.1 0.3 0.4 0.9

0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

2 1 617 IJ 5 4 8

36

fitness value. However, the makespan has to be calculated within the condition that

achieves the most crucial issue of the problem, namely: each part in chromosome has a

specific order of sequencing through machines and the order cannot be changed. Hence,

in this work, the pair grouping method is designed to calculate the makespan. The

concept of the pair grouping method is that the makespan of each chromosome can be

calculated by the summing all the makespan values of the groups of parts that are paired

in chromosome. The process begins with every part in the chromosome being paired

with its adjacent part with the intention of maintaining the order of the part in the

chromosome. Next, the makespan of each pair will be calculated by using the priority

method as mentioned in Section 3.4. Then, the makespan of the chromosome will be

formulated from the summation of the makespans from every pair. Figure 4.4 shows the

example of the pair grouping method for chromosome C1.

Chromosome

\-\
Step I : Pailing

Step 2 : Calculate
Makespan Makespan of

Part 3 and Part 6 P

Step 3 : Surnmation Makespan ofChr.omosome Cl = TS,O * TS,S * Tr,+ -lTZ;

Figure 4.4: Example of pair grouping method in chromosome Cl

The process of pair grouping method contains the following steps.

Assume that"C" is a particular chromosome considered to measure fitness value

where chromosome "C' consists of n parts which are P1, P2, P3 ... , Pn .

w
Itr'¡

Makespan of
Part 2 and Part

m
I

tT'3-l
Makespan of

Part 1 and Part

ffi
+

tr'o I

Makespan of
art 5 and Part

m
I

[r3rl

CI 3. :6ì 5 8 1 A
I 2 7

3t

In other words, C = P1, P2, P3 ..., p,, , where n : number of parts.

(1) create G,, a group I of chromosomes by pairing parl with its next part.

Gt = {Pt, Pzl, Gz = {Ps, Pql ...,G¡ = {pqr_r), pn),

where i : l, 2..., k andk =L.
2

(2) Calculate TG,, the makespan of groupG,.

The detail of makespan calculation is shown in Section 3.4

(3) Calculate TC , the makespan of chromosome ,.C" from

k

76 =lrc,
i=l

(4) Calculat e FV, the f,rtness value of chromosome ,.C,, from

DT/- I

TC

However, the above process can be used more efficiently when the number of parts in

the chromosome is an even number. When the number of part is an odd number, there

will be an excess part that can not be paired. The excess part will be treated as a group

with just that part as a member. The position of the excess part can take many options.

Each different position of the excess part provides a different model of grouping.

Therefore, there is more than one optioi to pair the parts in chromosome when the

number of part is an odd number. The number of options of a pair grouping is

equivalent to(n+I)|Z, where n is the number of par1s. Figure 4.5 shows the four

alternatives for pairing the group of chromosome C1, where C1 : 3, 6,5,I,4,2,7.

38

tr @ @ E 3,'J:î1" = r: +ro,: *rr,¿ +rz,z
Group I Group 2 Group 3 Group 4

@ tr @ EE fl,?.i:ï:" = r¡.0 + rs * rt,q.t rz,t
Group I Group 2 Group 3 Group 4

@ E tr æ 3,'J:i,:" : r¡,0 *rs,r * rq *r2,t
Group I Group 2 Group 3 Group 4

FT FTi-l m tr 3"J:lri": r:.0*rs,,*r¿.2*rt
Gr"up I Cr""p f Gr""p 3 Cr-rp q

Figure 4.5: Four alternatives of pair grouping of chromosome C1

As a result, when the number of parls is an odd number, all options of a pair grouping in

the chromosome have to be considered. The option that provides the best (minimum)

makespan will represent the fitness value of the chromosome. The process of the pair

grouping method when the number of parts is an odd number contains the following

steps.

Assume that uC is a particular chromosome whose fitness value needs to be

calculated. C = Pt, P2, P3 ..., P,t ,with n: number of parts.

(1) Create G, , a group/ of option i by pairing part with its next part and at any

position where i : j, Gu will contain only one member which is P12;_r¡. in

other word, G jj: {Ptz¡_U} .

Gtt = {P}, Gn = {Pz, Pt}, Gtt = {Pq,Ps} ...,G1k = {Pø-1, Pn),

G2r={4,P2]¡, G2z={4), Gzi={P+,Ps} .. ,G2k={Pf,_rl ,Pn\ ,

:

Gjt={Pt,Pz\, Gj2={Ps,P+) ., Gjj ={Ptz¡-t)}...,Gj¡ ={P1n-r; ,Pr} ,

:

Chromosome Ci

) 6 5 4 2 l

39

Gkt = {Pt, Pz} , Gk2 : {Ps, P+\ , Gk3 = {Ps, Pù ... ,Gkk = {P,r\

'Wherei,j :1,2...,k and, k=n!I .

2

(2) CaLculateTGU , the makespan of group GU.

The detail of makespan calculation is shown in Section 3.4

(3) Calculate TC,, the makespan of option I of chromosome "C" from

k

TC¡=zrCu
j=1

(a) The TCtthat provides the minimum makespan, will be used to calculate the

fitness value FV of chromosome "C'from

Dr/- I

TC

Figure 4.6 shows the flow chart of fitness evaluation procedure.

40

@
I

Candidate Chromosome

Pairing Parts iri Option I

with condition

G¡¡:{\z¡_¡\

+

Calculate Times of
Each Pair in Option 1

+

Calculate Times of
Each Pair in Option 2

+

Sum Tirnes of AII Pairs
in Option I

Fitness Value of Chromosome

Figure 4.6: Flow chart of fitness evaluation procedure

4"2"4 Farent Selectlon

"Parent selection" is used to select the populations from the previous generation to

serve as the parents for the next generation. The principle followed is to select only the

fitter chromosomes as the parents to reproduce the new offspring by performing the

genetic operation. In this work, a roulette wheel selection approach is applied for parent

Even Ã odd

I

Calculate Times of Each Pair
in Chromosome

Fitness Value of Chromosome

Create Options of a Pai¡ Grouping
of Chromosome

nnnrber of options : (2n + 1) / 2

Sun Times of All Pairs

Select the Best Sum of Times
frorn Every Option

41

selection. The roulette wheel selection is a form of f,rtness selection procedure. In this

the chance of an individual being selected is determined. The amount of fitness is

measured by quantifying the fitness as a propoftion. The concept can be represented as

a game of roulette with each individual getting a slice of the wheel. The more fit ones

get larger slices than less fit ones. When the wheel is spun, the section on which it lands

and the individual who owns the location is chosen. The places on the wheel can be

representing different chromosomes. There is a good chance for some chromosomes to

be selected more than once. The better the fitness, the greater is the chance it will be

selected. The selected chromosome will go forward to form the mating pool for creating

the next generation. Multiple copies of the same chromosome can exist in the mating

pool. The roulette wheel selection approach contains the following steps.

(1) Calculate fitness value, FV, ftommakespan, TC, as described in 4.2.3

FVi =: ,where i: l,2...population size.' TC,'

(2) Calculate selection probability, p¡ for each individual using,

FV,
P¡= p,p-¡i- , where i:7,2... population size.

Lpt,
t=l

(3) Calculate cumulative probability, Cp, for each individual from

i
\-nLPi = Lrn
.-_1tt- |

(4) Generate random number (r¡) from a range [0, 1].

42

(5) If r¡!Cp, then select individual t.

If Cp¡ <h !Cp,*, ,then select individual i+1.

The roulette wheel approach is stochastic. The approach begins with determining the

slice area of each individual in the wheel. By calculating the selection probability and

cumulative probability from fitness value, the slice area of each individual are defined.

