Genetic Algorithm Based Parts Scheduling
in a Three-Machine Robotic Cell

BY

NOOTNAPANG RAKTAMAKIT

A thesis submitted to the Faculty of Graduate studies
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Mechanical and Manufacturing Engineering
University of Manitoba
Winnipeg, Manitoba

Copyright © 2008 by Nootnapang Raktamakit

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

vvvvv

COPYRIGHT PERMISSION

Genetic Algorithm Based Parts Scheduling in a Three-Machine Robotic Cell

BY

Nootnapang Raktamakit

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
Of

MASTER OF SCIENCE

Nootnapang Raktamakit © 2008

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Acknowledgments

I would like to express my deep and sincere gratitude to my advisor, Professor S.
Balakrishnan, Ph.D. for his encouragement, advice, and guidance. Throughout my
thesis-writing period, he painstakingly reviewed this work and gave assistance and
instruction. His vast knowledge and logical way of thinking has been of immense value
to me. Without his knowledge, ideas, and patience, this work could not have been

completed.

I would like to thank Dr. Q. Peng, who provided inspiring advices and encouragement.

His comments and guidance helped me perfect this work.

I wish to thank my entire family for their support; my mother for her unconditional love
and being there whenever I needed, my father for his encouragement, my brother and
my sister for their understanding and help getting me through the difficult times, and
my son and my daughter for their love and laughter.

Lastly, and most importantly, [owe my loving thanks to my husband, Songraj
Raktamakit who’s support me in every possible way, helped me to accomplish this
work. Without his love, support, encouragement and understanding this endeavor would

have been impossible. To him I dedicate this thesis.

Abstract

This thesis proposes a genetic algorithm for finding part schedule that produces the best
makespan in a three machine flexible manufacturing cell. The type of production
operation considered is ‘different part type’ problem. Key constraints considered in the
analysis are: (i) each part has a specific order of sequencing through machines which
cannot be changed, and each part may not pass through every machine, and (ii)
processing times of parts on machines they visit need not be the same. A pair grouping
and priority procedure is developed to generate the makespan of part families, without
violating any of the constraints imposed. Influence of different genetic parameters on
the resulting makespan are studied and compared using three different test data types.
Results from the studies indicate that good makespan values are obtained for all types of
crossover when (a) the crossover probability take the values ranging from 0.3 to 0.5,
and (b) an ‘Arbitrary two-job exchange mutation type’ is selected with probability
values ranging from 0.4 to 1.0. Good results are obtained when a population size of 20
to 35 was selected. The number of iterations required for convergence of solution was‘
found to be the least for the above chosen values. Other choices were found to require

greater iterations for convergence.

i1

Table of Contents

ACKNOWIEAGIMENTS. ...ttt ettt s e i
ADSEIACT ..ottt ettt ettt en s e e e ii
Table OF CONTENES ..ottt ettt ee e e eee e eeens iii
LIST OF FIGUIES ...ttt et e ee e e e s e s e e e n e e v
LISt OF TabIeS ...ttt n e X
NOMENCIATUE ...ttt ettt ee e e eees xi
Chapter Page
L INErOAUCTION. ...ttt 1
1.1 BacK@IoUndc.ceoiiiiiiieieieteee ettt ee e 1
1.2 OBJECLIVES ..ttt ettt ettt ee e s e ee e e e e s e eeeneas 4
1.3 TRESIS SIIUCTUIEeviuveiiriiteietee ettt ettt teeeeae ettt er e ete s e eseeeeeeaesaeeseeeeea 4
2. LIETATUIE TEVIEW ...eertitirieiiienieiieteete ettt et eae st et ee et st eneese e eae e et s e eeeeneeneeeeeeeenene 5
2.1 RODOTIC CEIIS.c.niiiiiiiiiieteet ettt 5
2.2 Genetic aAl@OTTtRINS .o.viuiiiiriiiecitieieet ettt 6
2.3 SUITIMNALY ..ottt ettt ettt sttt e e te s esseseseeteseensesesnesaesaeesensensos 14
3. Problem formulationcooeoeoiiiieieeeeceee e 16
3.1 Three-machine robotic Cell ... 16
3.2 DAtA SITUCTUIE ..ottt ettt ettt eet et es et e teasenesaeeseeseeseneneeanas 17
3.3 Part scheduling / @rOUPINGeoveevivieiieticececet ettt 21
3.4 Priority method / time Charto.ivveeiiiiececcccccceeceeeeee e 23
4. MEthOAOLOZY .nvivieiieiieiieteee ettt ettt st et eeeeeneeeneeeeenes 30
4.1 Outline of genetic algorithms.cceeeieeeriireiiccee e 30
4.2 The implementation of genetic algorithm........cccccvvveieioiieiinieieiiccicceee 31
4.2.7 ENCOGING ..ottt et ne e 34
4.2.2 TNIHAIZATION .ottt ettt ettt ettt et et enea 35
4.2.3 FINESS @VAlUALION. ..c.veuieuieiirieieieterie ettt ettt ettt s e eveaseaeeseneaneeneas 36

i1

4.2.4 Parent SEIECTIONvveiiietee oo 41

4.2.5 GENELIC OPETALOTS «.eviverieriirietieteeeeseete ettt et ee e e s e s et es e s ereeasens 43
4.2.5.1 CTOSSOVETeviriiiieiieetentitesteteteer ettt oot es s eeeeeeeeeeens 44

4.2.5.2 MULALION ...ttt ettt ee e eeenas 48

4.2.6 EVOIULION ...ttt eeeereereas 51

5. Results and DISCUSSION ..eveirirtiriiiiitiee ettt er e 52
5.1 Testing and evaluation of genetic algorithimsocveoveveveeeeeeeeeeeeeeeeeeeeeeeeeana 52
5.2 Comparison between various genetic OPEratorsScocveecvereererveereereereereeeens 57
5.2.1 Study Of CrOSSOVET OPETALOTvvvivieeeeeeeceeceeeeeee ettt eeraeane 59
5.2.1.1 Crossover study with data type: Shortccocevvvevivveeiieeeeee. 60

5.2.1.2 Crossover study with data type: Mediumccoooeevvvvivecninnene. 63

5.2.1.3 Crossover study with data type: Mix180ccoevvevvieriinririienene. 66

5.2.2 Study of MUtation OPETALOTLevevereeiereeriereeee ettt 69
5.2.2.1 Mutation study with data type: Short......ccooveeiiieciiiieieeieeeeeens 70

5.2.2.2 Mutation study with data type: Meditum........c.ccooevevivereeriiiennnna, 74

5.2.2.3 Mutation study with data type: Mix180.......cccovvvvveivivveiieicreeneen, 76

5.2.3 Study of popUlation SIZE.......ceeueuievivriiereeteeeeeeeeeeee e 80

6. Conclusions and recOmMmMENdationS........c.eeevieueeeeereereiee e eeeeeet e oo eeeeeseene 85
References............... et eere e bt et et bs et et s ettt e e et e bt e s s e s b e et s e e e b erare e ebe e rae e rasearesearaen 88
APPENDIX A ettt ettt ee e eeeaes 91
APPENDIX B ..ottt sttt ettt et 95
APPENDIX Clooiiiiiiiiiiitnestese ettt ettt st a et et sae et 104

v

List of Figures

Figure Page
3.1 The layout of three-machine robotic Cell.........ooivivirreieereeeieeeeeeeee e, 16
3.2 The sequence of robot MOVES fOr PAt Py ..veveevevieeeeieieeeeeeeeeeeee e 19
3.3 TImMe Chart £OT PAIt P ceveeieeeeeieieeieeeeeeeeeeeeeee et 24
3.4 Time chart for pair grouping Glcoooveviiiiiiioeeeeeeeeeeeeeeeeeee e, 27
3.5 Sequence of robot moves for pair grouping Glc.ooevviieveeiieieeeeeeeeene 28
4.1 Flow chart of genetic algorithim.............oooiiiiiiee e 33
4.2 Representation of chromosome Cl........c.ooioeeieeiiiiiceccceeeeeeeeeeee e 34
4.3 Example of generating initial chromosome C1ccoveiveeeverereeeeeeeeeeeene. 36
4.4 Example of pair grouping method in chromosome Cl......c.ccooveoveeeeeveveeeeeennn. 37
4.5 Four alternatives of pair grouping of chromosome C1.......ccoovevvveveiiirenenne. 39
4.6 Flow chart of fitness evaluation procedure..........ceeveeveeerereereeeericeeeeeeeeenes 41
4.7 Example of 0ne-point CrOSSOVETcveoveueeeierierieiceieeeee ettt 44
4.8 Example of two-point crossover (Version I)ccoocoioeioeeeieeeeeeeeeeeeveenan, 45
4.9 Example of two-point crossover (Version II)cocooveveieveeereeeeeeeeeeeeene. 47
4.10 Example of arbitrary two-job exchange mutationc.ceoveveevioveoreeeeenenen. 49
4.11 Example of arbitrary three-job exchange mutationccccoeveverevvvveenennennn. 49
4.12 Example of shift change mutationccoeeveivviieeieeeecieeeeeeeeeee e, 50
5.1(a) through (d)

Makespan times versus generation number of part family F2

for four genetic Probabilities.....coiueriiieiireceeieeeeeee e 54
5.2 Time charts for the first three group pairs: P06-P02, P16-P03 and P15-P01

-the best chromosome in graph 5.1(b) c.ocevevieuieiciiieececcceceee e 56

5.3(a) Graph showing average min makespans and Pc for crossover type 1 (Short)..61
5.3(b) Graph showing average min makespans and Pc for crossover type 2 (Short)..61
5.3(c) Graph showing average min makespans and Pc for crossover type 3 (Short)..61
5.3(d) Graph showing number of generations that produce the min makespans

and Pc for crossover type 1 (ShOTt)ccvceevieveierieiciceeeeeeeeeee s 61

5.3(e)

5.4(a)

5.4(b)

5.5(a)

5.5(b)

5.5(c)

5.5(d)

5.5(e)

5.5(f)

5.6(a)

5.6(b)

5.7(2)

5.7(b)

5.7(c)

Graph showing number of generations that produce the min makespans
and Pc for crossover type 2 (SROt) c....ovoveeieieviieeeeeeeeeeeeeeeeeeeee e,
Graph showing number of generations that produce the min makespans

and Pc for crossover type 3 (SROTL) c....ovouiveeieieeeeeeeeeeeeee e
Graph showing the average min makespans from all three part families

and Pc for crossover type 1, 2 and 3 (SHOTL).....c.coveveoreeeeeeeeeeeeeeee e,
Graph showing the average number of generations that produce

min makespans from all three part families and Pc

for crossover type 1,2 and 3 (SHOTL)......ocveviiiiiveeieieteeeeeeee e
Graph showing average min makespans and Pc

for crossover type 1 (Meditm)cocuiviireiiieecieieeiiee e
Graph showing average min makespans and Pc

for crossover type 2 (IMEeditm)voveeeuieeiiieieeeeeeeeeeeeeeeeeeee e
Graph showing average min makespans and Pc

for crossover type 3 (MEdIUIM) ...oveveeeereiieerieecieceeeeee e
Graph showing number of generations that produce the min makespans

and Pc for crossover type 1 (Meditm)c.ooveceeveeieeviiiieieececeeveeeeeeeeeeeeae.
Graph showing number of generations that produce the min makespans

and Pc for crossover type 2 (Mediurm)ocvoieveeeeeerieeieeiceceeeeeeeee e
Graph showing number of generations that produce the min makespans

and Pc for crossover type 3 (Meditm)c.ccveieveveniieiceeceeeeeee e,
Graph showing the average min makespans from all three part families

and Pc for crossover type 1,2 and 3 (Medium).........cccveveeeeereeeeeeereeeennn.
Graph showing the average number of generations that produce

min makespans from all three part families and Pc

for crossover type 1, 2 and 3 (Meditm)........oovevveeeeieieeeeneieeeeereeeeeeeeeeeen e,
Graph showing average min makespans and Pc

for crossover type 1 (MIx180) ...ccuevruiviieiriericieecteeeee e
Graph showing average min makespans and Pc

for crossover type 2 (MIX180) ...cveiivicrieeeeeiieeeeeeceeee e

Graph showing average min makespans and Pc

Vi

5.7(d)

5.7(e)

5.7(6)

5.8(a)

5.8(b)

5.9(a)

5.9(b)

5.9(c)

5.9(d)

5.9(e)

5.9(9)

5.10(a)

5.10(b)

5.11(a)

for crossover type 3 (MIX180) ...vvviviiieeeeeeeeeeeeee e,
Graph showing number of generations that produce the min makespans

and Pc for crossover type 1 (MIX180)oovvoviviviriieeeeeeeeeeeee e
Graph showing number of generations that produce the min makespans

and Pc for crossover type 2 (MAX180)ovueeiieieeeceeeeeeeeeeeeeee e,
Graph showing number of generations that produce the min makespans

and Pc for crossover type 3 (MixX180)oovvveviviieeeeeeeeeeeeeeeeeeee e e
Graph showing the average min makespans from all three part families

and Pc for crossover type 1,2 and 3 (Mix180).......ccvuiuieeeeeeeeeeereeeeeeeeenen,
Graph showing the average number of generations that produce

min makespans from all three part families and Pc

for crossover type 1, 2 and 3 (MiX180)........ouiiieeeieeeeeeeeeeeeee e,
Graph showing average min makespans and Pm

for mutation type 1 (SROTL) c.oivieuiiceiiceeeeeee et
Graph showing average min makespans and Pm

for mutation type 2 (SHOTL) «.eeeeieieriieree et
Graph showing average min makespans and Pm

for mutation tyPe 3 (SROTT) cuvveviiirieiceieeeieeeeeeee e
Graph showing number of generations that produce the min makespans

and Pm for mutation type 1 (SHOTL) c.o.ovveveveeiicceeeeeee e,
Graph showing number of generations that produce the min makespans
and Pm for mutation type 2 (SROTL)ococverieveriiieieiceceee et
Graph showing number of generations that produce the min makespans

and Pm for mutation type 3 (SHOTL) ..oovvvevevereeiiiieteieececeeee e,
Graph showing the average min makespans from all three part families

and Pm for mutation type 1, 2 and 3 (Short).....cocooveeeveiiieeceeeeeeeeeeeee.
Graph showing the average number of generations that produce

min makespans for all three part families and Pm

of mutation type 1,2 and 3 (ShOrt)c.oeoeeviciiiceeeeeeeeeeeeee e,
Graph showing average min makespans and Pm

for mutation type 1 (Meditm)......coeveeviieierieeeeeeeeeeeeee e

vii

5.11(b)

5.11(c)

5.11(d)

5.11(e)

5.11(D

5.12(2)

5.12(b)

5.13(2)

5.13(b)

5.13(c)

5.13(d)

5.13(e)

5.13()

5.14(a)

5.14(b)

Graph showing average min makespans and Pm

for mutation type 2 (MediUm)....c.ecuiieeririeeeeeeeeeeee e
Graph showing average min makespans and Pm

for mutation type 3 (Meditm)........ccoeveeviieriieieeeeeeeeeee e,
Graph showing number of generations that produce the min makespans

and Pm for mutation type 1 (Meditm)cccevveieieiiiieceeceeceeeeeeeeee e
Graph showing number of generations that produce the min makespans
and Pm for mutation type 2 (Medium)ccocveieveeeuieieeeceeeeeeeee e,
Graph showing number of generations that produce the min makespans

and Pm for mutation type 3 (Medium)ocvevevveeiieieiceeeeeeeecee e
Graph showing the average min makespans from all three part families

and Pm for mutation type 1, 2 and 3 (Medium)........c.coovvereeeeeeevereeeeeeerene
Graph showing the average number of generations that produce

min makespans from all three part families and Pm

for mutation type 1, 2 and 3 (Meditum).......ccocoevieriereeeieeeceeeeeeeveeeeeeee,
Graph showing average min makespans and Pm

for mutation type 1 (IMIX180) ..ceeiriireicriieiieieicet et
Graph showing average min makespans and Pm

for mutation type 2 (MIXI80) cvovveeeeeiiiiiiieeeeeeee e
Graph showing average min makespans and Pm

for mutation type 3 (MIX180) ..ccviiriiieiiieieieeiciee e,
Graph showing number of generations that produce the min makespans

and Pm for mutation type 1 (MiX180) .cevvvevrevrieriiiiceeeeeeeeeeee e
Graph showing number of generations that produce the min makespans
and Pm for mutation type 2 (Mix180) ...ceoveviriiiiiiieieiericeeeeeere e
Graph showing number of generations that produce the min makespans
and Pm for mutation type 3 (MiXI180) ..covvveieieieeeiciieeeeeeee e
Graph showing the average min makespans from all three part families

and Pm for mutation type 1, 2 and 3 (Mix180).......cceevvirviiiiiiiiiieiieeieeein,
Graph showing the average number of generations that produce

min makespans from all three part families and Pm

viii

5.15(a)

5.15(b)

5.15(c)

5.15(d)

5.15(e)

5.15(D

5.16(2)

5.16(b)