Then, the number from 0 to I is generated randomly. If the random number lands in a

certain area, for erample the generated random number is between cumulative

probability Cpt andCp¡+1, the individual I + 1 is selected. Using this procedure, the

chromosomes are chosen to form mating pool. In other words, the mating pool contains

the selected chromosomes that will be chosen to be the parent chromosomes when

genetic operations occur. The number of selected chromosomes in mating pool is

equivalent to population size. Hence, there are chances that some chromosomes are

selected more than once and some may not be chosen to be included in the mating pool.

4.2.5 Gemetic @penatons

Once parent selection has chosen the fitter parents, thele must be ways of improving

their fitness in the next generation. There are two basic genetic operators to accomplish

this, which are crossover and mutation. The crossover and mutation are the most

imporlant parts of the genetic algorithms to generate the better chromosome.

43

4"2.5"X Crossoven

Crossover is a genetic operator that combines the two selected chromosomes (parents)

to produce a new chromosome (offspring). The idea behind crossover is that the new

ctu'omosome may be better than both the parents if it takes the best charactelistics from

each of the parents. There are several types of cïossover operators. In this work, three

crossover operators which are (i) one-point crossover, (ii) two-point crossover (version

I) and (iii) two-point crossover (version II) are adopted. The following sections provide

further detail.

(1) tne-Folnt Cnossover

The one-point crossover begins with a random selection of a crossover point (a

cutting point) in the chromosome. Then, the two new offsprings are generated

by interchanging the genes from the two parent chromosomes at this point.

Figure 4.7 shows the example of a one-point crossover wherein parent 1 and

parent 2 are divided into two sections by the cutting point.

Parent 1 Parent 1

r Cuttins Point

I¡
Cuttine Point

Offspring 1

Parent 2

Fl'--lîI ¡T rTtT+-ff orrspring 21i
"I

2 a.
-) 4. 5 6 1 8

TI

Figure 4.7:Example of one-point crossover

2 J. 4 6 5 8 l

/-
J 6 5 8 1 4 2 1 3 6 .5 I 4 2 l

44

Parent2

The two offsprings, offspring 1 and offspring 2, are generated from the two

parents. The left section of offspring i imitates the genes from the left section of

parent 1 while offspring 2 inherits from parent2.The right section of offspring 1

is the copy of the genes that are not contained in the first section of offspring 1

from parent 2. The creation of offspring 2 is similar, except in this case, the right

section of offspring2 is created as shown in Figure 4.7.

(2) Two-Foir t Crossove!' (Version I)

The two-point crossover (version I) begins with a random selection of two

crossover points in the chromosome. Then, the two new offsprings are created

by interchanging the genes from the two parent chromosomes at these two

points. Figure 4.8 illustrates the example of two-point crossover (version I)

where the two offsprings: offspring 1 and offspring 2 arc generated from two

parents.

Parent I Parent 1

Cutting Point 2--1 - Curting Poinr I

Cutting Point l¡
I I ¡ Cuttine point 2

section I { ...tion 2 t section 3 section I { se"rion 2 lsecrion 3

Offspring 1

Parenl2

TI t?
rJ

.----,,--'
\ | '

iÌ + ,, 1

rf I 1r.? I'
Àr

-_t- ; I _l_

Offspring 2

Parent 2

Figure 4.8: Example of two-point crossover'(version I)

I 2 314 5 6 7 8 I 2 J 4 6 7 8

I 2 J 6 5 4 7 8 J 6 5 4 8 2 n

.J 6ls I 1 4 'l: a J 6 5 I i 4 2 ,7.,

45

Parent 1 and parent 2 are divided into three sections: section 1, section 2 and

section 3 by cutting point 1 and cutting point 2. The genes in section I and

section 3 of offspring 1 inherit from section 1 and section 3 of parent 1

respectively while offspring 2 inherits those genes from parent 2. The genes in

section 2 of offsprings 1 is the copy of the genes from parent 2 that are not

contained in the section 1 and the section 3 of offspring 1. The section 2 of

offspring 2 is created in similar way, except that the genes are a copy from

parent 1.

(3) Two-Foint Cnossover (Version [[)

The two-point crossover (version II) is similar to the two-point crossover

(version I). It starts with randomly choosing two crossover points in the

chromosome of the two parents. As a result, the chromosomes of the two parents

are divided into three sections: section 1, section 2 and section 3. Then, the two

new offsprings are created by interchanging the genes from the two parent

chromosomes at these two points. Figure 4.9 shows the example of a two-point

crossover (version II).

46

2 4, .:5:: .6;,' 1 IParent 1

Offspring I

Parent2

¡ Cutting Point I

I - Curring point 2

tJ...tionzlr""tions

Cutting Point 2--1

Cutting Point i-1
I

scction I I ...rion2 I...tion3 secrion

1

{ {,
rllr+l

Parent I

Offspring 2

Parent2

Figure 4.9: Example of two-point crossover (version II)

In the case of two-point crossover (version II), the genes in the section 2 of

offspring i inherits from the genes in the section 2 of parent I whereas offspring

2 inhelits those genes from parent 2.The genes in the section 1 and section 3 of

offspring 1 are the copy of the genes from parent 2that are not contained in the

section 2 of offspring 1. Similarly to generate the section 1 and the section 3 of

offspring 2, the genes of the corresponding section are created from parent i as

shown in Figure 4.9.

The nuinber of children from crossover operation depends on the crossover probability

(Pc). For instance, if Pc equals 0.6, it means that 60%o of selected chromosomes in the

mating pool should undergo crossover operation. In other words, the number of

offsprings from crossover should be equivalent to 60% of population size. The pair of

parents in which crossovers are performed is randomly picked from the mating pool.

The process of choosing parents is as described below.

I 2 J 4 5 6 7 I

J 8 I 4 6 2 1

't
\\+r r+ I

2 J 5 8 4 6 1

r1
J 6 5 8 I 4 2 7 J 6 5 B 4 2 1

47

(1) Generate a random number s, from the range [0, 1] of each chromosome i

(Ç) in mating pool, where i : 1 ,2... , population size.

(2) IfE 1Pc , then chromosome i (q) is a parent chromosome that will

undergo crossover operation, where Pc : crossover probability.

4"2.5"2 Mutation

Mutation is a genetic operator that randomly alters one or more gene positions within

chromosomes (parents) from its initial state. This can result in entirely new

chromosome values being added to the populations. With these new chromosome

values, the genetic algorithm may be able to arrive at a better solution than was

previously possible. Mutation is an important part of the genetic search as it helps to

prevent the population from stagnating at any local optima. There are several types of

mutation operators. In this work, three mutation operators which are (i) arbitrary two-

job exchange mutation, (ii) arbitrary three-job exchange mutation and (iii) shift change

mutation are adopted, for sequencing a 'differen|. part type'. The detail of these

mutation operators are provided below.

(n) Arhitrary Two-.Tob Exchange Mutation

The arbitrary two-job exchange mutation starts with a random selection of two

positions of genes in a parent chromosome. Then, the offspring is generated by

exchanging the position of the two genes. Figure 4.10 illustrates the example of

the arbitrary two-job exchange mutation.

48

Position I Position 2lr
Parentffi

Offspring

Figure 4.10: Example of arbil;ary two-job exchange mutation

(2) Arhiúrary Th¡"ee-.lob Exchamge Murtafion

The arbitrary three-job exchange mutation begins with a random selection of

three positions of genes in a parent chromosome. An example is shown in Figure

4.11. The offspring is created by exchanging the position of those genes as: (a)

position 1 exchanges with position 2, (b) position 2 exchanges with position 3

and (c) position 3 exchanges with position l. Figure 4.1 1 illustrates the arbitrary

three-j ob exchange mutation.

Parent

Position 3

Positionl Position2 Irtt
I ,)',: J 4 :J 6 aÌ 8\--<

Offspring

Figure 4.1 1 : Example of arbitrary three-job exchange mutation

(3) Shift Change Mutation

The shift change mutation starls with randomly choosing two positions of genes

in a parent chromosome. Then, the offspring is created as follows: (a) move the

'4 2 J .1 6 5 8 7

I .7 J 4 2 6 5 8

49

gene at position 2 to position 1, and (b) shift the genes between position 1 and

the position before position 2 by one location. Figure 4.12 demonstrates the

example of the shift change mutation.

Position i Position 2lt
Parent

Offspring

Figure 4.12: Example of shift change mutation

The number of offspring from mutation depends on Mutation probability (Pm). The

parents considered to perform mutation operation are randomly chosen from the mating

pool generated from parent selection process. The process of choosing parent is

described below.

(1) Generate random number ,R, from the range 10,1] of each chromosome i

(Ç) i" mating pool, where i : 1 ,2 .. , population size.

(z)rf R,<Pm then chromosome i (c,) is a parent chromosome that will

undergoes mutation operation, where Pm: crossoveî probability.

I 2 a
:) 4 5 6 7 8

I 6 2 .1 4 5 7 8

s0

4"2"6 Ðvoluúiom

Evolution strategy is a method that uses to select the stronger (fitter) chromosomes and

to eliminate the weaker chromosomes. After performing genetic operations, total

population is increased due to the ofßprings from genetic operations. The new

population consists of three groups of chromosome: (i) the initial chromosomes, (ii) the

chromosomes from crossover operation and (iii) the chromosomes from mutation

operation. In order to maintain the population size, only the chromosomes that have the

best or the better f,itness values are chosen. The fitness evaluation presented in section

4.2.3 is used to measure fitness value. The selected chromosomes which are called the

surviving chromosomes will become a new population and will be used as the starting

chromosomes for the next generation. In this way, the next generation will be created

from the stronger chromosome than the last generation. As a result, the new population

will become stronger than the last generation. Then, the population evolves again and

again, resulting in more and more highly fit chromosomes. When the number of

generation reaches a user selected value, the best chromosome produced the minimum

makespan will be determined as the best solution or the best part schedule of the

problem. The next chapter presents the results of tests conducted using the methodology

presented.

51

CRaapÉen 5 R.esults amd Ðiscussion

5"1 Testing and Ðvaluafiom of, Genetic Algonithrn (GA)

In this section, the GA developed is tested to obtain the best part scheduling that will

produce the minimum makespan for the three-machine robotic cell. The algorithm was

coded using Java as the programming language. To test the program, apartfamily .F2,

containing 16 different parts is used. The data for part family F2 is shown in a tabulated

form in Table 5.1. Each part in the part family has a different order of sequencing

through machines with the exception of part P02 and P I 6 which have the same order of

sequencing through machines but have different processing times on each machine. The

processing times of parts in the part family were generated randomly to produce a range

from 1 to 60 seconds.

Table 5.1: Part family F2

Pafi,N4rrÌç
First,Proéess Third Process

Machine Time Mashine Time Machine .Tirne
P] MI t5 M2 16 M3 1t

P2 Mi 9 M3 43 M2 20

P3 M2 45 M1 28 M3 29

P4 M2 27 M3 58 M1 46

P5 M3 55 MI tl M2 60

P6 M3 58 M2 38 M1 J/

P1 M] 29 M2 9 None

P8 MI 16 M3 28 None

P9 M2 l6 MI 38 None

P10 M2 51 M3 49 None

Pit M3 40 M1 l9 None
P12 M3 5I M2 20 None

P13 M1 10 None None
Pr4 M2 24 None None

Pis M3 4B None None

P16 MI 22 M3 59 M2 49

52

The robot movement times between two adjacent stations is assumed to be 3 secs. The

pick and drop times was also assumed to be 3 secs at all station.

The part family F2 is tested by using four different sets of genetic probabilities, namely

lPc, Pntf :10.2,0.2f,10.6,0.41,
10.5, 0.51, 10.g, 0.g1. This results in four tests for parr

family F2. The tests are designed to terminate when the number of generation reach

100. The other relevant parameters for the test are as shown below.

Population size: 20

Crossover Type: One-point Crossover

Mutation Type: Arbitrary Two-Job Exchange Mutation

Number of Evolutions: 100

Figures 5.1(a) through (d) show makespan values obtained veïsus the number of

generations required for the chosen Pc and Pm. The chromosome that produces the best

makespan and the corresponding pair grouping are also shown.

53

From the four graphs shown in Figure 5.1, it can be observed that the makespan values

reach a minimal (best value) at different generation times. These values can be

identified as the best makespan for that test. The chromosome providing the minimum

makespan for the test will represent the best part schedule for that test. However, the

minimum makespan values and the generation number at which it is reached, is

different for each case. For example Plot 5.1(b) provides a minimum makespan of 1303

sec., while Plot 5.1(d) provides a fast convergent rate, at 31 generations. From this

result it can be concluded that values of Pc and Pm have an impact on the result. Results

of further studies are discussed in Section 5.2.

In addition to the results shown above, the GA program is also capable of providing

details pertaining to how each pair of chromosome is scheduled through the machines.

This is illustrated in Figure 5.2. With this detail, the parl scheduling of a part family

can be easily visualized. The best makespan is obtained for the conditions shown in

graph 5.1(b). The chromosome with minimum makespan from graph 5.1(b) is used as

an example for illustrating details of pair grouping in term of time chart as shown in

Figure 5.2. Figure 5.2 illustrates the time charts generated from GA program of the first

three pairs; P06-P02, P16-P03 and Pl5-P01. The detail sequence of the robot moves of

each pair grouping are provided below each time chart. A time chart of all chromosome

pairs providing the minimal makespan in graph 5.1(b) are presented in Appendix A.

55

5.2 Conapanison heÉ'ween Vanious Genetic Operators

Before starting a GA program, there are f,rve necessary genetic operators that need to be

input in order to obtain the minimal makespan in part scheduling. These genetic

operators are (1) population size, (2) crossover type, (3) crossover,probability, (4)

mutation type, and (5) mutation probability. However, the various combinations of

genetic operators may affect the result differently. In other words, the different values

of genetic operators may provide different results for the minimum makespans in part

scheduling. For example, as shown in the graphs in Figure 5. 1 of Section 5. 1, variations

in the two genetic operators (crossover and mutation probabilities) have produced

different minimum makespan times.

In order to evaluate the effects of genetic operators, the influence of all the five genetic

operators is studied. The studies are categorized into three major groups which are (i)

crossover, (ii) mutation and (iii) population size. The studies are performed by running

the program for three types of data which are named: (1) short, (2) medium and (3)

mix180. The test data "short", "medium", and "mix180" are test data that contain parts

that have machine processing time ranging from 1 through 60, 60 through 120 anð, I

through 180 seconds, respectively. These ranges of machine processing times were

selected to study whether each data type is affected differently by genetic operators.

Each data type consists of three parl families as shown in column I of Table 5.2. A total

of nine different part farnilies from the three data types were tested for various genetic

parameters. Each part family contains 40 different pads, and all the relevant test data

are randomly generated. The details of the test data used to perform the studies on

57

genetic operators are presented in Table 5.2. Furlher details specific to each of the nine

part families are shown in Appendix B.

Table 5.2: Test data used to perform study on genetic operators

1. Shorl

Contains parts
that have machine
processing time
between 1-60 sec.

shortl 40

shor12 40

short3 40

2. Medium

Contains parts
that have machine
processing time
between 60-120
sec.

medl 40

med2 40

med3 40

3. Mixl80

Contains parts
that have machine
processing time
between 1-1B0
sec.

mixl 40

mix2 40

mix3 40

As before the robot times for all studies are assumed to be:

pick: 3 sec.

drop: 3 sec.

move: 3 sec.