5.17

for mutation type 1, 2 and 3 (MIX180)......vevivivieeeeeeeeee oo 79
Graph showing average min makespans and population size
01 data TYPE “SHOTT™ ...vuiieieeiiieeetce ettt 82
Graph showing average min makespans and population size
for data type “Meditm”coeieirieiiieeccceece e, 82

Graph showing average min makespans and population size

for data type “MIXI80™ ...oouiiiiieeiieeeee et 82
Graph showing number of generations that produce the min makespans
and population size for data type “Short”.........ccooveiviieeeeeeeeeeeeeeeeereeeeeens 82
Graph showing number of generations that produce the min makespans
and population size for data type “Medium”c.ceveervieriierceceeieeeee. 82

Graph showing number of generations that produce the min makespans

and population size for data type “Mix180™c.ocovvveeieieirreeeeeeeeeeeeeeeeeeen, 82
Graph showing the average min makespans from all three part families

in each data type and population SiZecccveviivviiieeiieeeeeeeeeee e 83
Graph showing the average number of generations that produce min
makespans from all three part in each data type and population size............. 83
Graph showing the average times that is used to obtain the result

from GA program and population SIZEc.eeeeveeeeeeieeeeeeeeeeeeeeseeeeeeeeneenns 83

iX

List of Tables

Table Page
3.1 Part family F1 ..o, 20
5.1 Part family F2 ..o, 52
5.2 Test data used to perform study on genetic OPEratorS.ovveeeeereresesererennn. 58

a4

m

TC
TC,,

in

G

Nomenclature

Chromosome

Cumulative probability

Fitness value of chromosome

Group of pairing part in chromosome

Number of machine that part will be processed
Number of parts

Selection probability

Part name

Crossover probability
Mutation probability

Random number

Random number for mutation operation

Random number for crossover operation

The first machine that part will be processed

The next machine that part will be processed after machine S,
The next machine that part will be processed after machine S,
Makespan of individual part

Makespan of chromosome

Minimum makespan of the chromosome

Makespan of group in chromosome

Processing time of part on S

xi

s, Processing time of part on S,

Wsy) Processing time of part on S;

Xii

Chapter 1 Introduction

1.1 Background

The way operations are carried out in manufacturing system has changed with time. In
early days the tasks in manufacturing depended mainly on operator to manually load,
unload and operate machines. Later on, with the intense market competition as well as
progress in intelligent machines and computer control, the need for human interactions
has reduced. Since operator’s salaries tend to increase while the cost of intelligent
machines and automatic control system has decreased, more and more tasks have been
automated [1]. Nowadays, with the considerably shortened product life cycles and more
demand of customized products, manufacturers have discovered that they can no longer
capture market share and gain higher profit by producing large volumes of standard
product for a mass market. Success in manufacturing in next decade requires the
processes with ability to flexibly and rapidly respond to the change of market conditions
[2]. In order to meet the increased demand for customized products and to reduce
production lot sizes, the industry has adapted new techniques and production concepts
by introducing flexibility into the production system so that a variety of products can be
manufactured on the same equipment. Advancements in the area of flexible
manufacturing systems (FMS) have pavéd the way for gaining competitive edge to
many manufacturing enterprises.

A general FMS is defined as an automated system composed of computer-controlled
machining centers and automated material-handling devices. Parts are produced by
computer-controlled machining centers and are transferred between machines/processes

by automated material-handlings. A traditional FMS is large and very complex,

consisting of dozens of multi-purpose machines with sophisticated material handling
and controlled by incredibly complex software systems. Since they are very complex
and very expensive, only a limited number of industries can afford the investment.
Currently, the trend in FMS is toward small versions of the traditional FMS, called
flexible manufacturing cell (FMC). They are less expensive, low risk and also satisfy
many of the benefits gained through FMS. It is the most feasible approach for
automating the job shop manufacturing [4]. A FMC typically consists of internal and
external material handling systems, and one or more flexible machines [4].

In a FMC, the industrial robots are widely used for internal material handling. The
machines in a robotic cell are generally computer numerical controlled machines
(CNCs) and usually equipped with necessary cutting tools capable of performing
different processes including milling, drilling, grinding, tapping and cutting with
minimum set-up time between successive operations. As a result, the robotic cell is
capable of performing different operations on a variety of parts. The layout of machines
in a robotic cell can structured in many different ways and depends on the type of robot.
A commonly used cell layout is called robot-centered cell. It consists of m machines
which are placed in a circular or semicircular layout with a handling robot at the center.
The machines have to be laid out to be within the reach of a robot so that the robot can
perform all the material handling functions. The material handling functions include
loading, unloading and transferring parts between machines.

The performance of a robotic cell depends on several operational and system
characteristics which include part scheduling, robot and machine characteristics. Since

operations in a robotic cell are automated, effective part scheduling and efficient

sequences of robot moves is crucial. The part characteristics such as their sequence
through machines and processing times on individual machines are the key factors to be
considered in arriving at the part schedule. If the parts in a part family have identical
characteristics, they are referred to as an ‘identical part type’. Parts in a part family
having different sequences and machine processing times, will be referred to as a
‘different part type’ in this thesis. To determine an efficient part scheduling
methodology in a robotic cell especially in a different part type problem is an important
and challenging task. This research focuses on efficient part scheduling in a three-

machine robotic cell for the different part type problem.

W

1.2 Objective

The research focuses on the development of a novel genetic algorithm for the ‘different
part type’ problem in a three-machine robotic cell. The objective of the thesis is to find
the best part schedule that will produce the minimum makespan for the problem
considered. The solution will consider the two key constraints, namely: (i) each part has
a specific order of sequencing through machines which cannot be changed, and each
part may not pass through every machine, and (i) processing times of parts on
machines they visit need not be the same. A genetic algorithm will be proposed. A pair
grouping and priority procedure will be developed to generate the makespans of part
families, without violating any of the constraints imposed. Different genetic parameters
will be studied and compared using three different test data types. Results from the

studies will be discussed.

1.3 Thesis Structure

This thesis is organized as follows. A literature review is presented in Chapter 2. The
problem formulation is introduced in Chapter 3. The methodology of part scheduling
using genetic algorithm in a three-machine robotic cell is developed in Chapter 4. The
results and evaluation of genetic algorithm are presented in Chapter 5. Lastly,

conclusions and recommendations are described in Chapter 6.

Chapter 2 Literature Review

2.1 Robotic Cells

Decreases in economic growth rate and the increases in dependence upon international
markets are two major factors that have created incentives to improve manufacturing
productivities [5]. Increasing the application of gutomation in manufacturing is one
way towards improvement. As a result, use of industrial robots for automation is also
on the increase. Robots have been installed in order to increase output, to reduce cost, to
provide more flexibility in manufacturing operations, and to replace people working in
dangerous and hazardous conditions [6]. Their task performances are versatile from
processing operation, assembly, testing to inspection. One of the important applications
1s material handling especially in robotic cell. Robotic cells consist of one or more
machines, input/output device, and a robot for loading, unloading and material handling
between machines in the cell.

There have been several studies pertaining to the scheduling of robotic cells [3-9]. Since
the number of machines in a robotic cell is usually no more than four [7], most of the
researches concentrated on two and three machine robotic cell. Scheduling problems in
a two-machine robotic cell for identical parts have been investigation to provide greater
operational {flexibility [6]. It has been proved that that there is exactly m/ potential
optimal one-part cycles in an m machine cell [8]. Algorithms for scheduling a robotic
cell that produces a set of part types on several machines served by a single robot have
also been reported [7]. Studies related to the scheduling of operations in a
manufacturing cell that repetitively produces a family of similar part on two and three

machines robotic cell have also been investigated [5]. A similar study focused on

finding the optimal one-unit cycle in three-machine no-wait robotic cell when parts are
classified as “different part type” [9].

In some manufacturing operations, the order of sequencing through machines is very
crucial. For example, if we want a cylindrical tube of a specific size with two tapped
holes at both ends, the raw material has to be processed in the following order. First, the
raw material has to be turned into the specific size, then, it has to be drilled at both ends,
and lastly the two holes at the ends have to be tapped. The above example illustrates
the importance of sequencing. The short comings of various studies cited are

summarized at the concluding section of this chapter.

2.2 Genetic Algorithms

Genetic algorithms are global search algorithms and follow the principles of evolution
in nature. It is based on the Darwinian principle of ‘survival of the fittest’. Genetic
algorithms use probabilistic transition approach for searching from a given population.
A basic genetic algorithm is composed of two genetic operators; crossover, and
mutation with the goal of finding the best solution to a problem. Before a genetic
algorithm can be put to work on any problem, it is necessary to encode potential
solutions to that problem in a form that a computer can process. The different coding
strategies or genetic description lead to different results [10]. In fact, genetic algorithms
are a searching process. The coding strategies play an important rule in contributing to
the searching efficiency. If coding strategies are not selected appropriately, the
searching space will be too large to find the optimum solution. In contrast, if the codes

are created suitably, the searching range can be narrowed and the optimum solution can

be found rapidly. In [10-13] different coding techniques have been proposed in order to
satisfy and improve problem solving. After encoding, the chromosomes are evaluated
and selected by using what is known as the ‘fitness value’. The promising chromosomes
which have the better fitness value are chosen to perform genetic operators which are
crossover and mutation. Genetic operators especially crossover are regarded as the main
contributing factor in the performance of the genetic algorithms. Therefore, many new
genetic operators have been studied and adapted to accommodate the coding strategies.
A number of genetic operators have been proposed for flow shop scheduling problem
[14]. New offsprings are created from an initial population. To keep the population size
at a certain level, only the chromosomes that generate better fitness values are selected
to be the new generation. The selection operator and genetic operations are repeated
until a satisfactory solution is obtained or a specified termination criterion is me;.

Genetic algorithms (GA) are proving to be popular and have been found to be effective
in solving problems. Even a simple GA appears to be robust and the complexity of
algorithms and the result are irrelevant to the length of genetic string and the original
state of population [10]. Genetic algorithm is also simple that it only involves some
genetic operations. It is so efficient that it can find a near optimum solution even for a
large scale problem. Nowadays, genetic algorithms are one of the most widely studied
searching techniques in manufacturing scheduling problem. Generally, job shop
scheduling problem (JSSP) and flow shop scheduling problem are known to be a typical
NP-complete or NP-hard problem meaning that no method is known to find a
guaranteed-optimal solution in a reasonable amount of time. The two main issues of

using genetic algorithms in manufacturing scheduling problem that have received a lot

of attention are: (i) how to encode a solution of the problem into a chromosome in order
to guarantee that a chromosome will correspond to a feasible solution [15]; and (i1) how
to enhance the performance of genetic search by incorporating traditional heuristic
methods [15].

Three methods based on genetic algorithms have been proposed to design a nearly
optimum solution for job-shop scheduling problem, a typical NP-complete problem
[10]. The three methods are decimal idle time coding genetic algorithms (DITCGA),
binary idle time coding genetic algorithms (BITCGA) and adaptive idle time coding
genetic algorithm (AITCGA). The differences between the first two methods were in
the coding strategies. For DITCGA method, chromosomes were coded by several sub
strings that contained data pertaining to parts and idle time that was processed by a
machine. For BITCGA, the structure of the chromosome and the coding strategy were
almost the same as DITCGA except the idle time coding used a binary number of
certain bits instead of decimal. The purpose of binary coding is to create the fitter gene
for crossover and mutation operation. For AITCGA method, the concept of self-
adjusting the upper limit of idle time is used. Because genetic algorithms are search
approaches, the proper upper limit idle time can adjust searching space and improve
searching efficiency. As a result, DITCGA and BITCGA provided almost the same
searching efficiency. AITCGA was more complicated. However, as the upper limit of
idle time plays an important rule for the searching space, AITCGA which can adjust
upper limit of idle time (enlarge searching space) had a greater possibility to find the

optimum solution at the expense of needing a larger searching time. In conclusion, these

three methods can satisfy the rapid response requirement in scheduling if the upper limit
of idle time is decided properly.

An adaptive genetic algorithm has been developed to solve the flow shop scheduling
that deals with processing a set of jobs through a set of machines where all jobs have
the same order of sequencing through machines [16]. One of the well-known drawbacks
that can occur with a genetic algorithm is known as premature convergence. It can
occur if the chromosomes with a higher fit than the others emerges early in the search.
Under fitness-proportionate selection, they and their descendents will multiply quickly
and it may lead the algorithm to converge on the local optimum that these chromosomes
represent rather than searching the fitness landscape thotoughly enough to find the
global optimum [17], [18]. To improve the performance, the adaptive probabilities of
crossover and mutation were introduced. The probabilities of the genetic operations are
dynamically adjusted according to the actual situation of the evolution process. If the
fitness of the individual is higher, the probability of the crossover and mutation
operation should be lower, and vise verse. As a result, the adaptive genetic algorithm
increases the velocity of the convergence of the algorithm and provides better
effectiveness and efficiency than the basic genetic algorithms.

The genetic algorithm for solving flow shop scheduling problem in a type of production
line that had the following attributes has been proposed: (i) parallel machines (a set of
machines that perform operations, simultaneously) and (ii) special procedure constraints
such as some jobs can only be processed on special machines [19]. In this flow shop
scheduling problems, there are n jobs scheduled to be processed, m sequenced

operations in the production line, and all the jobs have the same flow through machines.

In order to handle special constraints, some techniques were introduced to the
traditional genetic algorithms. For coding scheme, the chromosome was presented in

term of a vector with (m+1)nordered elements. The vector represents two parts, a

permutation of the serial number of n jobs and a matrix nxm which denotes a serial
number of machine chosen to perform operation of job. Because the two parts of the
chromosome have different format and meaning, two different crossover operators,
mutation operators and their probability are applied for different parts. The comparisons
between genetic algorithms and other algorithms such as shortest processing time
(SPT), largest processing time (LPT), shortest remaining processing time (SRPT) and
largest remaining processing time (LRPT) were also studied. As a result, genetic
algorithms seemed to provide better results than others when measured for efficiency
and computing time.

A genetic algorithm application to solve the flexible job shop scheduling problem has
been studied [11]. In a classical nxm job shop scheduling problem (JSSP), there are »
jobs and m machines. Each job must be processed on every machine by following the
assigned operation sequences. In this study, the typical JSSP are extended. Each job
may not have to be processed on every machine and the uncompleted jobs may be able
to pass though the same machine. For chromosome coding, each chromosome is made
up of a chain of operation template. The operation template can be defined as the
mapping between a set of natural numbers and operations which are job number,
operation number, processing machine and processing time. Because the operation in
each job has precedence constraints, not all the coded chromosome can represent the

feasible schedules directly. A decoding procedure called virtual job shop is developed

10

to decode each chromosome to a feasible schedule. The operating time for each
operation is calculated by Gantt chart. In summary, the utilization of the operation
template and virtual job shop was shown to solve the flexible job shop scheduling
problems easily.

A genetic algorithm to solve the multiobjective optimization of the flexile job shop
scheduling problem has been proposed [12]. The flexible job shop scheduling problem
(FSJP) is a problem of planning and organizing a set of tasks that have to be processed
on a set of resources with variable performances. Two main difficulties associated with
this problem are: (i) the assignment of each operation to the suitable machine, and (ii)
the calculation of the starting time of each operation. In this study, an Approach by
Localization (AL) and a scheduling algorithm have been proposed to assign a set of
feasible solution before applying genetic algorithm. For chromosome coding, Tasks
Sequencing List (T.S.L) is presented. Each chromosome is presented in the form of cell
list which represent the sequencing of tasks on the machines. For the genetic operators,
the Pox operator (Precedence Preserving order based crossover) and the PPS
(precedence Preserving Shift mutation) are introduced. Moreover, the assignment
operators which are the operators that deal with the only assignment properties of the
individuals were also applied. In summary, the solution from the genetic algorithm was
found to be generally satisfactory and promising.

The various genetic operators for flow shop scheduling problem have been studied [14].
In crossover operators, ten crossover operations (which are one-point crossover, two-
point crossover version I, two-point crossover version II, two-point crossover version

III, position based crossover version I, position based crossover version II, edge

11

recombination crossover, enhanced edge recombination crossover, and partially
matched crossover and cycle crossover) were compared by using computer simulation
using test problems and user selectable termination conditions. The two-point crossover
version I provided the best result. Similarly, four mutation operations (which are
adjacent two-job change, arbitrary two-job change, arbitrary three-job change and shift
change) were compared. In this case, the shift change mutation operation provided the
best result. However, to obtain the best performance for the problem, the type of genetic
operators as well as the genetic operation probabilities had to be considered [16]. In
addition, the genetic algorithm has been compared with other search algorithms such as
local search, taboo search, simulated annealing and random sampling technique. The
results show that genetic algorithm provided a much superior performance when
compared to a random sampling technique. However, the performance was a bit inferior
when compared to other search algorithms.