For every study, the tests are designed to terminate when the number of generation

reaches a value of 1000.

s8

5.2.1 Súudy of Cn'ossoven tpenaton

In crossovel operation, the two crossover parameters: crossover type and crossover

probabilities are considered. For crossover type, there are three types of crossover that

can be studied (as mentioned in Section 4.2.5.1). The three types of crossover are (1)

one-point crossover, (2) two-point crossover (version I) and (3) two-point crossover

(version II). They will be referred to as crossover type 1, crossover type 2 and,crossover

type 3, respectively in further discussions. For crossover probabilities, the values of

crossover probabilities can vary from a value of 0 to 1. A value of Pc equals 0 means no

chromosome in mating pool will be utilized in crossover, while Pc equals 1 means all of

the chromosomes in mating pool will considered. All the nine part families from the

three data types will be tested using each crossover type for the ten values of crossover

probabilities: 0.1, 0.2.0.3,0.4,0.5,0.6,0.7,0.8, 0.9 and 1.0. In order to evaluate the

effect of the crossover parameters, other genetic operators (mutation parameters and

population size) are set as constants as shown below for every tests.

Population size:

Mutation probability:

Mutation type:

20

0.5

Arbitrary Two-Job Exchange Mutation

The results of the test are divided into three groups: short, medium and mix180. For

each datatype, the results are presented in a graphical form categoúzedby the types of

crossover. The results can be divided into two types. The first type is the plot showing

the minimum makespans generated and the Pc. The intenr is to study the effect of Pc on

the minimum makespan in each clossover type. An additional plot between the

59

generation numbers that produce the minimum makespans and Pc will also be shown to

evaluate the effect of Pc on the convergent rate in each crossoveï type. The results of all

pat families for the same cïossover parameters will be presented in the same graph.

Hence, there will be three results obtained from the three part families in each graph.

The results of the crossover study are presented below.

5.2"1.1 Crossoven Study with llata Type: Short

The results from the tests are shown in Figure 5.3. Figure 5.3(a, b and c) show the

results for average minimum makespans obtained (average from ten data) and pc of

crossover type 1, crossover type 2 and crossover type 3, r'espectively for the part

families shortl, short2 and short3. Figure 5.3(d, e and f) show the plots between average

number of generation (average from ten data) that produce the minimum makespan and

Pc of crossovel' type 1, crossover type 2 and crossover type 3, respectiveiy for the

shortl, short2 and shor13 part family.

60

does seen to have an influence on the number of generations required to obtain the

minimum makespans as can be seen in Figure 5.3(d, e and f) as well as Figure 5.4(b).

The higher the values of Pc, the lower are the number of generations required to

produce the minimum makespans. A high Pc results in a faster converging process.

However, from Figure 5.4(b), one can conclude that that every crossover type appears

to provide a similar pattern for convergent rate which means that the type of crossover

does not have a significant effect on converging speed.

5"2"1"2 Crossoven Study \ö/iúh Ðata Type: Nledium

The results for the average minimum makespan (average from ten data) and Pc of

crossover type 1, crossover type 2 and crossover type 3, respectively of med1, med2

and med3 part family are shown in Figure 5.5(a, b and c). Figure 5.5(d, e and f) show

average number of generations (average from ten data) that produce the minimum

makespan and Pc of crossover type 1, crossover type 2 and crossover type 3

respectiveiy of medl, med2 and med3 part family.

63

considerable effect on the minimum makespans. In contrast, Figure 5.5(d, e and f) and

Figure 5.6(b) indicate that a change in Pc vaiue does have a substantial effect on the

number of generations required to produce the minimum makespans. The higher the

values of Pc, the lower are the numbers of generation required to produce the minimum

makespans. In other words, a higher Pc provides a quicker converging process.

However, Figure 5.6(b) shows that every crossover type appears to provide a similar

convergent tate which means that the type of the crossover does not impact

considerably the converging speed.

5.2.X.3 Cnossoven Study with Tlata Type: V{ix1E0

The results for the tests with "Mixl80" data type are shown in Figure 5.7. Figure 5.7(a,

b and c) show the average minimum makespans (average from ten data) and Pc of

crossover type 1, crossover type 2 and crossover type 3, respectively of mix1, mix2 and

mix3 parl family. Figure 5.1(d, e and I show the average number of generation

(average from ten data) required to produce the minimum makespans and Pc of

crossover type 1, crossover type2 and crossover type 3 respectively of mixl, mix2 and

mix3 part family.

66

Figure 5.1(d, e and I and Figure 5.8(b) show that a change in Pc has a considerable

effect on the number of generation producing the minimum makespans. The higher the

value of Pc, the lower is the number of generation required to produce the minimum

makespans. In other words, a higher Pc provides a faster convergence towards the

solution. Nonetheless, Figure 5.8(b) also suggests that the convergent rate from every

crossover type appear to be the same, indicating that the type of the crossover does not

have a significant effect on the converging speed.

5.2"2 Study of Mutaúiom tperator

In mutation operation, the two mutation parameters: mutation type and mutation

probabilities are considered. For mutation type, three types of mutation are analyzed

using the GA program (as mentioned in Section 4.2.5.2). These three types of mutation

are (1) arbitrary two-job exchange mutation, (2) arbitrary three-job exchange mutation

and (3) shift change mutation. They will be referred to as mutation type 1, mutation

type 2 and mutation type 3, respectively when discussing the results. For mutation

probabilities, the values of crossover probabilities can be chosen fi'om 0 - 1. Similar to

the study conducted for both crossover parameters, all nine part families from three data

types will be included in GA with each mutation type. The ten values of mutation

probabilities considered are: A"I,0.2.0.3,0.4,0.5,0.6,0.7,0.8,0.9 and 1.0. With an

aim to evaluate solely the elfect of the mutation parameters, other genetic operators

(crossover parameters and population size) are set to a constant value for every test as

shown below.

69

Population size:

Crossover probability:

Crossover type:

20

0.5

One-Point Crossover

The results from the test are divided into three groups: shoft, medium and mix180

(Section 5.2.2.I, 5.2.2.2 and 5.2.2.3 respectively). The results from each data type are

presented in term of graphs categorized by the types of crossover. Two types of results

are presented. The first one is a plot between the minimum makespans generated and

Pm,in order to study the effect of the Pnt onthe minimum makespans for each mutation

type. A second plot shows the relationship between the generation numbers that

produce the minimum makespans and Pm. The purpose of the second graph is to

evaluate the effect of the Pm on the convergence speed for each mutation type. All the

part families with the same mutation parameters will be plotted as a single graph. Thus,

there will be three plots obtained from the three part families in every graph. The results

of the mutation study are discussed next.

5"2"2"X. Muúatiorn Study with Ðata Type: Shont

The results for these tests are shown in Figure 5.9. Figure 5.9(a, b and c) show the

relationship between the average minimum makespans (average from ten dafa) and Pm

of mutation type 1, mutation type 2 and mutation type 3, respectively of the part

families shor11, shoft2 and short3. Figure 5.9(d, e and f) are the graphs between average

number of generation (average from ten data) that produce the minimum makespans and

70

Pm of mutation type 1, mutation type2 and mutation type 3 respectively of the shortl,

short2 and short3 part family.

In order to evaluate the effect of the type of mutation on the minimum makespans, the

average minimum makespans of shortl, shoft2 and short3 part family at the same pm

point of each mutation type are averaged and are plotted into one graph as shown in

Figure 5.10. Figure 5.10(a) illustrates the graph between the average minimum

makespans from all three part families in "Short" dafatype and Pm of mutation types 1,

mutation type 2 and mutation type 3.

To study the consequence of mutation types one the convergent rate, the generation

numbers that produce the minimum makespans at the same Pm of each mutation type

are averaged and are plotted into a single graph as presented in Figure 5.10. Figure

5.10(b) shows the average generation number that produce the minimum makespans

from all three part families in "Short" datatype and Pm of mutation types 1, mutation

type 2 and mutation type 3.