A genetic-based algorithm to solve the cell formation problem and batch scheduling
problem in Cellular Manufacturing (CM) has been developed [13]. The cell formation
problem is the problem of grouping machines into different cells on certain standard.
The batch scheduling problem is the problem of scheduling a number of n-jobs through
a single machine which are capable of handling only a number of job at one-time. In
batch scheduling problem, coding strategy is to divide the chromosome into two parts.
Each chromosome consisted of Part A and Part B. The values of genes in Part A
represent the number of job to be scheduled and the number of genes represents the
number of batches. Part B represents the actual jobs to be processed. The number of

jobs to be allocated in each batch depends on Part A. For Part A, two types of

12

operations were introduced which are: (i) a unary swapping operator, and (ii) a string
swapping operator. Similarly, two type of operation are used for Part B which are the
order-based operator and the position-based operator. This work concluded that genetic
algorithms can solve batch scheduling problem. It can also provide sequence of jobs to
be processed as well as determine the number of jobs to be processed in each batch. For
genetic operators, the position-based operators provided the best result.

A genetic algorithm-based parts scheduling in a two-machine and three-machine robotic
cell have been studied [3], [20]. The parts to be scheduled belong to the different part
types. It was assumed that there are no intermediate buffers between machines. For
encoding scheme, the chromosome consisted of a string of number which represents
part scheduling. Since the problem chosen consisted of different part types, there are
two alternative sequences of robot moving in a two-machine robotic cell and six
alternative sequences of robot moving in a three-machine robotic cell. For this reason,
these two and six alternative cycle times are used as a fitness function for two-machine
and three-machine robotic cell respectively. For genetic operators, one-point cut
crossover and arbitrary two-part exchange mutation are applied. In conclusion, the
genetic algorithms provided a practical and effective solution. However, to prevent
local optimum, converging speed of the algorithm had to be controlled. Different
scheme of genetic operator affects converging speed of the algorithm. This aspect of
GA’s application to sequencing and scheduling problem will be fully explored in this

thesis.

2.3 Summary

During the past decade, genetic algorithms have been employed to solve manufacturing
schedule problem. A number of researchers dealing with manufacturing schedule
problem using genetic algorithms have been reported in literatures. Manufacturing
schedule problems including flow shop scheduling problem and job shop scheduling
problem are NP-hard combinatorial optimization problems. Normally, these problems
have to deal with multi-objective optimization problems with complex constraints.
Genetic algorithms seem to be suitable for solving such problems because the first and
most important point of genetic algorithms is its ability to explore the solution space in
multiple directions. Since genetic algorithms have multiple offsprings, many different
routes can be explored at the same time and if one path turns out to be a dead end, they
can easily eliminate it and continue work on the more promising path, giving them a
better change each run to find the optimal solution. Most of the other algorithms are
serial, and can explore the solution space in one direction at a time, and if the solution
turns out to be suboptimal, all the previous works may have to be abandoned and started
all over. Moreover genetic algorithms are particularly well-suited to solving problems
where the space of all potential solutions is truly huge - too vast to search exhaustively
in any reasonable amount of time [21]. However, no matter how much strength genetic
algorithms possessed the key to obtaining an efficient solution depends on the efficient
implementation of genetic algorithms. Two main issues namely: how to encode a
solution in the chromosome, and how to enhance the performance of genetics search
always have to be considered. From a review of various researchers cited above, with

appropriate modification to the standard genetic algorithms, it can be concluded that

14

they have the potential to produce efficient results for many complex problems in
manufacturing schedule problems.

From a review of literature it can be concluded that genetic algorithms to solve batch
scheduling problem with a number of jobs though a single machine, and with a single
part type have been developed. Genetic algorithms to solve ‘different part type’ have
been the focus only in a very limited number of works. The order of sequencing through
machines of each part in “different part type’ has not been developed to an acceptable
level due to the complexity of encoding strategies and fitness calculation. As mentioned
in section 2.1, there are cases when the orders of the operations are very crucial. Only
two researchers [3], [20] have considered material handling between machines and
developed genetic algorithms for a two-machine and three-machine robotic cell.

This research will develop genetic algorithms for a three-machine circular robotic cell
to deal with scheduling ‘different part type’. It is a NP-hard problem and will consider
part scheduling as well as robot scheduling for part handling. The problem has two
main issues: (i) each part has a specific order of sequencing through machines which
cannot be changed, and each part may not pass through every machine, and (ii)
processing times of parts on machines they visit need not be the same. The objective is
to find the best part schedule which provides the minimum makespan. A pair grouping
and priority procedure will be employed to formulate the makespan in order to maintain
the order of sequencing through machines of a part. Further detail will be provided in

the following chapters.

15

Chapter 3 Problem Formulation

This chapter will present the details of problem formulation for part scheduling in a
three-machine robotic cell. It includes a description of the three-machine robotic cell
considered, data structure, part scheduling, part grouping and makespan calculation by

using time chart and the priority method.

3.1 Three-Machine Robotic Cell

The three-machine robotic cell consists of three machines: machine 1 (M1), machine 2
(M2) and machine 3 (M3), an input station / (M0), an output station O (M4), and a
central robot as shown in Figure 3.1. The machines and the stations are assumed to be
located in a semi-circle with the robot located at the centre. The exact location of the
machines is not that critical and variations in spacing can be easily incorporated. The
robot transfers part between machines as well as from input and output stations. At the

completion of all processing requirements, the parts are deposited in the output station.

Machine 2

M2
L]

O @:‘—:“ I
Output Input

Robot

Figure 3.1: The layout of three-machine robotic cell

16

The robot is assumed to be equipped with a one hand gripper and can handle one part at
a time. There are no intermediate storage buffers in front of machines. Therefore, any
part in the cell is always either in one of the machines or being handled by the robot.
The machines can process one part at a time and the parts in the machine have to be
unloaded before a new part is loaded. The pick-up, loading, unloading, drop-off and
transportation of part between machines or stations are carried out by the robot. The
robot travel time between any of pair of adjacent stations is equal as a result of distances
between machines being assumed equal. However, it can be changed, if need to be. The

notations that represent robot movements of a robotic cell in this work are shown

below.
pick = Time used by robot to pick up or unload part.
drop = Time used by robot to drop off or load part.
move = Movement time between any pair of adjacent location.

It is assumed that the setup time is included in the processing time of each part as it

moves through different machines.

3.2 Data Structure

There are n parts B, P, ..., F, to be processed through the machines. Each part has a

specific order of sequencing through machines and this cannot be changed. Hence
routing of a part through the cell is critical. The parts may not need to pass though every
machine and the processing time of parts on each machine may be different. Every part
starts at the input station 7 (M0) and finishes at the output station O (M4). At the
beginning of a production, all the machines are assumed to be idle with no parts in them

and the robot is at the input station / (M0) ready to pick up a part.

17

A part schedule is represented using the notation Foty> L2 -++s Lny- In other words,
Foy»Fo(2)---» Py is @ schedule for a given permutation o of n parts. The information

of each part can be represented to contain the order of sequence through machines and
the corresponding processing time. Any part information (Po(ip) will be presented in a

standard form shown below.

Foti) = 510y (516,)) = S206)) Wiy 5)) = S300)) Wsy) » where

Si(e,) = The first machine that part P,y will be processed.

S2(c,) = The next machine that part £, 7y will be processed after machine Sie,) -
S3(c,) = The next machine that part ;) will be processed after machine S2o;) -
VV(SI(O',-)) = Processing time of part 7, ;) on Sie,) -

VV(Sz(a,)) = Processing time of part 7, ;) on S2(o,) -

W Son) Processing time of part P, ;) on S3(0,) -

M) = Number of machine that part Py (;y will be processed. my oy =11.2,3}
Tio)) = Makespan of individual part P, .

L))+ (0y) v (c,) — Makespan of part schedulePU(l),Pa(z)...,Pa(n).
In the event when m, is equal to 2, there will be no S3(g,) and W(S3(g,->) in the

equation representing part 7,y . When M.y is equivalent to 1, there will be no S3(0,)

Sa66,y» W Sxtopy) and W Sr(;)) in the equation representing part Py

18

For example if part P, has the following data, M2 (5)— M3 (5) >M1(6), it means that

the part starts at M2, upon finishing at M2 moves to M3 and then to M1. The processing
times on each of those stations are as shown within brackets. The sequence of robot

moves for this part is shown in Figure 3.2.

Py =M2(5) - M3 (5) - M1 (6)

1. Pickup at MO 10. Move to M1 (C)
2. Move to M2 (A) 11. Load toMIl

3. Load on M2 12, Wait at M1

4. Wait at M2 13. Unload from M1

5.Unload fromM2 14. Move to M4 (D)

6. Move to M3 (B) 15. Drop off at M4

I 7.Load to M3 16. Move back to M0 (E)
8. Wait at M3

9. Unload from M3

Figure 3.2: The sequence of robot moves for part P,

To illustrate, consider an example where a part family F1 consists of seven parts:
B, B, P, Py, Bs, Fg,and P, to be processed through the three machines. For the
example considered, the part family F1 has the following part information.

Pl= MI (11) > M2 (13) > M3 (9)

P2= M2 (8) > Ml (10)

P3= M3 (14)> Ml (12)

e,
N
I

M2 (11)> M3 (7)

P5= M2 (10)

P6= M3 (15> MI (13) > M2 (11)
P7= M1 (7)> M2 (9)

The information provided above is also shown in a tabular form in Table 3.1.

19

Table 3.1: Part family F1

| First Process o Sec‘:oﬁd;“?f(’)kce'ss | icyffﬁfdﬂi’rbc'ess{*f |

PartName¢ /m——pr—p —— L e

| Machine | Time | Muchine | Time | Machine | Time
P1 M1 11 M2 13 M3 9
P2 M2 8 M1 10 None None
P3 M3 14 M1 12 None None
P4 M2 11 M3 7 None None
P5 M2 10 None None None None
P6 M3 15 M1 13 M2 11
P7 M1 7 M2 9 None None

To find the part schedule that provides the minimum makespan for the part family
consisting of many parts in F1, is very complicated. One part family can generate many
part schedules and there are many different options to calculate the makespan.
Moreover the important constraint that the order of sequence through machines of every
part cannot be changed should also be considered. In this work, a pair grouping and
priority method is applied to assure that makespan calculation will meet the constraint
considered. Section 3.3 will provide more details about the part scheduling and the
grouping and section 3.4 will present the priority method and time chart for makespan

calculation.

20

3.3 Part Scheduling / Grouping
As mentioned in Section 3.2, any part schedule will be represented

as P (1), Bp(2) -+ s Py - If there are n parts B, P ..., P, to be processed through the

v Py
three-machine cell, the parts can be arranged into many part schedule groups.

Specifically, the number of part schedules that can be generated is equivalent to 7/,

where 7 is the number of parts to be scheduled. For example, if there are three parts: P,
P, and P, to be scheduled, parts can be arranged into six (3!) part schedules which
are{R, B, B}, {A. B, B AR, R BY, (BB L R, {BL B L PY, and (B, Py, R

However, in each part schedule, there are many different options to calculate the

makespan. For example, to calculate the makespan of part schedule A, P, , B, there are

four options to calculate makespan. For the first option, it can be formulated by

calculating the individual makespan of 4, P, and P , and then summing all three
individual makespans together (makespan of option 1 =Tp +Tp +Tp,). For the second
option, it can be formulated by calculating makespan of B and P, together and then
summing this makespan with the individual makespan of , (makespan of option 2
=Tp4p, +Tp). For the third option, it can be formulated by calculating makespan of
P, and P; together and then summing this makespan with the individual makespan
of B, (makespan of option 3=Tp,p, +Tp). For the last option, it can be formulated by
calculating makespan of A, P, and P all together at once, (makespan of option 4
=Tpp+p). Each option may generate different makespans. This means that there can

be many makespans generated from one part schedule. The difference in each option is

21

the way groupings are formed for the part. In other words, the different grouping of the
parts in the calculation will provide different results for the makespan. As the number of
parts in the part schedule increase, more grouping option will be generated. The
fundamental issue that needs to be looked at is to determine which grouping option is
the best to use in calculating the makespan. In fact, the makespan that will represent the
makespan of the part schedule should be the minimum makespan that is selected from
every grouping option generated from the part schedule. However, it is difficult to
calculate all the makespan from every group option, especially in the case when part
schedule contains a number of parts.

One of the grouping options is a pair grouping. In a pair grouping, every part in the part
schedule will be paired into groups. For example, if part schedule A
ish,P R, Py, P, P, by using a pair grouping, the parts can be grouped into three
groups: {A, P}, {5, P}, and {Ps, P} . The pair grouping method is explored further in
this work. A pair is defined as the smallest group that any part schedule can be grouped
into (excluding one). In other words, every part schedule can be divided into groups of
pair, no matter how many parts are contained in the part schedule. A computer based
methodology was developed to calculate the makespan of any pair grouping. The
program was written using “Java” as the programming language. The choice of
programming language was based on the familiarity of the author with “Java”. Section

4.2.3 will provide further details of the methodology for a pair grouping.

22

3.4 Priority Method / Time Chart

To calculate the makespan of an individual part is quite simple. A time chart is used as a
tool to determine the makespan. The java language is used to create the graphical
display and the code for the time chart. The time chart consists of the time table of
machine 1 (M1), machine 2 (M2), machine 3 (M3) and robot (R). Since the order of
sequencing of a part through machines cannot be changed, the makespan can be
determined by plotting the processing data of parts as a time chart by following the
given order of sequence through machines. The processing data include the processing
time of part in the machines and the time of robot activities (loading time, unloading
time, pick up time, drop off time, and moving time between machines) that robot uses in
order to complete the process through a set of machines for a part. The total time

utilized to complete the part in the time chart is the makespan. For example, the data of

part P, from section 3.2 has the sequence, M2(5)—M3(5)—>M1(6). Figure 3.3

shows the time chart of part P,. From the time chart, the makespan of partP, is

equivalent to 26 units.

Py =M2(5)—>M3(5)—MI1(6)
3 = Machine 1 D Operation with PA

M2 = Machine 2

M1 = Machine 3 D Robot Moving without Part

By is processed by M2, R = Robot
with the processing time = 5 units T = Time

3 \ PA-M3 {5}
M2 PA-M2 (5)
M1 PA-I1 {6}

R @ HEE ol & |o o] = [of &8
[N
yh: I o (<[Tel Tl Tn] T[Tl Tl Tel T8[Tl =] Tel Te[To[[=] Tel Ie] [&[[s[o] [s] Ta[[«[Ts] le[Te] [¢]

Pick Up/ \, Drop off The Makespan = 26 units

— Move from MO to M2 Assume that Pick up / Unloading time (P) = 0.5 units
Drop off / Loading time (D) = 0.5 units
Robot moving time between any adjacent locations = 0.5 units

Figure 3.3: Time chart of part P,

To calculate the makespan of a group of parts that contains more than one part is
complicated. The makespan of the group can be obtained by utilizing the same method
of calculating a makespan for an individual part, by plotting all of the processing data of
every part in the group in the time chart. However, this does not mean that the
makespan of the part schedule is obtained by accumulating the individual makespan of
each part in the group. In that case, there will be a lot of wasted production time as a
result of greater idle time from machines and robot. When a pair grouping method is
used, the member of the group will be two. There are many ways to plot two parts into
one time chart. For example, the least robot idle time method and the least machine idle
time method are two options. Even though these two methods will tabulate the results
considering the least idle time of machines or the least idle time of the robot, they do
not consider the order of sequencing of the part through machines, an important

constraint considered in this work.

24

A priority based method is introduced. The concept of the priority method is based on
“first come, first served” principle. This is one of many other scheduling rules normally
followed in scheduling studies. The parts will be attended to in the order that they
arrive. It means that the first part of the pair has to be processed before the second part
of the pair. The processing of the first part will have the first priority and any activities
(such as robot movement or machine processing) arising from processing the second
part cannot stop the processing of the first part. In other words, the part in the first order
of the group will have the priority over the part that comes later. This assumption does
not however imply that the first part has to be finished before the second part. Since the
order of sequence of the part through machines cannot be changed, this method will
maintain the order of the sequence through machines and the position of a part in the
group.

The process starts by plotting the processing data of the first part in the time chart (this
process is identical to the process of determining the makespan of an individual part).
Then the processing data of the second part Wiil be incorporated on the same time chart.
Two processes are employed: (i) insertion and (ii) connection. The process starts with
insertion. The processing data of the second part will be analyzed in order to determine
the insertion position. The computer based algorithm will compute the time interval
(idle times) in the first part’s schedule. If the space is big enough to insert any
processing data of the second part, that processing data will be inserted into the time
chart. In the event when the processing data cannot be inserted into those idle spaces,
the connection process will be used. For the connection process, the processing data

will be input after the processing data of the first part. In other words, the processing

25

data of the second part will be inserted into the time chart in the ways that provide the
shortest makespan of the pair without causing any interference to the first part. That
means the first part will be the control part. The first part does not have to finish before
the second part. The processing of the second part can finish ahead of the first part if the
result will provide a shorter makespan. However the inserting data has to meet the
condition that the order of machine processing sequence of any part cannot be changed.
The total time to complete all parts in the time chart is the makespan. For example a
pair grouping G1 consists of P, (the first part of the pair) and Py, and is composed of
the following part information:

Py = M2(5)—>M3(5)—>M1(6); and

Py = M1(6)>M2(4).
The process of makespan caiculation from time chart of the pair grouping G1 is shown

in Figure 3.4. The sequence of robot moves for the pair grouping G1 is shown in Figure

3.5.