71

5"2.2.2lVlurtation Study with Ðata Type: Mediurn

The results of the tests are shown in Figure 5.11. Figure 5.11(a, b and c) show the

results between the average minimum makespans (average from ten data) and Pm for

mutation type 1, mutation type 2 and mutation type 3, respectively of the part families

med1, med2 and med3. Figure 5.11(d, e and f.¡ show the plot between average number

of generation (average from ten data) that produce the minimum makespans and Pm for

mutation type 1, mutation type 2 and mutation type 3, respectively of the medl, medZ

and med3 part family.

Similar to the study of "Short" data type, the average minimum makespans of medl,

med2 and med3 part family at the same Pm point of each mutation type are averaged

and are plotted as a single graph as shown in Figure 5.I2 to study the effect of the types

of mutation on the minimum makespans. Figure 5.I2(a) shows the average minimum

makespans from all three parl families in "Medium" and Pm of mutation type 1,

mutation type 2 and mutation type 3.

The generation numbers that produce the minimum makespans of all three part families

at the same Pm pcint of each crossover type are averaged and are plotted into a single

graph to study the consequence of mutation types to the convergent speed. Figure

5.I2(b) shows the average generation number that produces the minimum makespan

from all three part families of "Medium" and Pm of mutation types 1, mutation type 2

and mutation type 3.

74

of generation (average from ten data) that produce the minimum makespans and Pm of

mutation type 1, mutation typeZ and mutation type 3 respectively of the mixl ,mix2

and mix3 part family.

Similar to the study done for "Short" and "Medium" data type, the average minimum

makespans of mixl , mix2 and mix3 at the same Pm value of each mutation type are

averaged and are plotted as a single graph to study the effect of the types of mutation on

the minimum makespans. Figure 5.1a(a) is the graph between the average minimum

makespans from mixl, mix2 and mix3 and Pm of mutation types 1, mutation type2 and,

mutation type 3.

Also, the generation numbers that produce the minimum makespans of mix1, mix} and

mix3 at the same Pm point of each mutation type are averaged and are plotted as a

single graph to study the relationship between mutation type and the convergence

speed. Figure 5.14(b) shows the average generation number that produces the minimum

makespans times for mix1, mix2 and mix3 and Pc of mutation types 1, mutation type 2

and mutation type 3.

77

5.2"3 SÉudy of Fopulation Size

To study the influence of population size, a group of chromosomes called initial

chromosomes are needed. As mentioned in Section 4.2.2, initial chromosomes are

created randomly. The number of chromosomes created is called population size.

Population size is also the number that limits the amount of new chromosomes that will

carry forward to the next generation of the evolution process. Therefore, the population

size is avery important specihcation. As stated in Section 5.2, population size is one of

the necessary parameters that have to be input before performing the analysis.

To study the influence of population size on the best makespans and the convergent

rate, various population sizes with values 5, 10, 15,20,25. 30,35, 40, 45 and 50 were

selected. Similar to the crossover and mutation studies, all nine part families from the

three data types (Short, Medium, and Mix180) were analyzed using ten population sizes

for the genetic parameter shown below.

Crossover probability:

Crossover type:

Mutation probability:

Mutation type:

0.5

One-Point Crossover

0.5

Arbitrary Two-Job Exchange Mutation

The results of the test are divided into three groups: shorl, medium and mix180 based

on the data types. The results are presented in a graphical form as before. Similar to the

results shown for crossover and mutation, two types of results can be analyzed. The f,rrst

type is a piot between the minimum makespan and population sizes, to study the effect

of the population size on the minimum makespan. The second type is the graph between

80

the generation numbers that produce the minimum makespan and population size to

evaluate the effect of the population size on the convergence rate.

The results from the tests are shown in Figure 5.15. Figure 5.15(a, b and c) show the

results for the average minimum makespans (average from ten data) and population size

(which is referred as "pop size" in graphs) of part families from data type "Short",

"Medium" and "Mixl80" respectively. Figure 5.15(d, e and f) show the average number

of generation (average from ten data) that produce the minimum makespans and

population size of part families from data type "Short", "Medium" and "Mix180"

respectively. The results of the population size study are presented below.

In order to evaluate the effect of the population size and its influence on the minimum

makespans, the average minimum makespans of all part families at the same population

size of each data type are averaged and plotted into one graph as shown in Figure 5.16.

Figure 5.16(a) shows the plot between the average minimum makespans from all three

part families and population size in "short", "Medium" and "Mix180" data type.

In order to study the effect of population size on the convergent rate, the generation

numbers that produce the minimum makespan at the same population size of each data

type are averaged and are plotted into a single graph as presented in Figure 5.16. Figure

5.16(b) shows the average generation number that ploduces the minimum makespan

from all three part families in "Short" data type families and population size in "Short",

"Medium" and "Mix180" data type. Figure 5.I7 shows the relation between the average

times that are used to obtain the result from GA for various population sizes (chosen as

5, 10, 75,20,25,30,35,40,45 and 50). The puipose of the graph is to compare the

makespan obtained for each population size.

81

The GA program was tested using an AMD Athlon 64 Processor 3200+, 2.01 GHz, and

2.5 GB of Ram. The tested data contained 40 parts in part family with a population size

of 20. The computational time was 0.0607 second per generation.

84

CEaapÉer 6 Conaalwsåoxrs axad Recoxmr¡rendations

This thesis has developed a GA based methodoiogy for scheduling parts through a

flexible manufacturing celi with a robot performing all the material handling related

tasks. The methodology investigated feasible solutions for obtaining minimum

makespan in a 'different part type' production operation wherein parts are required to

go through a set of machines with each having its own sequence and different

processing times. The problem is complex and a single analytical solution for this type

of problem was not found in existing literature. Hence, no compffisons could be made

with any previously published work. The proposed GA approach also investigated the

influence of different genetic parameters while obtaining the minimum makespan for

producing the family of parts. The results from the study have lead to the following

conclusions.

" Crossover/ mutation operators and population size for the three data types

show that all three test data types provide similar results for every genetic

operator considered.

The effect of the genetic parameters on the minimum makespan and the

generation number producing the minimum makespan is not strongly

influenced by the different types of data considered.

All three crossovel types, namely: (i) one-point crossover, (ii) two-point

crossover (version I) and (iii) two-point crossover (version II) provided

similar results for the minimum makespan and convergent rate at any Pc. A

low value of Pc provides a stightly better makespan values while ahigh Pc

gave abetter convergent speed in every crossover type.

85

In regards to mutation parameters and their influence, a high Pm provided a

better makespan in every mutation type. In addition, a high Pm resulted in a

better convergence speed in mutation type 1 and mutation type 3. The

mutation type 3 (shift change mutation) provided a poor result for the

minimum makespan while the mutation type 2 (arbitrary three-job exchange

mutation) provided a poor convergent rate.

In regards to the population size, ahigh value of population provided a better

convergent speed. However it also results increased computational times. An

appropriate choice of the different parameters is listed on next page.

From the results one can conclude that, irrespective of the type of crossover

considered, Pc values ranging from 0.3 to 0.5 should be selected in order to

obtain the minimum makespan.

The Pm values ranging from 0.4 to 1.0 with mutation type i (arbitrary two-

job exchange mutation) provided a better minimum makespan than mutation

type 3 and presents rhe shorler convergence time than mutation type 2.

In regards to the population size, ranges from 20 - 35 produced good results

within a reasonable generation time.