26

Py =M2
A M2 (5) — M3 (5) - Ml (6) M3 = Wachine1 R = Robot D Operation with PA D Robot Moving without Part

PB =M1(6) > M2 (4) M2 = Mach?nez T |=Time :]
111 = Machine 3 [Operation with PB

. Set the first part (P,)as the main part.

M3 [Pamsm |

12 PA-m2 (5]

A] PA-mi [6) |

R EHE | & [ol * =af &

T L=l sl fo Ll Tl T[Tl T Tol Te[=] [o[Tel [=[el le[el le[el (o[&1 [8[18] [R[Ta] [&[s [<[Ts] [3]

\ 4

2. Add the second part (PB) to the chart without interference to the process of the first part (P4)

K] | PA-m3 (5)

M2 [[PEmzm | |

M1 [T T RN PaA-m1 (6] |

R[] 2 o] & [slaf 5| | kel k][5 plk][z k] EEEE T

v T ool oI T e o] o el e e e el el STl Il el e
: | RN EENEEREN {1 '

Assume that pick up/loading time (P) and drop off /unloading time (D) = 0.5 units
Robot movement time between any adjacent locations = 0.5 units.

Makespan of P, - Py (T4, p) =26 Units

Figure 3.4: Time chart of pair grouping G1

From Figure 3.4, the makespan of the group G1 is equivalent to 26 units which is the

same as the individual makespan of part P, . This means that processing data of part Py

can be completely inserted in the idle times of part P, .

27

Pick up P, at MO

. Move P, to M2 (A)

. Load P, on M2

. Move back to M0 (B)
. Pick up Py at MO

. Move Py to M1 (C)
. Load Py on M1

. Move back to M2 (D)
. Wait at M2
0. Unload P, from M2

Py = M2(5)—>M3(5)—>M1(6)
Pg = MI1(6)— M2 (4)

Move P, to M3 (E)
Load P, toM3
Move back to M1 (F)
Unload Py at M1
Move Py to M2 (G)
Load Py on M2

Move back to M3 (H)
Wait at M3
Unload P, from M3

. Move P, to M1 (1)

RN DN
0 NN U B W —

3%
Nel

.Load P, to M1
. Move back to M2 (J)
. Unload P, at M2

Move Py to M4 (K)

. Drop off P, on M4

. Move back to M1 (L)
. Wait at M1

28. Unload P, from M1

. Move P, to M4 (M)

. Drop off P, at M4

. Move back to M0 (N)

Figure 3.5: Sequence of robot moves for pair grouping G1

28

As stated above, there are many part schedules that can be generated from a part family
and each part schedule may result in different makespan values. The makespan of these
part schedules have to be calculated by using time chart methodology. A single equation
for calculating the minimum makespan could not be found. In case that the part family
consists of many parts, the solution space of the problem will be very big and complex.
To find out which part schedule provides the best (minimum) makespan is a challenge.
A methodology based on genetic algorithm is proposed next. Genetic algorithm utilizes
simple and efficient searching techniques and represents a popular approach to

stochastic optimization. Genetic algorithm is most appropriate for complex non-linear

models such as the problem considered here. Genetic algorithm has the ability to
explore the solution in multiple directions and hence a powerful tool to find a solution

even in a vast solution space. Chapter 4 will explain the methodology of genetic

algorithms developed for solving this problem.

29

Chapter 4 Methodology

4.1 Outline of Genetic Algorithms

Genetic algorithms were formally introduced in the United States in the 1970s by John
Holland and utilize probabilistic search approaches. They mimic the evolutionary
process. The basic concept of genetic algorithm is designed to simulate the Darwinian
principle of survival of the fittest. As per Darwinian evolution, all of the creatures are
constantly evolving. They are continually adapting themselves to all changing
environments to survive. The weaker creatures tend to die. Only the stronger and the
fitter creatures live to mate and to create offspring and ensure the continuing survival of
the species.

Genetic algorithms are techniques that mimic biological evolution as a problem-solving
strategy. Genetic algorithms begin with a set of solutions called initial population. The
population consists of chromosomes, with each chromosome representing a solution to
the problem. After initial populations are created, each candidate chromosome is
evaluated by using some measure of fitness. To form a better population, only the fitter
chromosomes are selected as the parents and allowed to reproduce the new
chromosomes as the offspring. The more suitable they are, the more chances they have
to reproduce. The offsprings are created by two basic genetic operators; crossover and
mutation. After the operation, the new population consists of two groups: (i) the
preceding chromosomes and (ii) the new offspring. To maintain population size, only
the fitter chromosomes of the new population are selected to take part on evolving the
life cycle. Every evolutionary step is known as a generation. The new generation is

produced from the surviving chromosome and the better offsprings from the previous

generation. By this way, the new generation will become stronger than the last
generation. Then, the new generation is used to reproduce its next generation. The
population evolves again and again, containing more and more highly fit chromosomes.
When a certain convergence criterion is reached, wherein no significant further increase
in the average fitness of the population results, the best chromosome produced will be

selected to determine optimal solution to the problem.

4.2 The Implementation of Genetic Algorithm

A typical genetic algorithm consists of six processes: (i) encoding, (ii) initialization, (iii)
fitness evaluation, (iv) parent selection, (v) genetic operations and (vi) evolution. In
each process, there are different methods for implementation. For example, in the
encoding process, solution can be encoded in several ways such as permutation
encoding, binary encoding, or tree encoding, [22]. It depends on the nature of the
problem to decide which method is suitable for the problem. For instance, permutation
encoding is suitable for the ordering problem such as traveling salesman problem
(TSP), [22] as well as the problem focused in this work. Therefore, in order to obtain an
efficient solution of any problem, every process of genetic algorithms should be
implemented to suit the problem considered. In this section, the implementation of
genetic algorithm for part scheduling for the three-machine robotic cell considered is
presented.

Java language is used to code the proposed genetic algorithm. At the start, the essential
data about parts to be produced in the robotic cell, namely : number of parts, the

processing sequence, and the processing time at machines for each part, robot loading

and unloading time, and robot movement time between machines will be input.
Similarly the necessary information about genetic operations which are population size,
number of generations, the type and the probability of crossover and mutation will also
be input. The program provides several functions to create initial population, to evaluate
fitness, to select parents, to perform genetic operations and evolution with the goal of
finding the optimal part schedule which provides minimum makespan. Figure 4.1 shows

the flow chart of genetic algorithm implementation.

32

Encoding

¥

Initialization

(Start Generation><

Y

{

Fitness Evaluation

Y

Parent Selection

Initial

Chromosomes

Y

Genetic Operation

Y

Y

Perfrom Crossover

Y

Offsprings from
Crossover

Y

y

Fitness Evaluation [«—

Y

Perfrom Mutation

Y

Offsprings from
Mutation

¥

Evolution

Y

New Generation
Chromosomes

End

|98
(%]

Figure 4.1: Flow chart of genetic algorithm

4.2.1 Encoding

Before a genetic algorithm can be applied to solve a problem, a method is needed to
encode potential solutions to the problem in a computer implementable format. The
process is called “Encoding”. It represents the potential solution to the problem in the
form of a chromosome. Specifically, part schedules are represented by chromosomes. In
this work, permutation encoding is adopted, [22]. Permutation encoding is particularly
suitable for sequencing problems. In permutation encoding, every chromosome consists
of a string of genes. Each gene is an integer that represents a part and the position of
each gene represents the position of the part in the part schedule. Therefore, if there are
n parts to be scheduled, each chromosome will consist of an integer from 1 to » with the
sequence of numbers being different from chromosome to chromosome. In short, the
length of the chromosome is equivalent to the number of parts. Figure 4.2 shows
chromosome “C1” which is represented as 1 3 6 2 8 4 5 7. It means chromosome “C1”
has part schedule that starts with processing of part 1 first, followed by part 3, 6, 2, 8, 4,
5 and 7 in that order. Each part goes through a variety of machine in a certain sequence,
as contained in the data for each part.

Part 3

/
/

Part1 Parté

Chromosome: C1

Figure 4.2: Representation of chromosome C1

4.2.2 Initialization

To start the genetic algorithm, a group of chromosomes are required. The group of
chromosome that is used to start genetic algorithm is called “initial population”.
Initialization is the process to generate the initial population. The first step is to define
the population size. The initial population will be generated, represented as an integer in
a two-dimensional array. Each row of the array represents a chromosome which is a
part schedule. The number of rows which is the number of the initial chromosomes is
equivalent to the population size. As stated in Section 4.2.1, each chromosome contains
an integer 1 to n where » is the number of parts. The process to generate initial
population contains the following steps.

(1) Generate chromosome C,

C =1,2,3,4..n, where n = number of parts and 7 = 1, 2 ... population
size.
(2) For each C;, generate random number (7;); from a range [0, 1],

where £=1, 2 ... number of part and i = 1, 2 ... population size.

(3) Group the random number (7}); with the integer inC, .
()i =1, (n); =2... (1n,);=n
(4) Use bubble sort method to sort (r,); in descending order.

(5) Sort the integer in C, according to the sorted (7); from (4).

Figure 4.3 shows the example of generating initial chromosome C1.

35

Chromosome C1 | 1[2]3]4[5]6]|7]8

IR N

Random number 0.2(0.1]10.6/0.8{0.7]03|0.4]|0.9

Bubble sort method

Sorted random number |{0.1]10.2{0.3/0.4]0.6]/0.7/0.8]0.9

NEEEEEE

Initial Chromosome C1 |2 [1[6]7[3]5]4]8

Figure 4.3: Example of generating initial chromosome C1

To generate initial population, first, the chromosome is created as an array of integers
from 1 to n, where n is number of parts. Next, the number from 0 to 1 is generated
randomly. Each random number represents each gene (integer) in the chromosome.
Then, by using the value of the random numbers, the genes in the chromosome are
sorted in descending order by using bubble sort method. The next chromosome is
generated using the same procedure until the number of chromosome is equivalent to

population size. In this way the chromosomes for the initial population are created.

4.2.3 Fitness Evaluation

Fitness evaluation is a method to measure the fitness value of a particular chromosome.
In order to select the fitter chromosome to progress to subsequent process of genetic
algorithms, each candidate chromosome has to be evaluated by usipg some measure of
fitness. For part scheduling in a three-machine robotic cell problem, the makespan is

used as a fitness measurement. Specifically, the reciprocal value of the makespan is a

fitness value. However, the makespan has to be calculated within the condition that
achieves the most crucial issue of the problem, namely: each part in chromosome has a
specific order of sequencing through machines and the order cannot be changed. Hence,
in this work, the pair grouping method is designed to calculate the makespan. The
concept of the pair grouping method is that the makespan of each chromosome can be
calculated by the summing all the makespan values of the groups of parts that are paired
in chromosome. The process begins with every part in the chromosome being paired
with its adjacent part with the intention of maintaining the order of the part in the
chromosome. Next, the makespan of each pair will be calculated by using the priority
method as mentioned in Section 3.4. Then, the makespan of the chromosome will be
formulated from the summation of the makespans from every pair. Figure 4.4 shows the

example of the pair grouping method for chromosome C1.

Step 1 : Pairing ‘ |5l8] ’114] L2]7‘
l l l l

Step 2 : Calculate I T3] ‘ Tss I ‘ Tia l ‘ T2 l
Makespan Makespan of Makespan of Makespan of Makespan of
Part3and Part 6 Part5and Part 8 Part ! and Part4 Part 2 and Part 7
L |

Step 3 : Summation Makespan of Chromosome C1 = 13,6 + Ts8 + Ti4 + T27

Figure 4.4: Example of pair grouping method in chromosome C1

The process of pair grouping method contains the following steps.
Assume that “C” is a particular chromosome considered to measure fitness value

where chromosome “C” consists of n parts which are B, B, B ..., P,.

In other words, C= PR, P,, P;..., P, , where n = number of parts.
(1) Create G;, a group i of chromosomes by pairing part with its next part.

G ={R. P}, Gy ={P;, Py} .Gy ={Bpy) By}
. N
wherei=1,2..., kandkzz.

(2) Calculate TG; , the makespan of group G, .

The detail of makespan calculétion is shown in Section 3.4
(3) Calculate TC, the makespan of chromosome “C” from
k
TC=>"TG,
i=1
(4) Calculate FV , the fitness Valué of chromosome “C” from

Fr——
TC

However, the above process can be used more efficiently when the number of parts in
the chromosome is an even number. When the number of part is an odd number, there
will be an excess part that can not be paired. The excess part will be treated as a group
with Just that part as a member. The position of the excess part can take many options.
Each different position of the excess part provides a different model of grouping.
Therefore, there is more than one option to pair the parts in chromosome when the
number of part is an odd number. The number of options of a pair grouping is

equivalent to(n+1)/2, where n is the number of parts. Figure 4.5 shows the four

alternatives for pairing the group of chromosome C1, where C1 =3, 6, 5, 1, 4,2, 7.

allsls] [iT4] [2

Group 1 Group 2 Group 3 Group 4

3 114 ﬁiﬂggpin = Ts6+Ts +Tia+ T2z

Group 1 Gm 2 Group 3 Group 4

&?ﬁggpin = Ts6 + Ts1 4+ Ta + T2z

Group 1 Group 2 G;o—u_p 3 Group4

7 I Option 1
Makespan = T3 + Tes + T1a + To7

Chromosome C1

[3le]s[i]e]2]7]

Option 4
Makespan = T36 + Ts1 + Ta2 + T2

Group 4

Figure 4.5: Four alternatives of pair grouping of chromosome C1

As a result, when the number of parts is an odd number, all options of a pair grouping in
the chromosome have to be considered. The option that provides the best (minimum)
makespan will represent the fitness value of the chromosome. The process of the pair
grouping method when the number of pérts is an odd number contains the following
steps.

Assume that “C” is a particular chromosome whose fitness value needs to be

eodiyy s

calculated. C=A, B, B ..., P With n = number of parts.

(1) Create G;;, a group j of option i by pairing part with its next part and at any
position where / = j, G; will contain only one member which is Fajpy-In
other word, G ;; ={F,_1)} .

Gy ={h}, Gy ={h, B}, G1v3 =Py, Fs} o Gy ={Fny - B}

Gy ={R, B}, G ={A}, Gz ={P, B}Gy ={B 1), B}

Gj] ={A.PB}, sz ={F, By} ..., ij :{P(Zj—l)} ,ij :{P(n—l) Bt s

Gu ={R. B}, G ={P, Py}, G3 ={P5, B}Gy, ={P,}

Wherei,j =1,2...,k and k:%—l.

(2) Calculate 7G;; , the makespan of group Gy

The detail of makespan calculation is shown in Section 3.4
(3) Calculate TC;, the makespan of option i of chromosome “C” from
k
TC; =Y TG,
Jj=1
(4) The TC; that provides the minimum makespan, will be used to calculate the

fitness value FV of chromosome “C” from

1
1C

min

FV =

Figure 4.6 shows the flow chart of fitness evaluation procedure.

40

] Candidate Chromosome |

Even Number of Part Odd
Even/0Qdd?
Y
Pairing Parts in Chromosome Create Options of a Pair Grouping
of Chromosome
number of options = (2n+1)/2
1
Calculate Times of Each Pair l
in Chromosome
Pairing Parts in Option 1 Pairing Parts in Option 2 ves
A with condition with condition
Sum Times of G={P,,_ G, ={P,
* All Pair in Chromosome 4 { (2 l)} # { 2 l)}
y Calculate Times of Calculate Times of
Fitness Value of Chromosome Each Pair ln Option 1 Each Palrln Option 2 se
Sum Times of All Pairs Sum Times of All Pairs e
in Option 1 in Option 2

Y

Select the Best Sﬁm of Times
from Every Option

Y

Fitness Value of Chromosome

Figure 4.6: Flow chart of fitness evaluation procedure

4.2.4 Parent Selection

“Parent selection” is used to select the populations from the previous generation to
serve as the parents for the next generation. The principle followed is to select only the
fitter chromosomes as the parents to reproduce the new offspring by performing the

genetic operation. In this work, a roulette wheel selection approach is applied for parent

41

selection. The roulette wheel selection is a form of fitness selection procedure. In this
the chance of an individual being selected is determined. The amount of fitness is
measured by quantifying the fitness as a proportion. The concept can be represented as
a game of roulette with each individual getting a slice of the wheel. The more fit ones
get larger slices than less fit ones. When the wheel is spun, the section on which it lands
and the individual who owns the location is chosen. The places on the wheel can be
representing different chromosomes. There is a good chance for some chromosomes to
be selected more than once. The better the fitness, the greater is the chance it will be
selected. The selected chromosome will go forward to form the mating pool for creating
the next generation. Multiple copies of the same chromosome can exist in the mating
pool. The roulette wheel selection approach contains the following steps.