In conclusion, the specif,rcation of the genetic operators that has a tendency

to provide a high perfonnance in part scheduling problem can be

summarized as:

86

Crossover probability: 0.3 - 0.5

Crossover type: Any type

Mutation probability: 0.4 - 1.0

Mutation type: Arbitrary Two-Job Exchange Mutation

Population size: 20 - 35

Number of Evaluations: 600 - 700

A step by step procedure for obtaining the sequences for a part data is provided in

Appendix C.

It is recommended that extension to this study be undertaken to include multiple

objectives such as minimizing idle time of machines, maximization of robot usage,

customer imposed constraints such as meeting early due dates for some of the pafts,

minimization of penalty etc. In its present form the methodology does not detect any

dead-lock states in machines. This can also be included in future studies. It should be

noted that the problem size will become even more complex when some or all of these

are included in the model. However genetic algorithms have the power to expand the

horizon of search space and may possibly leacl to more powerful solutions.

87

R.efenences

[1] A. Adlemo, "Balanced automation in flexible manufacturing systems", Studies in
Informatics and Control, Vol.5, pp.l79-187, 1996.

[2] G. Qiao, R. F. Lu and C. Mclean, "Flexible manufacturing system for mass

customization manufacturing", International Journal of Mass Customization, Vol.l,
pp.374-393,2006.

[3] T. Luan, "Scheduling in robotic cells with two and three machines", M.Sc.Thesis -

University of Manitoba, pp. 1 -8 l, 2005.

[4] M. Savsar, "Reliability analysis of a flexible manufacturing cell", Reliability

Engineering and System Safety 67 , pp.I{l -152,2000.

[5] N. G. Hall, H. Kamoun, and C. Sriskandarajah, "scheduling in robotic cells:

classification, two and three machine cells", operations Research, Vol.45, pp.421-439,

1997.

16] M. S. Akturk, H. Gultekin, and O. E. Karasan, "Robotic cell scheduling with

operational fl exibility", Discrete Applied Mathematics, vol. r 4 5, pp.33 4 -3 49, 200 5 .

[7] H. Chen, C. Chu and J. Proth, "sequencing of Parts in Robotic Cells", International

Journal of Flexible Manufacturing Systems, Vol.9, pp.Bl-104,1997.

18] s.P. sethi, c. Sriskandarajah, G. Sorger, J. Blazewiczand,w. Kubiak,,,sequencing

of parls and robot moves in a robotic cell", International Journal of Flexible

Manufacturing Systems, Vol.4, pp.3 3 I -3 58, 1992.

[9] A. Agnetis and D. Pacciarelli, "Part sequencing in three-machine no-wait robotic

cells", Operations Research Letters, Y ol.2j,pp.1 85-192, 2000.

88

l10l v/. Ying and L. Bin, "Job-shop scheduling using genetic algorithm',, Signal

Processing 3rd International Conference, pp.I44I- 1444, 1996.

[11] c. G. 'wu, X. L. Xing, H. P. Lee, c. G. zhou and y. c. Liang, ,.Genetic algorithm

application on the job shop scheduling problem", International Conference on Machine

Learning and Cybernetics, pp.21 02-2106, 2004.

112] I. Kacem, "Genetic algorithm for the flexible job-shop scheduling problem", IEEE

Intemational Conference on Systems, Man and Cybernetics, Vol.4, pp.3464-3469,

2003.

[13] N. Morad and A. Zalzala, "A genetic-based approach to the formation of
manufacturing cell and batch scheduling" , Proceedings of the IEEE Conference on

Evolutionary Computation, pp.485-490, 1996.

[14] T' Murata and H. Ishibuchi, "Performance evaluation of genetic algorithms for

flowshop scheduling problems", Proceedings of the IEEE Conference on Evolutionary

Computation, pp.8 12-8 17, 7994.

[15] R' Cheng, M. Gen, and Y. Tsujimura, "A tutorial suïvey of job-shop scheduling

problems using genetic algorithms, part Ii: hybrid genetic search strategies", Computers

& Industrial Engineering, pp.343-364, 1999.

[16] Y. Yin, J. Yu and Z. Cheng, "A genetic algorithm based approach to flowshop

scheduling", World Congress on Intelligent Control and Automation, pp.3019-3021,

2004.

U7l S. Forrest, "Genetic algorithms: principles of natural selection applied to

computation", S cience, Y ol.26l, pp.87 2-87 8, I 993 .

89

[18] M. Mitchell, "An introduction to genetic algorithms", MIT press, pp.r67-r6g,

1996.

119] Y. Wu, M. Liu and C. Wu, "Genetic algorithm for solving flow shop scheduling

problem with parallel machine and special procedure constraints", International

conference on Machine Learning and cybernetics, pp. r774-1i79,2003.

[20] T. Luan and Q. Peng, "Genetic algorithm-based parts scheduling in a two-machine

robotic Cell", Flexible Automation and Intelligent Manufacturing, pp.974-980,2004.

l21l S. Forrest, "Genetic algorithms: principles of natural selection applied to

computation" Science, V oI.261, pp.87 2-87 8,1993 .

l22l R. Simon, "Robust encodings in genetic algorithms: a suruey of encoding issues",

Proceedings of IEEE International Conference on Evolutionary Computation, pp.43-48,

1997.

90

,Appendix B

The information for part family: shortl

PaltName
First Process Second Process Third'P'rocess

Machine Time Machine Time Machine Time

P1 M1 5 M2 30 M3 t0

P2 MI 30 M3 40 M2 50

P3 M2 10 MI 25 M3 60

P4 M2 20 M3 l2 MI 20

P5 M3 30 MI 40 M2 50

P6 M3 l5 M2 5 MI 45

P1 M1 20 M2 50 None

P8 M1 60 M3 15 None

P9 M2 45 M1 30 None

P10 M2 20 M3 5 None

Pl1 M3 55 M1 10 None

P 2 M3 20 M2 60 None

P J M1 25 None None

P 4 M2 35 None None

P 5 M3 J None None

P 6 MI 60 M2 60 M3 60

P 7 MI 20 M3 45 M2 10

P18 M2 55 M1 40 M3 12

P 9 M2 15 M3 t5 M1 15

P20 M3 25 MI 35 M2 30

P21 lvli t0 M2 8 M1 6

P22 MI 35 M2 40 None

P23 M1 10 M2 20 None

P24 M2 30 M] 30 None

P25 M2 45 M3 9 None

P26 M3 22 M1 l0 None

P27 M3 50 M2 18 None

P28 M1 60 None None

P29 M2 55 None None

P30 M3 45 None None

P31 Mi 5 None None

P32 M2 10 None None

P33 M3 8 None None

P34 M1 40 M2 25 M3 40

P35 M1 45 M3 50 None

P36 M2 60 M3 35 MI 10

P37 M3)) MI 15 None

P38 M2 M1 4U None

P39 M3 25 M1 45 None

P40 l./12 25 M1 12 M3 30

95

The information for part family: short2

PartName
First Process Second Process Third Proòess

Mâchine Time Maclìine Time Machine. Time
P1 M1 5 M2 30 M3 10
P2 M1 30 M3 40 M2 50
P3 M2 i0 M] 25 M3 60
P4 M2 20 M3 12 Mi 20
P5 M3 30 MI 40 M2 50
P6 M3 15 M2 5 M1 45
P1 M1 20 M2 50 None
P8 M1 60 M3 15 None
P9 M2 45 M1 30 None

P 0 M2 20 M3 5 None
P M3 55 M1 t0 None
P 2 M3 20 M2 60 None
P J M] 25 None None
P 4 M2 35 None None
P 5 M3 J None None
P 6 M1 60 M2 60 M3 60
P 7 M1 20 M3 45 M2 10