(1) Calculate fitness value, FV; from makespan, TC; as described in 4.2.3

FV, = L , where i =1, 2... population size.
TC;

(2) Calculate selection probability, p; for each individual using,

, where 1= 1, 2... population size.

(3) Calculate cumulative probability, Cp; for each individual from
i
Cp; = ZP,Z , where i =1, 2... population size.
n=l1

(4) Generate random number (7},) from a range [0, 1].

(5) If 7, <Cp; then select individual i.

If Cp; <r, <Cp;yq , then select individual i+/.

The roulette wheel approach is stochastic. The approach begins with determining the
slice area of each individual in the wheel. By calculating the selection probability and
cumulative probability from fitness value, the slice area of each individual are defined.
Then, the number from 0 to 1 is generated randomly. If the random number lands in a
certain area, for example the generated random number is between cumulative

probability Cp; andCp,,;, the individual i + 1 is selected. Using this procedure, the

chromosomes are chosen to form mating pool. In other words, the mating pool contains
the selected chromosomes that will be chosen to be the parent chromosomes when
genetic operations occur. The number of selected chromosomes in mating pool is
equivalent to population size. Hence, there are chances that some chromosomes are

selected more than once and some may not be chosen to be included in the mating pool.

4.2.5 Genetic Operators

Once parent selection has chosen the fitter parents, there must be ways of improving
their fitness in the next generation. There are two basic genetic operators to accomplish
this, which are crossover and mutation. The crossover and mutation are the most

important parts of the genetic algorithms to generate the better chromosome.

4.2.5.1 Crossover

Crossover is a genetic operator that combines the two selected chromosomes (parents)
to produce a new chromosome (offspring). The idea behind crossover is that the new
chromosome may be better than both the parents if it takes the best characteristics from
each of the parents. There are several types of crossover operators. In this work, three
crossover operators which are (i) one-point crossover, (ii) two-point crossover (version
I) and (iii) two-point crossover (version II) are adopted. The following sections provide

further detail.

(1) One-Point Crossover

The one-point crossover begins with a random selection of a crossover point (a
cutting point) in the chromosome. Then, the two new offsprings are generated
by interchanging the genes from the two parent chromosomes at this point.

Figure 4.7 shows the example of a one-point crossover wherein parent 1 and

parent 2 are divided into two sections by the cutting point.

[Cutting Point vl» Cutting Point

Parent1 | 1]2|3]4[s5]6][7]8] [1][2]3]4]5]6]7]8] Parent1

2 1]2 ﬂ— ﬂ Offspring 2
1

parent2 |3]6|5]8[1]a]2]7] [3]6[5]8]1]4]2]7] Parent2

Figure 4.7: Example of one-point crossover

Offspring 11 s e

44

The two offsprings, offspring 1 and offspring 2, are generated from the two
parents. The left section of offspring 1 imitates the genes from the left section of
parent 1 while offspring 2 inherits from parent 2. The right section of offspring 1
is the copy of the genes that are not contained in the first section of offspring 1
from parent 2. The creation of offspring 2 is similar, except in this case, the right

section of offspring 2 is created as shown in Figure 4.7.

(2) Two-Point Crossover (Version I)

The two-point crossover (version I) begins with a random selection of two
crossover points in the chromosome. Then, the two new offsprings are created
by interchanging the genes from the two parent chromosomes at these two
points. Figure 4.8 illustrates the example of two-point crossover (version I)
where the two offsprings: offspring 1 and offspring 2 are generated from two

parents.

Cutting Point 2 Cutting Point 1
Cutting Point 1 1 [Cutting Point 2
section 3 sectlon 1

sectlon 1 section 2

sectlon 2 sectlon 3

Parent1 |12 3

Offspring 1 12]3

Parent2 | 3

Figure 4.8: Example of two-point crossover (version I)

45

Parent 1 and parent 2 are divided into three sections: section 1, section 2 and
section 3 by cutting point 1 and cutting point 2. The genes in section 1 and
section 3 of offspring 1 inherit from section 1 and section 3 of parent 1
respectively while offspring 2 inherits those genes from parent 2. The genes in
section 2 of offsprings 1 is the copy of the genes from parent 2 that are not
contained in the section 1 and the section 3 of offspring 1. The section 2 of

offspring 2 is created in similar way, except that the genes are a copy from

parent 1.

(3) Two-Point Crossover (Version IT)

The two-point crossover (version II) is similar to the two-point crossover
(version I). It starts with randomly choosing two crossover points in the
chromosome of the two parents. As a result, the chromosomes of the two parents
are divided into three sections: section 1, section 2 and section 3. Then, the two
new offsprings are created by interchanging the genes from the two parent
chromosomes at these two points. Figure 4.9 shows the example of a two-point

crossover (version II).

46

Cutting Point 2 Cutting Point 1
Cutting Point 1 1 l’ Cutting Point 2
section 3 section 1

section 2 [section 3
1]2[3]4]5]6]7]8] Parent1

(O Y

[2]3 E ;&1‘4.“ 7] Offspring 2

i

Figure 4.9: Example of two-point crossover (version II)

In the case of two-point crossover (version II), the genes in the section 2 of
offspring 1 inherits from the genes in the section 2 of parent 1 whereas offspring
2 inherits those genes from parent 2. The genes in the section 1 and section 3 of
offspring 1 are the copy of the genes from parent 2 that are not contained in the
section 2 of offspring 1. Similarly to generate the section 1 and the section 3 of
offspring 2, the genes of the corresponding section are created from parent 1 as

shown in Figure 4.9.

The number of children from crossover operation depends on the crossover probability
(Pc). For instance, if Pc equals 0.6, it means that 60% of selected chromosomes in the
mating pool should undergo crossover operation. In other words, the number of
offsprings from crossover should be equivalent to 60% of population size. The pair of
parents in which crossovers are performed is randomly picked from the mating pool.

The process of choosing parents is as described below.

47

(1) Generate a random number S, from the range [0, 1] of each chromosome i
(C;) in mating pool, where i =1, 2... , population size.
(2) If S, < Pc , then chromosome i (C,) is a parent chromosome that will

undergo crossover operation, where Pc = crossover probability.

4.2.5.2 Mutation

Mutation is a genetic operator that randomly alters one or more gene positions within
chromosomes (parents) from its initial state. This can result in entirely new
chromosome values being added to the pdpulations. With these new chromosome
values, the genetic algorithm may be able to arrive at a better solution than was
previously possible. Mutation is an important part of the genetic search as it helps to
prevent the population from stagnating at any local optima. There are several types of
mutation operators. In this work, three mutation operators which are (i) arbitrary two-
job exchange mutation, (ii) arbitrary three-job exchange mutation and (iii) shift change
mutation are adopted, for sequencing a ‘different part type’. The detail of these

mutation operators are provided below.

(1) Arbitrary Two-Job Exchange Mutation

The arbitrary two-job exchange mutation starts with a random selection of two
positions of genes in a parent chromosome. Then, the offspring is generated by
exchanging the position of the two genes. Figure 4.10 illustrates the example of

the arbitrary two-job exchange mutation.

48

Position | Position 2

Parent | 1 |

Offspring |4 |23]1]6]5]8]7]

Figure 4.10: Example of arbitrary two-job exchange mutation

(2) Arbitrary Three-Job Exchange Mutation

The arbitrary three-job exchange mutation begins with a random selection of
three positions of genes in a parent chromosome. An example is shown in Figure
4.11. The offspring is created by exchanging the position of those genes as: (a)
position 1 exchanges with position 2, (b) position 2 exchanges with position 3
and (c) position 3 exchanges with position 1. Figure 4.11 illustrates the arbitrary

three-job exchange mutation.

Position 3

Position 1 Position 2

Offspring | 1[7]3] 4 12]6 15]8]

Figure 4.11: Example of arbitrary three-job exchange mutation
(3) Shift Change Mutation

The shift change mutation starts with randomly choosing two positions of genes

in a parent chromosome. Then, the offspring is created as follows: (a) move the

49

gene at position 2 to position 1, and (b) shift the genes between position 1 and
the position before position 2 by one location. Figure 4.12 demonstrates the

example of the shift change mutation.

Position 1 Position 2

Figure 4.12: Example of shift change mutation

The number of offspring from mutation depends on Mutation probability (Pm). The
parents considered to perform mutation operation are randomly chosen from the mating
pool generated from parent selection process. The process of choosing parent is

described below.

(1) Generate random number R, from the range [0,1] of each chromosome i
(C;) in mating pool, where i =1, 2 .., population size.
(2) If R <Pm then chromosome i (C,) is a parent chromosome that will

undergoes mutation operation, where Pm = crossover probability.

50

4.2.6 Evolution

Evolution strategy is a method that uses to select the stronger (fitter) chromosomes and
to eliminate the weaker chromosomes. After performing genetic operations, total
population is increased due to the offsprings from genetic operations. The new
population consists of three groups of chromosome: (i) the initial chromosomes, (ii) the
chromosomes from crossover operation and (iii) the chromosomes from mutation
operation. In order to maintain the population size, only the chromosomes that have the
best or the better fitness values are chosen. The fitness evaluation presented in section
4.2.3 is used to measure fitness value. The selected chromosomes which are called the
surviving chromosomes will become a new population and will be used as the starting
chromosomes for the next generation. In this way, the next generation will be created
from the stronger chromosome than the last generation. As a result, the new population
will become stronger than the last generation. Then, the population evolves again and
| again, resulting in more and more highly fit chromosomes. When the number of
generation reaches a user selected value, the best chromosome produced the minimum
makespan will be determined as the best solution or the best part schedule of the
problem. The next chapter presents the results of tests conducted using the methodology

presented.

51

Chapter 5 Results and Discussion

5.1 Testing and Evaluation of Genetic Algorithm (GA)

In this section, the GA developed is tested to obtain the best part scheduling that will
produce the minimum makespan for the three-machine robotic cell. The algorithm was
coded using Java as the programming language. To test the program, a part family ‘F2’
containing 16 different parts is used. The data for part family F2 is shown in a tabulated
form in Table 5.1. Each part in the part family has a different order of sequencing
through machines with the exception of part P02 and P16 which have the same order of
sequencing through machines but have different processing times on each machine. The
processing times of parts in the part family were generated randomly to produce a range
from 1 to 60 seconds.

Table 5.1: Part family F2

e T - DHdProcess ™ ThlrdProceSS

Part Name m—————r T
P1 M1 15 16 M3 It
P2 M 9 M3 43 M2 20
P3 M2 45 M1 28 M3 29
P4 M2 27 M3 58 M1 46
P5 M3 55 M1 11 M2 60
P6 M3 58 M2 38 M1 37
P7 Ml 29 M2 9 None -
P8 M1 16 M3 28 None -
P9 M2 16 M1 38 None -
P10 M2 51 M3 49 None -
P11 M3 40 MI1 19 None -
P12 M3 51 M2 20 None -
P13 M1 10 None - None -
Pl4 M2 24 None - None -
P15 M3 48 None - None -
P16 Ml 22 3 59 M2 49

52

The robot movement times between two adjacent stations is assumed to be 3 secs. The
pick and drop times was also assumed to be 3 secs at all station.

The part family F2 is tested by using four different sets of genetic probabilities, namely
[Pe, Pm] =[0.2, 0.2], [0.6, 0.4], [0.5, 0.5], [0.8, 0.8]. This results in four tests for part
family F2. The tests are designed to terminate when the number of generation reach

100. The other relevant parameters for the test are as shown below.

Population size: 20

Crossover Type: One-Point Crossover

Mutation Type: Arbitrary Two-Job Exchange Mutation
Number of Evolutions: 100

Figures 5.1(a) through (d) show makespan values obtained versus the number of
generations required for the chosen Pc and Pm. The chromosome that produces the best

makespan and the corresponding pair grouping are also shown.

Makespan Times and Generation No. Pc =0.2, Pm = 0.2

Times Pc =0.2,Pm =0.2 Minimum makespan: 1310 sec.
1600 .
at generation # 77
1550 Chromosome with the minimum makespan:
1600 5131603060904 01 1007 12080502 14 11
Paired groups:
1450 P15-P13 =84.0
1100 Time = 11 at Gn no. 77 P16-P03 = 196.0
. ‘ P06-P09 = 193.0
1350 P04-PO1 = 191.0
1300 P10-P07 = 142.0
P12-P08 = 139.0
1250 — P05-P02 = 234.0
111 21 31 41 51 61 71 81 91 Toue T Ao
Gen no. P14-P11 =131.0
Figure 5-1(a)
Makespan Times and Generation No. Pc = 0.6, Pm = 0.4
Times Pc Pm=0.4 Minimum makespan: 1303 sec.
1600 Foua at generation # 32
1550 Chromosome with the minimum makespan:
1500 06021603 1501 14 13 1208 07 05 04 10 09 11

Paired groups:

1450 10 ‘, Time = 1303 at Gen no. 32 P06-P02 =211.0

P16-P03 = 196.0

1400 £ R
P15-P01 =119.0
1350 P14-P13 = 84.0
1300 P12-P08 = 139.0
oso I PO7-PO5 = 198.0
141 21 31 41 51 61 71 81 91 P04-P10 =203.0
Gen no. P09-P11 =153.0
Figure 5-1(b)
Makespan Times and Generation No. Pc=0.5,Pm =0.5
imes - Pc=05Pm=05 Minimum makespan: 1317 sec.

1600 12 at generation # 59

Chromosome with the minimum makespan:
i .. ' 07120502 16030609 08 13 11 14 1501 04 10
1500 , ‘ ;
sl . Paired groups:
1450 v [Time = 1317 at Gen no. 59 P0O7-P12 = 131.0

P05-P02 = 234.0

1550 1=

1400 P16-P03 = 196.0
1350 P06-P09 = 193.0
P0O8-P13 =110.0
1900 PII-P14 = 131.0
1250 — P15-P01 =119.0
111 21 31 41 51 61 71 81 Ge9r1 no. P04-P10 = 203.0
Figure 5-1(c)
Makespan Times and Generation No. Pc=0.8,Pm=0.8
Times Pc=0.8,Pm=0.8 Minimum makespan: 1321 sec.
1600 at generation # 31
1850 Chromosome with the minimum makespan:
091116030602 0512 1407 1501 08 1304 10
1500 ;
Paired groups:
1450 P09-P11 = 153.0
14004 P16-P03 = 196.0
P06-P02 =211.0
1350 P05-P12 =230.0
1300 | P14-P07 = 99.0
| P15-PO1 = 119.0
12507) S P08-P13 =110.0
T2t 31 4 stoel 7181 a1 PO4-P10 = 203.0

Figure 5-1(d)

Figure 5.1(a) through (d): Makespan times versus generation number of part family F2

with four genetic probabilities

54

From the four graphs shown in Figure 5.1, it can be observed that the makespan values
reach a minimal (best value) at different generation times. These values can be
identified as the best makespan for that test. The chromosome providing the minimum
makespan for the test will represent the best part schedule for that test. However, the
minimum makespan values and the generation number at which it is reached, is
different for each case. For example Plot 5.1(b) provides a minimum makespan of 1303
sec., while Plot 5.1(d) provides a fast convergent rate, at 31 generations. From this
result it can be concluded that values of Pc and Pm have an impact on the result. Results
of further studies are discussed in Section 5.2.

In addition to the results shown above, the GA program is also capable of providing
details pertaining to how each pair of chromosome is scheduled through the machines.
This is illustrated in Figure 5.2. With this detail, the part scheduling of a part family
can be easily visualized. The best makespan is obtained for the conditions shown in
graph 5.1(b). The chromosome with minimum makespan from graph 5.1(b) is used as
an example for illustrating details of pair grouping in term of time chart as shown in
Figure 5.2. Figure 5.2 illustrates the time charts generated from GA program of the first
three pairs; P06-P02, P16-P03 and P15-P01. The detail sequence of the robot moves of
each pair grouping are provided below each time chart. A time chart of all chromosome

pairs providing the minimal makespan in graph 5.1(b) are presented in Appendix A.

55

Time Chart of pair: PO6 and P02

Totaltime POG- P02 : 211 units

3 (r) =red

M2 ‘ (p) = pink

1 | Eg; _ gr?ly
- =yellow

r (CHHEL | T8ER J0CHE (EHE (0) = blue

0 100

200

The sequence of the robot moves of pair grouping between part PO6 and P02

1. (r) Pick up PO6 at MO 13.
2.(p) Move P06 to M3 14
3.(r) Load P06 on M3 15;
4. (b) Move back to MO 16.
5.(g) Pick up P02 from MO 17.
6.(y) Move P02 to M1 18.
7.(g) Load P02 toMI 19.
8. (b) Move back to M3 20.
9. Wait at M3 until PO6 finished 21.
10. (r) Unload P06 from M3 22,
11. (p) Move P06 to M2 23.
12. (r) Load P06 to M2 24.

Time Chart of pair: P16 and P03

-(g)

Move back to M1
Unload P02 from M1
Move P02 to M3
Load P02 on M3
Move back to M2
Wait at M2 until PO6 finished
Unload P06 from M2
Move P06 to M1
Load P06 on M1
Move back to M3
Unload P02 from M3
Move P02 to M2

(®)

(y)
(8
(h)

(r)
(p)
(r)
(b)
(2)
(y)

25.(g) Load P02 at M2

26. (b) Move back to M1

27. Wait at M1 until PO6 finished
28. (r) Unload P06 from M1
29. (p) Move P06 to M4

30. (r) Drop off PO6 at M4
31.(b) Move back to M2
32. (g) Unload P02 from M2
33.(y) Move P02 to M4

34. (g) Drop off P02 at M4
35. (b) Move back to MO

Total time P16- P03 : 196 units
e = (l‘) = l‘ed
e e (p) = pink
M2 (g) = gray
ML (y) = yellow
w JHEEL 0 ()=
0 100 200

The sequence of the robot moves of pair grouping between part P16 and P03

1.(r) Pick up P16 at MO 13.
2.(p) Move P16to M1 14.
3.(r) Load P16 on Ml 15.
4.(b) Move back to MO 16.
5.(g) Pick up P03 at MO 17.
6.(y) Move P03 to M2 18.
7.(g) Load P03 on M2 19.
8. (b) Move back to M1 20.
9. Wait at M1 until P16 finished 21.
10. (r) Unload P16 from M1 22.
11. (p) Move P16 to M3 23.
12.(r) Load P16 on M3 24.

Time Chart of pair: P15 and POl

Move back to M2

Wait at M2 until PO3 finished
Unload P03 from M2

Move P03 to M1

Load P03 at M1

Move back to M3

Wait at M3 until P16 finished
Unload P16 from M3

(p) Move P16 to M2

(r) Load P16 at M2

(b) Move back to M1

(b)

(2)
(y)
(&)
(b)

O]

25. (y) Move P03 to M3

26. (g) Load P03 at M3

27. (b) Move back to M2
28. Wait at M2 until P16 finished
29. (r) Unload P16 from M2
30. (p) Move P16 to M4

31. (r) Drop off P16 at M4
32. (b) Move back to M3
33. (g) Unload P03 from M3
34. (y) Move P03 to M4

35. (g) Drop off PO3 at M4

(g) Unload P03 from M 36. Move back to MO
Total time P15- P01 ;119 units

i 1 Er)): re.d)
p)=pmn

Ef (g) = gray
(y) = yellow

r LHELLJRREA JE (b) = blue

0 100 200

The sequence of the robot moves of pair grouping between part P15 and PO

1. (r)
2.(p)
3.(r)
4.(b)
5.(8)

Pick up P15 at MO

Move P15 to M3

Load P15 on M3

Move back to MO

Pick up PO1 at MO

6.(y) Move POl to M1

7.(g) Load POl on M1

8. Wait at M1 until PO1 finished
9.(g) Unload PO1 from M1

Move POl to M2
Load POl at M2
Move back to M3

10. (y)
1. (g)
12. (b)
13.

14. (r)
15. (p)
16. (r)
17. (b)
18. ()

Unload P15 from M3
Move P15 to M4
Drop off P15 at M4
Move back to M2
Unload PO1 from M2

Wait at M3 until P15 finished

19. (y) Move POI to M3

20. (g) Load PO1 to M3

21 Wait at M3 until PO1 finishec
22.(g) Unload PO1 from M3

23. (y) Move P01 to M4

24.(g) Drop off PO1 to M4

25. (b) Move back to MO

Figure 5.2: Time charts for the first three group pairs: P06-P02, P16-P03 and P15-PO1

in the best chromosome in graph 5.1(b)

56

3.2 Comparison between Various Genetic Operators

Before starting a GA program, there are five necessary genetic operators that need to be
input in order to obtain the minimal makespan in part scheduling. These genetic
operators are (1) population size, (2) crossover type, (3) crossover . probability, (4)
mutation type, and (5) mutation probability. However, the various combinations of
genetic operators may affect the result differently. In other words, the different values
of genetic operators may provide different results for the minimum makespans in part
scheduling. For example, as shown in the graphs in Figure 5.1 of Section 5.1, variations
in the two genetic operators (crossover and mutation probabilities) have produced
different minimum makespan times.

In order to evaluate the effects of genetic operators, the influence of all the five genetic
operators is studied. The studies are categorized into three major groups which are (1)
crossover, (ii) mutation and (iii) population size. The studies are performed by running
the program for three types of data which are named: (1) short, (2) medium and (3)
mix180. The test data “short”, “medium”, and “mix180” are test data that contain parts
that have machine processing time ranging from 1 through 60, 60 through 120 and 1
through 180 seconds, respectively. These ranges of machine processing times were
selected to study whether each data type is affected differently by genetic operators.
Each data type consists of three part families as shown in column 1 of Table 5.2. A total
of nine different part families from the three data types were tested for various genetic
parameters. Each part family contains 40 different parts, and all the relevant test data

are randomly generated. The details of the test data used to perform the studies on

57

genetic operators are presented in Table 5.2. Further details specific to each of the nine

part families are shown in Appendix B.

Table 5.2: Test data used to perform study on genetic operators

Contains parts shortl 40
1. Short that have machine short2 40
processing time
between 1-60 sec. short3 40
Contains parts med] 40
that have machine
2. Medium processing time med? 40
between 60-120
Sec. med3 40
Contains parts mix|1 40
that have machine
3. Mix180 processing time mix2 40
between 1-180
sec. mix3 40

As before the robot times for all studies are assumed to be:

pick : 3 sec.
drop : 3 sec.
move : 3 sec.

For every study, the tests are designed to terminate when the number of generation

reaches a value of 1000.

58

S.2.1 Study of Crossover Operator

In crossover operation, the two crossover parameters: crossover type and crossover
probabilities are considered. For crossover type, there are three types of crossover that
can be studied (as mentioned in Section 4.2.5.1). The three types of crossover are (1)
one-point crossover, (2) two-point crossover (version I) and (3) two-point crossover
(version II). They will be referred to as crossover type 1, crossover type 2 and crossover
type 3, respectively in further discussions. For crossover probabilities, the values of
crossover probabilities can vary from a value of 0 to 1. A value of Pc equals 0 means no
chromosome in mating pool will be utilized in crossover, while Pc equals 1 means all of
the chromosomes in mating pool will considered. All the nine part families from the
three data types will be tested using each crossover type for the ten values of crossover
probabilities: 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. In order to evaluate the
effect of the crossover parameters, other genetic operators (mutation parameters and

population size) are set as constants as shown below for every tests.

Population size: 20
Mutation probability: 0.5
Mutation type: Arbitrary Two-Job Exchange Mutation

The results of the test are divided into three groups: short, medium and mix180. For
each data type, the results are presented in a graphical form categorized by the types of
crossover. The results can be divided into two types. The first type is the plot showing
the minimum makespans generated and the Pc. The intent is to study the effect of Pc on

the minimum makespan in each crossover type. An additional plot between the

59

generation numbers that produce the minimum makespans and Pc will also be shown to
evaluate the effect of Pc on the convergent rate in each crossover type. The results of all
part families for the same crossover parameters will be presented in the same graph.
Hence, there will be three results obtained from the three part families in each graph.

The results of the crossover study are presented below.

3.2.1.1 Crossover Study with Data Type: Short

The results from the tests are shown in Figure 5.3. Figure 5.3(a, b and ¢) show the
results for average minimum makespans obtained (average from ten data) and Pc of
crossover type 1, crossover type 2 and crossover type 3, respectively for the part
families short1, short2 and short3. Figure 5.3(d, e and f) show the plots between average
number of generation (average from ten data) that produce the minimum makespan and

Pc of crossover type 1, crossover type 2 and crossover type 3, respectively for the

shortl, short2 and short3 part family.

60

M
Make:
3050

Ave Minimum Makespans and Pc,

in
spans Crossover Type 1 (short)

3000

2950

2750

2700 z i A L
01 02 03 04 05 06 07 08 09. 1 Pec 01 02 083 04 05 06 07 08 09 1 Pec

Figure 5.3(a): Graph showing average min makespans Figure 5.3(d): Graph showing number of generations that

and Pc for crossover type 1 produce the min makespans and Pc for crossover type |
Min Ave Minimum Makespans and Pc,
Makespans Crossover Type 2 (short) G:" no. Gen no. and Pc, Crossover Type 2 (short)
- N e 000 - —— E—

01 02 03 04 05 06 07 08 09 1 Pc 01 02 03 04 05 06 07 08 09 1 Pc

Figure 5.3(b): Graph showing average min makespans Figure 5.3(e): Graph showing number of generations that

and Pc for crossover type 2 produce the min makespans and Pc for crossover type 2
Min Ave Minimum Makespans and Pc,
Makespans Crossover Type 3 (short) Gen no. Gen no. and Pc, Crossover Type 3 (short)
3050 7 : S 1000 Trrm e

| 900
3000

800
2950 700

600

2900

500

400

2800 300

200
2750
100

2700

01 02 03 04 05 06 07 08 09 1 Pe 01 02 03 04 05 06 07 08 09 1 Pc

Figure 5.3(c): Graph showing average min makespans Figure 5.3(f): Graph showing number of generations that
and Pc for crossover type 3 produce the min makespans and Pc for crossover type 3

In order to evaluate the effect of the types of crossover on the minimum makespans, the
average minimum makespans of shortl, short2 and short3 part family at the same Pc

value of each crossover type are averaged and plotted in a single graph as shown in

61

Figure 5.4. Figure 5.4(a) shows the average minimum makespans for all three part
families in “Short” data type and Pc of crossover types 1, crossover type 2 and
crossover type 3.

Similarly, to study the effect of crossover types on the convergent rate, the generation
numbers that produce the minimum makespan at the same Pc point of each crossover
type are averaged and are plotted as a single graph as shown in Figure 5.4. Figure 5.4(b)
shows the average generation number that produce the minimum makespans from all
three part families in “Short” data type and Pc of crossover types 1, crossover type 2

and crossover type 3.

Makngg'pans Ave Minimum Makespans and Pc, (short) Gen no. Ave Gen no. from Three Part Families and Pc, (short)
3000 - . 1000

2975 + e

800

2950
700

2025 600
500
400

300

- .
- 200
; ~—&— Crossover Type2
2825 100
—#— Crossover Type3

0

01 02 03 04 05 06 07 08 09 1 p 01 02 03 04 05 06 07 08 09 1 pc
Figure 5.4(a): Graph showing the average min Figure 5.4(b): Graph showing the average number of
makespans from all three part families and Pe generations that produce min makespans from all three

for crossover types 1, 2 and 3 part families and Pc for crossover types 1, 2 and 3

The plots shown in Figure 5.3(a, b and c), clearly indicate that the effect of Pc on the
minimum makespan is not significant in any crossover types for all three part families.
However, Figure 5.4(a) shows that a low value of Pc may provide a slightly better
result. In addition; Figure 5.4(a) also illustrates that the type of crossover does not seem

to have considerable effect on the minimum makespan. On the other hand, value of Pc

62

does seen to have an influence on the number of generations required to obtain the
minimum makespans as can be seen in Figure 5.3(d, e and f) as well as Figure 5.4(b).
The higher the values of Pc, the lower are the number of generations required to
produce the minimum makespans. A high Pc results in a faster converging process.
However, from Figure 5.4(b), one can conclude that that every crossover type appears
to provide a similar pattern for convergent rate which means that the type of crossover

does not have a significant effect on converging speed.

3.2.1.2 Crossover Study with Data Type: Medium

The results for the average minimum makespan (average from ten data) and Pc of
crossover type 1, crossover type 2 and crossover type 3, respectively of medl, med2
and med3 part family are shown in Figure 5.5(a, b and ¢). Figure 5.5(d, ¢ and f) show
average number of generations (average from ten data) that produce the minimum
makespan and Pc of crossover type 1, crossover type 2 and crossover type 3

respectively of med1, med2 and med3 part family.

63

5400

Min
Makespans Crossover Type 1 (Medium)

Ave Minimum Makespans and Pc,

01 02 03 04 05 06 07 08 09 1 Pc

Gen no. Gen no. and Pc, Crossover Type 1 (Medium)

01 02 03 04 05 06 07 08 09 1 Pc

Figure 5.

5(a): Graph showing average min makespans
and Pc for crossover type |

Ave Minimum Makespans and Pc,

5350
5300 1
5250 1

5200 1

5150 ——

Cro: Type 2 (Medium)

01 02 03 04 05 06 07 08 09 1 Pe

Figure 5.5(d): Graph showing number of generations that
produce the min makespans and Pc for crossover type 1

Gen no. Gen no. and Pc, Crossover Type 2 (Medium)
1000 - —

900
800
700 1
600 -
500 4
400
300 L
2004

01 02 03 04 05 06 07 08 09 1 Pc

Figure 5.

5(b): Graph showing average min makespans
and Pc for crossover type 2

Min
Mal

Ave Minimum Makespans and Pc,

5400 51
5350
5300
5250
5200

5150

Cro. Type 3 (Medium)

0.1 02 03 04 05 06 07 08 09 1 Pc

Figure 5.5(e): Graph showing number of generations that
produce the min makespans and Pc for crossover type 2

Gen no. Gen no. and Pc, Crossover Type 3 (Medium)

01 02 03 04 05 06 07 08 09 1 Pc

Figure 5.5(c): Graph showing average min makespans

and Pc for crossover type 3

Figure 5.5(f): Graph showing number of generations that
produce the min makespans and Pc for crossover type 3

Similar to the procedure followed for “Short” data type, the averaged minimum

makespans of med1, med2 and med3 part family at the same Pc point of each crossover

type are plotted as a single graph, as shown in Figure 5.6(a). The purpose is to evaluate

64

the effect of the types of crossover on the minimum makespans. Figure 5.6(a) is the
graph between the averaged minimum makespans from all three part families in
“Medium” and Pc of crossover types 1, crossover type 2 and crossover type 3.

The generation numbers that produce the minimum makespan of all three part families
at the same Pc point of each crossover type are also averaged and plotted into a single
graph to study the consequence of crossover types on the convergent rate. Figure 5.6(b)
shows the average generation number that produces the minimum makespans from all
three part families of “Medium” and Pc of crossover types 1, crossover type 2 and

crossover type 3.

Gen no.
1000

Min
Makespan:

Ave Minimum Makespans and Pc, (M
5400 =

Ave Gen no. from Three Part Families and Pc, (Medium)

5375 900

5350 800
700
5325
600

5300 500

5275 400

5250 800

5225

5200

200
—&— Crossover Type2
100 | —8— Crossover Typed

0 A
0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1 pe

Figure 5.6(a): Graph showing the average min
makespans from all three part families and Pc
for crossover types 1, 2 and 3

Figure 5.6(b): Graph showing the average number of
that produce the min makespans from all three
part families and Pc for crossover types 1, 2 and 3

The result shown for “Medium” data type show very similar trend to the result obtained
from “Short” data type. In Figure 5.5(a, b and c), the graphs show that a change in Pc
value does not significantly affect the minimum makespans in any crossover types.
Figure 5.6(a) also illustrates that a low value of Pc may provide somewhat better result.

Furthermore, Figure 5.6(a) also shows that the type of crossover chosen does not have a

65

considerable effect on the minimum makespans. In contrast, Figure 5.5(d, ¢ and f) and
Figure 5.6(b) indicate that a change in Pc value does have a substantial effect on the
number of generations required to produce the minimum makespans. The higher the
values of Pc, the lower are the numbers of generation required to produce the minimum
makespans. In other words, a higher Pc provides a quicker converging process.
However, Figure 5.6(b) shows that every crossover type appears to provide a similar
convergent rate which means that the type of the crossover does not impact

considerably the converging speed.

5.2.1.3 Crossover Study with Data Type: Mix180

The results for the tests with “Mix180” data type are shown in Figure 5.7. Figure 5.7(a,
b and c) show the average minimum makespans (average from ten data) and Pc of
crossover type 1, crossover type 2 and crossover type 3, respectively of mix1, mix2 and
mix3 part family. Figure 5.7(d, ¢ and f) show the average number of generation
(average from ten data) required to produce the minimum makespans and Pc of
crossover type 1, crossover type 2 and crossover type 3 respectively of mix1, mix2 and

mix3 part family.