P 8 M2 55 M1 40 M3 12

P 9 M2 15 M3 l5 M1 l5
P20 M3 25 M1 35 M2 30
P21 M3 t0 M2 8 Mi 6

P22 M1 35 M2 40 None
P23 M1 t0 M2 20 None
P24 M2 30 Mi 30 None
P2s M2 45 M3 9 None
P26 M3 22 M1 l0 None
P21 M3 50 M2 t8 None
P28 M] 60 None None
P29 M2 55 None None
P30 M3 45 None None
P3I MI 5 None None
P32 l\/f2 t0 None None
P33 M3 8 None None
P34 M1 40 M2 25 M3 40
P35 M1 45 M3 50 None
P36 M2 60 M3 35 MI 10

P37 M3 55 M] 15 None
P38 M2 45 M1 40 None
P39 M3 25 MI 45 None
P40 M2 25 MI 12 M3 30

96

The information for part family: short3

FartName
Firit,Srocess Second Process Thifd'Process

Machirìe lfime Machine Time Machinè Time
PI M1 l9 M2 57 M3 5t
P2 MI 4 M3 40 M2 t4
P3 M2 t0 M1 60 M3 48
P4 M2 6 M3 53 M] 42
P5 M3 23 M1 24 M2 36
P6 M3 5 M2 39 M1 21

P1 M1 8 M2 25 None
P8 M] 28 M3 49 None
P9 M2 28 MI I None

P 0 M2 JI M3 28 None
P 1 M3 28 MI 8 None
P 2 M3 44 M2 5 None
P J M] 43 None None
P 4 M2 2 None None
P 5 M3 48 None None
P 6 MI l1 M2 45 M3 3l
P '7 MI 30 M3 36 M2 44
P 8 M2 34 M1 20 M3 2

P 9 M2 I M3 l2 MI 30
P20 M3 42 M1 41 M2 13

P21 M3 15 M2 24 M1 27
P22 MI 11 M2 49 None
P23 MI 15 M2 48 None
P24 M2 J M1 z) None
P25 M2 10 M3 t4 None
P26 M3 11 MI 41 None

P21 M3 8 M2 l6 None
P28 MI Jò None None
P29 M2 30 None None
P30 M3 l1 None None
P3r M1 22 None None
P32 M2 41 None None

P33 M3 l2 None None
P34 MI t7 M2 14 M3 l0
P35 MI 25 M3 44 None
P36 M2 24 M3 t3 M1 30

P31 M3 57 M JI None

P38 M2 17 M 27 None

P39 M3 52 M 34 None

P40 M2 40 M 54 M3 26

97

The information for part family: medl

Þárt Narne
FirsíPioCess Sçcond P¡ocess Third Process

Machine Tirne Machine Time Machine Time
Pi Mi 65 M2 75 M3 r00
P2 MI 90 M3 80 M2 120
P3 M2 60 Mi t20 M3 60
P4 M2 1i0 M3 95 MI 85
P5 M3 100 M1 r00 M2 100
P6 M3 65 M2 65 M1 75
P'7 MI 110 M2 90 None
P8 M1 120 M3 95 None
P9 M2 60 MI 85 None

P 0 M2 85 M3 120 None
P M3 60 M1 60 None
P 2 M3 10s M2 Il5 None
P J MI 75 None None
P 4 M2 '75 None None
P 5 M3 't5 None None
P 6 M1 120 M2 120 M3 120
P l M1 60 M3 60 M2 60
P 8 M2 05 MI 75 M3 '75

P 9 M2 l0 M3 85 MI 90
P20 M3 00 MI IU M2 80
P21 M3 00 M2 65 M1 l15
P22 M1 00 M2 75 None
P23 MI 95 M2 80 None
D'A M2 t15 M1 120 None
P2s M2 75 M3 '75 None
P26 M3 120 MI 80 None
P21 M3 90 M2 65 None
P28 M1 120 None None
P29 M2 120 None None
P30 M3 120 None None
P31 M1 90 None None
P32 M2 80 None None
P33 M3 115 None None
P34 M1 90 M2 90 M3 90
P35 M1 85 M3 70 None
P36 M2 75 M3 60 MI 60
P37 M3 120 M1 60 None
P38 M2 115 MI 80 None
P39 M3 70 M2 85 None
P40 M2 115 M1 65 M3 80

98

The information for part family: med2

Part Námé
First Process', Second Process Thiid,P'rocqss I

Machinè Time Machine Time Machile Tìrne

P] M1 92 M2 93 M3 92
P2 M1 79 M3 86 M2 83
P3 M2 i01 M1 70 M3 65
P4 M2 t02 M3 101 M1 82
P5 M3 102 MI 66 M2 103

P6 M3 61 M2 85 M1 106
P7 M1 108 M2 86 None
P8 M1 118 M3 110 None
P9 M2 93 MI t18 None

P 0 M2 76 M3 103 None
P M3 62 MI 88 None
P 2 M3 86 M2 1r0 None
P J MI '75 None None
P 4 M2 89 None None
P 5 M3 103 None None
P 6 MI 86 M2 85 M3 62
P 7 MI 98 M3 66 M2 '72

P 8 M2 116 MI 89 M3 60
P 9 M2 i10 M3 92 M1 83

P20 M3 96 M1 63 M2 t01
P21 M3 l8 M2 1t I M1 108

P22 M1 90 M2 61 None
P23 M1 l19 M2 89 None
P24 M2 109 MI 61 None
P25 M2 69 M3 116 None
P26 M3 n2 MI 81 None
P21 M3 98 M2 l1l None
P28 M1 86 None None
P29 M2 '74 None None
P30 M3 78 None None
P3t M1 80 None None
P32 M2 116 None None
P33 M3 64 None None
P34 MI 64 M2 61 M3 19
P35 MI i13 M3 r03 None
P36 M2 112 M3 84 MI IJ

P37 M3 70 M r 13 None
P38 M2 90 M 89 None
P39 M3 104 M 118 None
P40 M2 93 M 61 M3 /a

99

The information for part family: med3

ParJ:l{ame
FirslProcess Second:Process Third Process

Machine Tinie Machine Tirne Máchinç Time
PI MI 78 M2 85 M3 òJ
P2 M1 t06 M3 94 M2 85

P3 M2 119 MI 12 M3 66
P4 M2 t05 M3 98 MI 69
P5 M3 82 MI 87 M2 ÕJ

P6 M3 65 NT2 113 M1 89
P1 M1 IJ M2 62 None
P8 M1 M3 84 None
P9 M2 113 M1 6s None

P 0 M2 8I M3 118 None
P M3 65 M1 l6 None
P 2 M3 118 M2 78 None
P J MI 93 None None
P 4 M2 97 None None
P 5 M3 71 None None
P 6 MI 96 M2 66 M3 t14
P 7 M1 85 M3 t14 M2 97
P 8 M2 98 MI 78 M3 77
P 9 M2 70 M3 61 MI o)
P20 M3 101 M1 101 M2 64
P21 M3 90 M2 7l MI 111

P22 M1 t20 M2 62 None
P23 M1 ll8 M2 t) None
P24 M2 74 MI 108 None
P25 M2 o.J M3 t04 None
P26 M3 88 MI 69 None
P27 M3 85 M2 98 None
P28 MI 84 None None
P29 M2 93 None None
P30 M3 84 None None
P3t M1 i06 None None
P32 M2 105 None None
P33 M3 85 None None
P34 M] 111 M2 86 M3 60
P3s MI 65 M3 11r None
P36 M2 88 M3 6l M] 104
P31 M3 89 M 64 None
P38 M2 99 M 100 None
P39 M3 73 M 85 None
P40 M2 1i5 M 95 M3 104

100

The information for part family: mixl

PartNamc
FirstlPiõ.é!¡s Second,P,rocess' Third P¡oCess

Machine Time Machine Time Machine Time
PI M1 5 M2 105 M3 20
P2 M1 65 M3 150 M2 30
P3 M2 100 M1 55 M3 150
P4 M2 l5 M3 90 MI 20
P5 M3 180 MI 150 M2 165
P6 M3 20 M2 15 M1 90
P7 MI t0 M2 100 None
P8 M] 90 M3 35 None
P9 M2 155 M1 145 None

P 0 M2 65 M3 78 None
P 1 M3 20 M1 95 None
P 2 M3 l5 M2 t45 None
P J MI t5 None None
P 4 M2 20 None None
P 5 M3 35 None None
P 6 M1 n0 M2 35 M3 150
P 7 M1 45 M3 95 M2 155

P 8 M2 30 M1 i55 M3 40
P 9 M2 160 M3 l5 MI 100

P20 M3 75 M] 15 M2 60
P21 M3 85 M2 70 M1 35
P22 M1 160 M2 90 None
P23 M1 165 M2 55 None
P24 M2 25 Mi 65 None
P25 M2 t5 M3 20 None
P26 M3 50 M1 15 None
P2l M3 90 M2 r80 None
P28 MI 175 None None
P29 M2 155 None None
P30 M3 145 None None
P31 M1 75 None None
P32 M2 90 None None
P33 M3 80 None None
P34 MI 65 M2 45 M3 165

P35 MI i80 M3 145 None
P36 M2 1i0 M3 35 MI 85

P37 M3 I5 M1 105 None
P38 M2 It5 M1 25 None
P39 IVlJ 95 M2 115 None
P40 l\/12 45 M1 145 M3 6s

101

The information for part family: mix2

Part_,Name
Firgt Frocess SecondP¡ocess Third Process

Mâchine Tirne Machine ,Tirne Machine, Timc
P1 M1 l M2 63 M3 24
P2 MI 168 M3 59 M2 t45
P3 M2 105 MI 6 M3 s6
P4 M2 Jò M3 89 MI 37
P5 M3 110 MI 55 M2 51
P6 M3 27 M2 110 MI 96
P'l MI 89 M2 125 None
P8 M1 153 M3 83 None
P9 M2 24 M1 r6l None

P 0 M2 38 M3 144 None
P I M3 121 M1 88 None
P 2 M3 43 M2 6 None
P J MI 134 None None
P 4 M2 161 None None
P) M3 None None
P 6 MI 69 M2 116 M3 163

P 7 MI r52 M3 83 M2 39
P 8 1,42 48 Mi 44 M3 175
P I M2 55 M3 108 M1 4
P20 M3 90 M1 65 M2 96
P21 M3 94 M2 151 M1 166
P22 M1 z-) M2 41 None
P23 Mi 31 M2 i36 None
P24 M2 152 M1 5l None
P25 M2 153 M3 123 None
P26 M3 109 MI 55 None
P21 M3 104 M2 45 None
P28 M1 141 None None
P29 M2 't None None
P30 M3 156 None None
P31 M1 36 None None
P32 M2 l9 None None
P33 M3 79 None None
P34 M] 79 M2 t67 M3 60
P35 M1 157 M3 r68 None
P36 M2 i33 M3 12 M1 108

P3'7 M3 L) M i03 None
P38 M2 54 M 92 None
P39 M3 160 M 52 None
P40 M2 i80 M t75 M3 105

t02

The information for parl family: mix3

PartNâme
First'PÍócess ,, Second'Process Third P-rocèss

Maihine Time Machine Time Machine Time
PI M1 142 M2 49 M3 9l
P2 MI t5'1 M3 48 M2 29
P3 M2 t54 MI 79 M3 171
P4 M2 42 M3 15 M1 l7t
P5 M3 59 M1 64 M2 155

P6 M3 5 M2 L) M1 t+
P1 M1 37 M2 l5t None
P8 M] J.L M3 123 None
P9 M2 137 M1 3 None

P 0 M2 JJ M3 t 13 None
P I M3 26 MI 74 None
P 2 M3 147 M2 163 None
P -) M1 118 None None
P 4 M2 5 None None
P 5 M3 114 None None
P 6 M1 165 M2 oi M3 67
P 7 M1 tt7 M3 JZ M2 56
P 8 M2 64 MI 09 M3 93

P 9 M2 83 M3 51 M1 161

P20 M3 93 MI 72 M2 51

P21 M3 71 M2 163 M1 126
P22 MI 31 M2 95 None
P23 M1 36 M2 5 None
P24 M2 l0l M1 99 None
P25 M2 t64 M3 54 None
P26 M3 29 MI 146 None
P27 M3 t78 M2 ill None
P28 M1 61, None None
P29 M2 114 None None
P30 M3 152 None None
P3t M1 119 None None
P32 M2 117 None None
P33 M3 76 None None
P34 M1 120 M2 73 M3 28

P35 MI 169 M3 92 None
P36 M2 6 M3 t38 MI 113

P31 M3 60 M t67 None
P38 M2 49 M 158 None
P39 M3 161 M 82 None
P40 M2 21 M 77 M3 I]

103

.A,prperedix C

l" Fnepane part faruei[y data as shown below in .txt format
Processing time of parl
on the second machine

The second machine that
pam will be processed

Processing time of part
on the third machine

The third machine that
part will be processed

Part Name

The first machine that
parl will be processed

Processing time of parl
on the first machine

Arbitrary Two-Job Exchange Mutation

20-35

2. fuaput rohot inf'onn'nation into the G.{ prograrn

Robot pick up / unloading time (second)

Robot drop off/ loading time (second)

Robot movement time between two adjacent stations (second)

3" {rapuf Éhe necessary parameten s info the GA program

File name: f,rlename.txt (prepared form step 1)

Clossover probability: 0.3 - 0.5

Crossover type: Any type

Mutation probability: 0.4 - 1.0

Mutation type:

Population size:

Number of Evaiuations: 600 - 700

r04

File Edit. Format View Help

P{j1 fvtl 15 fvl2 16 fü3 11
P02 M1 I M3 .43 r'/ì2 20
P03 M2 45 1,,{1 28 r,!,13 25
P04 tvì2 27 fv13 58 til1 46
P05 rì¡3 55 M1 i1 fi¡3 60
P06 r",13 58 M2 38 t"41 37pû7 ìi,ì1 23 tu12 I
P08 M1 16 ht3 28
P09 î,12 '16 [il.1 3â
P 10 lril2 E1 M3 49P11 lvì3 40 fv,l1 13
Plr [,r3 51 M2 2t
P13 l,{1 't0

P14 I\,ì2 24
P15 M3 48

4"

5.

R.un GA prograrul

Gef the nesult fi'one GA prognarn

The result will provide the minimum makespan, number of generation that

produces min makespan, chromosome that produces the minimum makespan, its

pair grouping detail and the time charts. The result examples are as shown

below.

rL rr_ÈË - 12 0 Ë2Ë r-1? 18q t 4
l_2Õ":i3f?55tr?Ë
: 34.û9 EeeÕ$dgIep,sed Tizne

I¿Èi on size
r'È¿ti,on flo

esever T1çe
: û.5

tat.ic:-.t T5'pe : l- - g.r.bitrèrT

ie liame i nÊid3iC,rrE

!1 1{¿ke3lrÈn : L236-fl
n ï:akr:parr ar ,Éene¡ation nn
rr l{alt-e=¡:e.r1 Chrc:no¡cle :

1{i_D?1s51-54

ljrogsg'¡er

Ttçc-"rsE' FxphãÌlg= liurÉtiÊ:-l

- 2ft

5fift
3. !{o'rre : 5
l- - Ð,r'Ie P*1nt

Ðn t_r1 ,r

!¿f -ru I

U-L J -ir'U l-l

Fû5-Pl_5
Fl4-ÊC,l-
PtrE-F'J-J_

br-ln-!ul
l- 2-P¡i B

U L3J

:14t.ü
: 46.ú
- 1AU fr

: 191- lt
= 153.û

:139.0
= 123Ë. r_l

l- r-L ó 12fl

105