66

Ave Minimum Makespans and Pc,
ns Crossover Type 1 (Mix180) Gen no
. e £ O 1000

Min
Makespal
6100

Gen no. and Pc, Crossover Type 1 (Mix180)

6000 900

5900 800
5800 700
5700 . 600
5600 e - s 500
5500 = 100
5400 f——— . . - 300
5300 = . - 200
5200 |- e : = ; 100

0.1 0.2 03 04 05 06 07 08 0.9 1 Pe 0.1 0.2 0.3 04 05 06 07 08 09 1 Pc

Figure 5.7(a): Graph showing average min makespans Figure 5.7(d): Graph showing number of generations that

and Pc for crossover type 1 produce the min makespans and Pc for crossover type |
Min Ave Minimum Makespans and Pc, Gen no. and Pc, Crossover Type 2 (Mix180)
'\g?goeSPa“ Crossover Type 2 (Mix180) Gen no. el

01 02 03 04 05 06 07 08 09 1 Pc 0.1 02 03 04 05 06 07 08 09 1 Pe

Figure 5.7(b): Graph showing average min makespans ~ Figure 5.7(e): Graph showing number of generations that

and Pc for crossover type 2 produce the min makespans and Pc for crossover type 2
Min Ave Minimum Makespans and Pc,

M pans Cr Type 3 (Mix180) Gen no. Gen no. and Pc, Crossover Type 3 (Mix180)

Figure 5.7(c): Graph showing average min makespans Figure 5.7(f) Graph showing number of generations that
and Pc for crossover type 3 produce the min makespans and Pc for crossover type 3

Similar to the study of “Short” and “Medium” data type, the average minimum
makespans of mix1, mix2 and mix3 at the same Pc value of each crossover type are

averaged and plotted as a single graph to study the effect of the types of crossover on

67

the minimum makespans. Figure 5.8(a) show the average minimum makespans from
mix 1, mix2 and mix3 and Pc of crossover types 1, crossover type 2 and crossover type
3. The generation numbers required to produce the minimum makespans of mix1, mix2
and mix3 at the same Pc point of each crossover type are averaged and plotted as a
single graph to study the consequence of crossover types on the convergent speed.
Figure 5.8(b) shows the average generation number that produces the minimum
makespans times for mix1, mix2 and mix3 and Pc of crossover types 1, crossover type

2 and crossover type 3.

Gen no.
1000

Mi . i
Maks;';,a"s Ave Minimum Makespans and PC, (Mix180) Ave Gen no. from Three Part Families and Pc, (Mix180)

5800

900

5750 800

700
5700
600

5650 —

400

5600 300

. : 200 —a&— Crossover Typel
5550 - Crossover Type2 —e— Crossover Type2
. —8— Crossover Type3 100

5500 0

01 02 03 04 05 06 07 08 09 1 pg 04 02 -3 - 04 -5 06 0F 0B ~09, 71 [Pe
Figure 5.8(a): Graph showing the average min Figure 5.8(b): Graph showing the average number of
makespans from all three part families and Pc generations that produce the min makespans from all three

for crossover types 1, 2 and 3 part families and Pc for crossover types 1, 2 and 3

The results from the test conducted for “Mix180” data type show similar trends as those
from “Short” and “Medium” data type. Figure 5.7(a, b and c) illustrate that a change in
the value of Pc does not have a significant effect on the minimum makespans in any
crossover types. However, Figure 5.8(a) suggests that a low value of Pc may provide a
slightly better result. Additionally, Figure 5.8(a) also shows that the change in crossover

type does not have a considerable effect on the minimum makespans. On the contrary,

68

Figure 5.7(d, e and f) and Figure 5.8(b) show that a change in Pc has a considerable
effect on the number of generation producing the minimum makespans. The higher the
value of Pc, the lower is the number of generation required to produce the minimum
makespans. In other words, a higher Pc provides a faster convergence towards the
solution. Nonetheless, Figure 5.8(b) also suggests that the convergent rate from every
crossover type appear to be the same, indicating that the type of the crossover does not

have a significant effect on the converging speed.

5.2.2 Study of Mutation Operator

In mutation operation, the two mutation parameters: mutation type and mutation
probabilities are considered. For mutation type, three types of mutation are analyzed
using the GA program (as mentioned in Section 4.2.5.2). These three types of mutation
are (1) arbitrary two-job exchange mutation, (2) arbitrary three-job exchange mutation
and (3) shift change mutation. They will be referred to as mutation type 1, mutation
type 2 and mutation type 3, respectively when discussing the results. For mutation
probabilities, the values of crossover probabilities can be chosen from 0 — 1. Similar to
the study conducted for both crossover parameters, all nine part families from three data
types will be included in GA with each mutation type. The ten values of mutation
probabilities considered are: 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. With an
aim to evaluate solely the effect of the mutation parameters, other genetic operators

(crossover parameters and population size) are set to a constant value for every test as

shown below.

69

Population size: 20
Crossover probability: 0.5

Crossover type: One-Point Crossover

The results from the test are divided into three groups: short, medium and mix180
(Section 5.2.2.1, 5.2.2.2 and 5.2.2.3 respectively). The results from each data type are
presented in term of graphs categorized by the types of crossover. Two types of results
are presented. The first one is a plot between the minimum makespans generated and
Pm, in order to study the effect of the Pm on the minimum makespans for each mutation
type. A second plot shows the relatioﬁship between the generation numbers that
produce the minimum makespans and Pm. The purpose of the second graph is to
evaluate the effect of the Pm on the convergence speed for each mutation type. All the
part families with the same mutation parameters will be plotted as a single graph. Thus,
there will be three plots obtained from the three part families in every graph. The results

of the mutation study are discussed next.

5.2.2.1 Mutation Study with Data Type: Short

The results for these tests are shown in Figure 5.9. Figure 5.9(a, b and c) show the
relationship between the average minimum makespans (average from ten data) and Pm
of mutation type 1, mutation type 2 and mutation type 3, respectively of the part
families shortl, short2 and short3. Figure 5.9(d, e and f) are the graphs between average

number of generation (average from ten data) that produce the minimum makespans and

70

Pm of mutation type 1, mutation type 2 and mutation type 3 respectively of the shortl,
short2 and short3 part family.

In order to evaluate the effect of the type of mutation on the minimum makespans, the
average minimum makespans of shortl, short2 and short3 part family at the same Pm
point of each mutation type are averaged and are plotted into one graph as shown in
Figure 5.10. Figure 5.10(a) illustrates the graph between the average minimum
makespans from all three part families in “Short” data type and Pm of mutation types 1,
mutation type 2 and mutation type 3.

To study the consequence of mutation types one the convergent rate, the generation
numbers that produce the minimum makéspans at the same Pm of each mutation type
are averaged and are plotted into a single graph as presented in Figure 5.10. Figure
5.10(b) shows the average generation number that produce the minimum makespans
from all three part families in “Short” data type and Pm of mutation types 1, mutation

type 2 and mutation type 3.

71

Min Ave Minimum Makespans and Pm,
Mal Mutation Type 1 (Short) Gen no. Gen no. and Pm, Mutation Type 1 (Short)

: . shol
3100 < - ~—&—short2
. . . —8—short3

2850

2800

2750

2700

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.9(a): Graph showing average min makespans — Figure 5.9(d): Graph showing number of generations that
and Pm for mutation type 1 produce the min makespans and Pm for mutation type |

Min Ave Minimum Makespans and Pm,
S Muitati Type 2 (Shori) Gen no.

Gen no. and Pm, Mutation Type 2 (Short)

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.9(b): Graph showing average min makespans Figure 5.9(e): Graph showing number of generations that

and Pm for mutaion type 2 produce the min makespans and Pm for mutation type 2
Min Ave Minimum Makespans and Pm, .
I\lrlﬁ(l)(:spans Mutation Type 3 (Short) G:,O.D,;O ‘ en no. nd P Muta!oType 3 (Shrt)

—h&—short1
100 —&—short2
| —®—short3

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.9(c): Graph showing average min makespans Figure 5.9(f): Graph showing number of generations that
and Pm for mutation type 3 produce the min makespans and Pm for mutation type 3

72

Mak".’;“;‘pa.,s Ave Minimum Makespans and Pm, (Short)
3250 ==

ey Gen no. Ave Gen no. from Three Part Families and Pm, (Short)
Typel || 1000 s
~&— Mutation Type2

3200 900

3150 800
700

3100
600

3050 500
3000 o ,‘ - S - 400
300
2950
200

2900 = ———— —— Mutation Type1
: 100 ~—&— Mutation Type2
» ’ Ei —#— Mutation Typ

2850 0
0.1 0.2 03 04 05 0.6 0.7 08 09 1 Pm 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1 Pm

Figure 5.10(a): Graph showing the average min Figure 5.10(b): Graph showing the average number of
makespans from all three part families and Pm generationsthat produce the min makespans from all three
for mutation types 1, 2 and 3 part families and Pm for mutation types 1,2 and 3

From Figure 5.9(a, b and c¢) and Figure 5.10(a), one can observe that in mutation type 1
and mutation type 2, a high Pm value provide a slightly better result for the minimum
makespans especially at a Pm value ranging from 0.3 to 1.0. However, in mutation type
3, a change in Pm does not alter the minimum makespan significantly. Furthermore,
Figure 5.10(a) illustrates that mutation type 3 (the shift change mutation) provides poor
results.

From Figure 5.9(d, e and f) and Figure 5.10(b), one can notice that for mutation type 1
and mutation type 3 a high Pm value tends to provide a more rapidly converging
solution. However, this effect cannot be seen in mutation type 2. A change of Pm in
mutation type 2 does not have a considerable effect on convergence speed. Specifically,
mutation type 3 provides the best convergent rate while mutation type 2 provides the

worst.

73

5.2.2.2 Mutation Study with Data Type: Medium

The results of the tests are shown in Figure 5.11. Figure 5.11(a, b and c¢) show the
results between the average minimum makespans (average from ten data) and Pm for
mutation type 1, mutation type 2 and mutation type 3, respectively of the part families
med1, med2 and med3. Figure 5.11(d, e and f) show the plot between average number
of generation (average from ten data) that produce the minimum makespans and Pm for
mutation type 1, mutation type 2 and mutation type 3, respectively of the medl, med2
and med3 part family.

Similar to the study of “Short” data type, the average minimum makespans of medl,
med2 and med3 part family at the same Pm point of each mutation type are averaged
and are plotted as a single graph as shown in Figure 5.12 to study the effect of the types
of mutation on the minimum makespans. Figure 5.12(a) shows the average minimum
makespans from all three part families in “Medium” and Pm of mutation type 1,
mutation type 2 and mutation type 3.

The generation numbers that produce the minimum makespans of all three part families
at the same Pm peint of each crossover type are averaged and are plotted into a single
graph to study the consequence of mutation types to the convergent speed. Figure
5.12(b) shows the average generation number that produces the minimum makespan
from all three part families of “Medium” and Pm of mutation types 1, mutation type 2

and mutation type 3.

74

Min Ave Minimum Makespans and Pm,
I\gg(l)(oespans Mutation Type 1 (Medium) Gen no. Gen no. and Pm, Mutation Type 1 (Medium)
e 1000 - — e

900
800
700
600
500 1
400
300 1

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.11(a): Graph showing average min makespans Figure 5.11(d): Graph showing number of generations that

and Pm for mutation type | produce the min makespans and Pm for mutation type |
Min Ave Minimum Makespans and Pm, . ;
Makespans ") ’ Gen no. Gen no. and Pm, Mutation Type 2 (Medium)
EEED _ Mutatlon Type 2 (Melum) 1660 I el o

900
5500

800

5450 4 700§

5400 1 600
500
5350 .
5300 4 300

200 -
5250
100
5200 i . = S - S . i
01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.11(b): Graph showing average min makespans Figure 5.11(e): Graph showing number of generations that

and Pm for mutaion type 2 produce the min makespans and Pm for mutation type 2
Mi Ave Minimum Makespans and Pm, - "
Makelsnpans Mutation Type 3 ?Medium) Gen no. Gen no. and Pm, Mutation Type 3 (Medium)

6000

5950

800 -
5900
700
5850 600
5800 G s N 500
5750 , , 2 Ny N 400
‘ 300
5700
200
100
0
01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.11(c): Graph showing average min makespans Figure 5.11(f): Graph showing number of generations that
and Pm for mutation type 3 produce the min makespans and Pm for mutation type 3

75

Gen no. Ave Gen no. from Three Part Families and Pm, (Medium)
1000

900
800
700
600

500

] —o— Mutation Type2

400
300
200 +

100

0
0.1 02 03 04 05 06 07 08 09 1 Pm

Figure 5.12(a): Graph showing the average min Figure 5.12(b): Graph showing the average number of
makespans from all three part families and Pm generationsthat produce the min makespans from all three
for mutation types 1, 2 and 3 part families and Pm for mutation types 1, 2 and 3

In Figure 5.11(a, b and c) and Figure 5.12(a), one can observe that a high Pm value
provides a better result for minimum makespans. A better result of the minimum
makespans can be obtained at Pm value of 0.3 to 1.0 for mutation type 1, at Pm value of
0.8 to 1.0 for mutation type 2 and at Pm value of 0.6 to 1.0 for mutation type 3.
Moreover, Figure 5.12(a) shows that mutation type 3 provides poor results.

Figure 5.11(d, e and f) and Figure 5.12(b) shows that in mutation type | and mutation
type 3, a high Pm tends to provide the fast converging process while in mutation type 2
the change of Pm does not have a major effect. One can say that, mutation type 3

provides the best convergence rate while mutation type 2 provides the worst.

5.2.2.3 Mutation Study with Data Type: Mix180

The results of the tests for this study are shown in Figure 5.13. Figure 5.13(a, b and c)
show the plots for the average minimum makespans (average from ten data) and Pm of
mutation type 1, mutation type 2 and mutation type 3, respectively of the part families

mix1, mix2 and mix3. Figure 5.13(d, e and f) are similar plots between average number

76

of generation (average from ten data) that produce the minimum makespans and Pm of
mutation type 1, mutation type 2 and mutation type 3 respectively of the mix1, mix2
and mix3 part family.

Similar to the study done for “Short” and “Medium” data type, the average minimum
makespans of mix1, mix2 and mix3 at the same Pm value of each mutation type are
averaged and are plotted as a single graph to study the effect of the types of mutation on
the minimum makespans. Figure 5.14(a) is the graph between the average minimum
makespans from mix1, mix2 and mix3 and Pm of mutation types 1, mutation type 2 and
mutation type 3.

Also, the generation numbers that produce the minimum makespans of mix1, mix2 and
mix3 at the same Pm point of each mutation type are averaged and are plotted as a
single graph to study the relationship between mutation type and the convergence
speed. Figure 5.14(b) shows the average generation number that produces the minimum
makespans times for mix1, mix2 and mix3 and Pc¢ of mutation types 1, mutation type 2

and mutation type 3.

77

Min Ave Minimum Makespans and Pm,
Makespans Mutation Type 1 (Mix180) Gen no. Gen no. and Pm, Mutation Type 1 (Mix180)
6200 S - — — - —— - - -

6100 ' . . e : 900
6000 . . 800
5900

5800

5700 1=

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.13(a): Graph showing average min makespans Figure 5.13(d): Graph showing number of generations that
and Pm for mutation type 1 produce the min makespans and Pm for mutation type 1

Min Ave Mini Mal and Pm, i i
Mal P 3 Gen no. and Pm, Mutation Type 2 (Mix180
Mutation Type 2 (Mix1 80) Genino. ape 2 ; .

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.13(b): Graph showing average min makespans Figure 5.13(e): Graph showing number of generations that
and Pm for mutaion type 2 produce the min makespans and Pm for mutation type 2

Min Ave Minimum Makespans and Pm,

Mutation Type 3 (Mix180) G:Eo':)m

Gen no. and Pm, Mutation Type 3 (Mix180)

01 02 03 04 05 06 07 08 09 1 Pm 01 02 03 04 05 06 07 08 09 1 Pm

Figure 5.13(c): Graph showing average min makespans Figure 5.13(f): Graph showing number of generations that
and Pm for mutation type 3 produce the min makespans and Pm for mutation type 3

78

Gen no.
1000

i
Makelsr}:ans Ave Minimum Makespans and Pm, (Mix180) Ave Gen no. from Three Part Families and Pm, (Mix180)

6400

6300 900

6200 8

7
6100 ®
600
6000
500 -
5900 |
400
5800
300
5700 i
200 +
5600 |

5500 ok
04 02 08 04.-05 06 07 08 09 A, 01 02 03 04 05 06 07 08 09 1 pp

Figure 5.14(a): Graph showing the average min Figure 5.14(b): Graph showing the average number of
makespans from all three part families and Pm generationsthat produce the min makespans from all three
for mutation types 1, 2 and 3 part families and Pm for mutation types 1, 2 and 3

The results for “Mix180” are very similar to the result obtained for “Medium”. From

Figure 5.13(a, b and c) and Figure 5.14(a), it can be observed that a high Pm value

provides better makespan times. Specifically, the good results for the minimum

makespans can be obtained at Pm 0.3 to 1.0 for mutation type 1, at Pm 0.6 to 1.0 for

mutation type 2 and at Pm 0.8 to 1.0 for mutation type 3. In addition, graph (w) in

Figure 5.11 illustrates that mutation type 3 provides poor results.

Figure 5.13(d, e and f) and Figure 5.14(b) show that in mutation type 1 and mutation ‘
type 3 a high Pm tends to provide a more rapidly converging process while in mutation

type 2 a change in Pm does not produce significant change. Mutation type 3 provides

the best convergent rate while mutation type 2 provides the worst.

19

5.2.3 Study of Population Size

To study the influence of population size, a group of chromosomes called initial
chromosomes are needed. As mentioned in Section 4.2.2, initial chromosomes are
created randomly. The number of chromosomes created is called population size.
Population size is also the number that limits the amount of new chromosomes that will
carry forward to the next generation of the evolution process. Therefore, the population
size is a very important specification. As stated in Section 5.2, population size is one of
the necessary parameters that have to be input before performing the analysis.

To study the influence of population size on the best makespans and the convergent
rate, various population sizes with values 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 were
selected. Similar to the crossover and mutation studies, all nine part families from the
three data types (Short, Medium, and Mix180) were analyzed using ten population sizes

for the genetic parameter shown below.

Crossover probability: 0.5

Crossover type: One-Point Crossover

Mutation probability: 0.5

Mutation type: Arbitrary Two-Job Exchange Mutation

The results of the test are divided into three groups: short, medium and mix180 based
on the data types. The results are presented in a graphical form as before. Similar to the
results shown for crossover and mutation, two types of results can be analyzed. The first
type is a plot between the minimum makespan and population sizes, to study the effect

of the population size on the minimum makespan. The second type is the graph between

80

the generation numbers that produce the minimum makespan and population size to
evaluate the effect of the population size on the convergence rate.

The results from the tests are shown in Figure 5.15. Figure 5.15(a, b and c¢) show the
results for the average minimum makespans (average from ten data) and population size
(which is referred as “pop size” in graphs) of part families from data type “Short”,
“Medium” and “Mix180” respectively. Figure 5.15(d, e and f) show the average number
of generation (average from ten data) that produce the minimum makespans and
population size of part families from data type “Short”, “Medium” and “Mix180”
respectively. The results of the population size study are presented below.

In order to evaluate the effect of the population size and its influence on the minimum
makespans, the average minimum makespans of all part families at the same population
size of each data type are averaged and plotted into one graph as shown in Figure 5.16.
Figure 5.16(a) shows the plot between the average minimum makespans from all three
part families and population size in “Short”, “Medium” and “Mix180” data type.

In order to study the effect of population size on the convergent rate, the generation
numbers that produce the minimum makespan at the same population size of each data
type are averaged and are plotted into a single graph as presented in Figure 5.16. Figure
5.16(b) shows the average generation number that produces the minimum makespan
from all three part families in “Short” data type families and population size in “Short”,
“Medium” and “Mix180” data type. Figure 5.17 shows the relation between the average
times that are used to obtain the result from GA for various population sizes (chosen as
5, 10, 15, 20, 25, 30, 35, 40, 45 and 50). The purpose of the graph is to compare the

makespan obtained for each population size.

81

Makesp Ave Min Makes and Population size (Short) Gen no. Gen no. and Population size (Short)

5 10 15 20 2 30 35 40 45 50 "°P 5 10 15 20 25 30 35 40 45 Pop
ne o size size

Figure 5.15(a): Graph showing average min makespans Figure 5.15(d): Graph showing number of genergtions' that
and popopulaiton size for data type “Short” produce the minimum makespans and population size
for data type “Short”

M .M'"r Ave Min Mal and Population size (Medium) Gen no. Gen no. and Population size (Medium)

\)
5500

o . 0
5400

5350 A=
5300 1 b e T 500
50 f . - 400
5200 »

5150

5100 ——— — o0+

5 10 15 20 25 8 3 40 45 50 "°P

size 5 10 15 20 25 30 35 40 45

size

Figure 5.15(a): Graph showing average min makespans Figure 5.15(d): Graph showing number of generations that

and popopulaiton size for data type “Medium” produce the minimum makespans and population size
for data type “Medium”
Min

Mak Ave Min Makespans and Population size (Mix180) Gen no. Gen no. and Population size (Mix180)

50 PoP) "
size 5 10 15 20 25 8 3 40 45 50

Pop
size

Figure 5.15(a): Graph showing average min makespans Figure 5.15(d): G.ra.ph showing number of generz}tions that
and popopulaiton size for data type “Mix180” produce the minimum makespans and population size
for data type “Mix180”

82

Min
Makespans
5700 48—

5200
4700
4200
3700
3200

2700

15 20 25 30 35 40 45 50

Pop
size

Ave Gen no. and Populati

15 20 25 30 35 40

Figure 5.16(a): Graph showing the average min
makespans from all three part families
in each data type and Population size

Figure 5.16(b): Graph between the average number of
generationsthat produce the min makespans from all
three part families in each data type and Population size

Times
160

140
120
100
80
60 -
40 1

20

Ave Times and Population size

15

20

25 30 35 40 45 50 "OP
Size

Figure 5.17: Graph showing the average times that are used
to obtain the resulf from GA program and Population size

From graphs 5.15(a, b and c¢) and Figure 5.16(a), one can observe a population size of 5

provides a slightly poorer result for the minimum makespans in every data types. Figure

5.15(d, e and f) and Figure 5.16(b) indicate that at population size from 5 to 25, the

convergent rate increases as the population size increases. However, at population size

from 30 to 50, the graphs show that the change in population size produce very minimal

change in converging speed.

83

The GA program was tested using an AMD Athlon 64 Processor 3200+, 2.01 GHz, and
2.5 GB of Ram. The tested data contained 40 parts in part family with a population size

of 20. The computational time was 0.0607 second per generation.

84

Chapter 6 Conclusions and Recommendations

This thesis has developed a GA based methodology for scheduling parts through a
flexible manufacturing cell with a robot performing all the material handling related
tasks. The methodology investigated feasible solutions for obtaining minimum
makespan in a ‘different part type’ prodﬁction operation wherein parts are required to
go through a set of machines with each having its own sequence and different
processing times. The problem is complex and a single analytical solution for this type
of problem was not found in existing literature. Hence, no comparisons could be made
with any previously published work. The proposed GA approach also investigated the
influence of different genetic parameters while obtaining the minimum makespan for
producing the family of parts. The results from the study have lead to the following
conclusions.

o Crossover/ mutation operators and population size for the three data types
show that all three test data types provide similar results for every genetic
operator considered.

o The effect of the genetic parameters on the minimum makespan and the
generation number producing the minimum makespan is not strongly
influenced by the different types of data considered.

s All three crossover types, namely: (i) one-point crossover, (ii) two-point
crossover (version I) and (iii) two-point crossover (version II) provided
similar results for the minimum makespan and convergent rate at any Pc. A
low value of Pc provides a slightly better makespan values while a high Pc

gave a better convergent speed in every crossover type.

85

In regards to mutation parameters and their influence, a high Pm provided a
better makespan in every mutation type. In addition, a high Pm resulted in a
better convergence speed in mutation type 1 and mutation type 3. The
mutation type 3 (shift change mutation) provided a poor result for the
minimum makespan while the mutation type 2 (arbitrary three-job exchange
mutation) provided a poor convergent rate.

In regards to the population size, a high value of population provided a better
convergent speed. However it also results increased computational times. An
appropriate choice of the different parameters is listed on next page.

From the results one can conclude that, irrespective of the type of crossover
considered, Pc values ranging from 0.3 to 0.5 should be selected in order to
obtain the minimum makespan.

The Pm values ranging from 0.4 to 1.0 with mutation type 1 (arbitrary two-
job exchange mutation) provided a better minimum makespan than mutation
type 3 and presents the shorter convergence time than mutation type 2.

In regards to the population size, ranges from 20 — 35 produced good results
within a reasonable generation time.

In conclusion, the specification of the genetic operators that has a tendency
to provide a high performance in part scheduling problem can be

summarized as:

86

Crossover probability: 0.3 -0.5

Crossover type: Any type

Mutation probability: 04-1.0

Mutation type: Arbitrary Two-Job Exchange Mutation
Population size: 20 - 35

Number of Evaluations: 600 — 700

A step by step procedure for obtaining the sequences for a part data is provided in
Appendix C.

It is recommended that extension to this study be undertaken to include multiple
objectives such as minimizing idle time of machines, maximization of robot usage,
customer imposed constraints such as meeting early due dates for some of the parts,
minimization of penalty etc. In its present form the methodology does not detect any
dead-lock states in machines. This can also be included in future studies. It should be
noted that the problem size will become even more complex when some or all of these
are included in the model. However genetic algorithms have the power to expand the

horizon of search space and may possibly lead to more powerful solutions.

87

References

[1] A. Adlemo, “Balanced automation in flexible manufacturing systems”, Studies in

Informatics and Control, Vol.5, pp.179-187, 1996.

[2] G. Qiao, R. F. Lu and C. Mclean, “Flexible manufacturing system for mass
customization manufacturing”, International Journal of Mass Customization, Vol.1,

pp.374-393, 2006.

[3] T. Luan, “Scheduling in robotic cells with two and three machines”, M.Sc.Thesis -

University of Manitoba, pp.1-81, 2005.

[4] M. Savsar, “Reliability analysis of a flexible manufacturing cell”, Reliability
Engineering and System Safety 67, pp.147-152, 2000.

[5] N. G. Hall, H. Kamoun, and C. Sriskandarajah, “Scheduling in robotic cells:
classification, two and three machine cells”, Operations Research, Vol.45, pp.421-439,
1997.

[6] M. S. Akturk, H. Gultekin, and O. E. Karasan, “Robotic cell scheduling with
operational flexibility”, Discrete Applied Mathematics, Vol.145, pp.334-348, 2005.

[7] H. Chen, C. Chu and J. Proth, “Sequencing of Parts in Robotic Cells”, International
Journal of Flexible Manufacturing Systems, Vol.9, pp.81-104, 1997.

[8] S. P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak, “Sequencing
of parts and robot moves in a robotic cell”, International Journal of Flexible

Manufacturing Systems, Vol.4, pp.331-358, 1992.

[9] A. Agnetis and D. Pacciarelli, “Part sequencing in three-machine no-wait robotic

cells”, Operations Research Letters, Vol.27, pp.185-192, 2000.

88

[10] W. Ying and L. Bin, “Job-shop scheduling using genetic algorithm”, Signal
Processing 3rd International Conference, pp.1441- 1444, 1996.

[111 C. G. Wu, X. L. Xing, H. P. Lee, C. G. Zhou and Y. C. Liang, “Genetic algorithm
application on the job shop scheduling problem”, International Conference on Machine

Learning and Cybernetics, pp.2102-2106, 2004.

[12] I. Kacem, “Genetic algorithm for the flexible job-shop scheduling problem”, IEEE

International Conference on Systems, Man and Cybernetics, Vol.4, pp.3464-3469,
2003.

[13] N. Morad and A. Zalzala, “A genetic-based approach to the formation of
manufacturing cell and batch scheduling” , Proceedings of the IEEE Conference on

Evolutionary Computation, pp.485-490, 1996.

[14] T. Murata and H. Ishibuchi, “Performance evaluation of genetic algorithms for
flowshop scheduling problems”, Proceedings of the IEEE Conference on Evolutionary

Computation, pp.812-817, 1994.

[15] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop scheduling
problems using genetic algorithms, part II: hybrid genetic search strategies”, Computers

& Industrial Engineering, pp.343-364, 1999,
[16] Y. Yin, J. Yu and Z. Cheng, “A genetic algorithm based approach to flowshop
scheduling”, World Congress on Intelligent Control and Automation, pp.3019-3021,

2004.

[17] S. Forrest, "Genetic algorithms: principles of natural selection applied to

computation”, Science, Vol.261, pp.8§72-878, 1993.

89

[18] M. Mitchell, “An introduction to genetic algorithms™, MIT Press, pp.167-168,
1996.

[19]1 Y. Wu, M. Liu and C. Wu, “Genetic algorithm for solving flow shop scheduling
problem with paralle] machine and special procedure constraints”, International

Conference on Machine Learning and Cybernetics, pp.1774-1779, 2003.

[20] T. Luan and Q. Peng, “Genetic algorithm-based parts scheduling in a two-machine
robotic Cell”, Flexible Automation and Intelligent Manufacturing, pp.974-980, 2004.

[21] S. Forrest, “Genetic algorithms: principles of natural selection applied to

computation” Science, Vol.261, pp.872-878,1993.

[22] R. Simon, “Robust encodings in genetic algorithms: a survey of encoding issues”,
Proceedings of IEEE International Conference on Evolutionary Computation, pp.43-48,
1997.

90

Appendix A

Time charts of all chromosome pairs of part family F2 (tested by using genetic
probabilities, namely [Pc, Pm] = [0.6, 0.4]) in graph 5-1(b) in Chapter 5, Section 5.1 are

shown below.

) et Total time POG- P02 : 211 units

Time Chart of pair: PO6 and P02 w3l I T (1) = red
M2 . (p) = pink

P06 = M3 (58) - M2(38) > M1 (37) EE () = gray
i1 c b _

= 3 T : (y) = yellow
PO2=M1©) >M3@3>M200 o [IE | [EE IO (ERTIE (b) = blue
0 100 200

The sequence of the robot moves of pair grouping between part PO6 and P02

1.(r) Pick up P06 at MO 13. (b) Move back to M1 25.(g) Load P02 at M2
2.(p) Move P06 to M3 14. (2) Unload P02 from M1 26. (b) Move back to M1
3.(r) Load P06 on M3 15. (y) Move P02 to M3 27 Wait at M1 until PO6 finished
4. (b) Move back to MO 16. (g) Load P02 on M3 28. (r) Unload P06 from M1
5.(g) Pick up P02 from MO 17. (b) Move back to M2 29. (p) Move P06 to M4
6.(y) Move P02 to M1 18. Wait at M2 until P06 finished 30. (r) Drop off P06 at M4
7.(g) Load P02 to M1 19. (r) Unload P06 from M2 31.(b) Move back to M2
8.(b) Move back to M3 20. (p) Move P06 to M1 32.(g) Unload P02 from M2
9. Wait at M3 until P06 finished 21.(r) Load P06 on M1 33.(y) Move P02 to M4

10. (r) Unload P06 from M3 22.(b) Move back to M3 34.(g) Drop off PO2 at M4
11. (p) Move P06 to M2 23.(g) Unload P02 from M3 35. (b) Move back to MO

12. (r) Load P06 to M2 24. (y) Move P02 to M2

Total time P16- P03 : 196 units

: P r) =red

Time Chart of pair: P16 and P03 s e Ep>)= et
M2 1 L (g) = gray
P16 =M1 (22) >M3 (59) > M2 (49) milil (y) = yellow
Po3=M2@5) >M1) >M3 o) r (ILET I (I 1 T (b) = blue
i} 100 200
The sequence of the robot moves of pair grouping between part P16 and P03

1.(r) Pick up P16 at MO 13.(b) Move back to M2 25. (y) Move P03 to M3

2.(p) Move P16 to Ml 14. Wait at M2 until PO3 finished 26. (g) Load P03 at M3

3.(r) Load P16 on Ml 15.(g) Unload P03 from M2 27. (b) Move back to M2

4.(b) Move back to MO 16. (y) Move P03 to M1 28. Wait at M2 until P16 finished

5.(g) Pick up P03 at MO 17. (g) Load P03 at M1 29. (r) Unload P16 from M2

6.(y) Move P03 to M2 18. (b) Move back to M3 30. (p) Move P16 to M4

7.(g) Load P03 on M2 19. Wait at M3 until P16 finished 31. (r) Drop off P16 at M4

8.(b) Move back to M1 20. (r) Unload P16 from M3 32. (b) Move back to M3

9. Wait at M1 until P16 finished 21.(p) Move P16 to M2 33. (g) Unload PO3 from M3

10. (r) Unload P16 from M1 22.(r) Load P16 at M2 34. (y) Move P03 to M4

11. (p) Move P16 to M3 23. (b) Move back to M1 35.(g) Drop off PO3 at M4

12. (r) Load P16 on M3 24. (g) Unload P03 from M 36. Move back to MO

91

Time Chart of pair: P15 and POl

P15 = M3 (48)
PO1 =M1 (15) > M2 (16) - M3 (11)

Totaltime P15-F01 :119 units

h3
12
h1
m I LI I
0 100 200

(r) =red

(p) = pink
(g) = gray
(y) = yellow
(b) = blue

The sequence of the robot moves of pair grouping between part P15 and P01

1.(r) Pick up P15 at MO 13, Wait at M3 until P15 finished 25. (b) Move back to M0
2.(p) Move P15 to M3 14. (r) Unload P15 from M3

3.(r) LoadP15o0n M3 15. (p) Move P15 to M4

4. (b) Move back to MO 16. (r) Drop off P15 at M4

5.(g) Pick up PO1 at MO 17. (b) Move back to M2

6.(y) Move POl to M1 18. (g) Unload PO1 from M2

7.(g) Load POl on M1 19. (y) Move POl to M3

8 Wait at M1 until POI finished 20. (g)

Load PO1 to M3

9.(g) Unload POl from M1 21. Wait at M3 until PO1 finished
10. (y) Move POl to M2 22.(g) Unload P01 from M3

11.(g) Load POl at M2 23. (y) Move POl to M4

12. (b) Move back to M3 24. (g) Drop off PO1 to M4

Time Chart of pair: P14 and P13

P14 =M2 (24)
P13 =MI1 (10)

Total time P14-P13 : 84 units

M3
hi2
M1

0 100

200

The sequence of the robot moves of pair grouping between part P14 and P13

l.(r) Pick up P14 at MO 13.(b)
2.(p) Move P14 to M2 14.(g)
3.(r) Load P14 on M2 15.(y)
4.(b) Move back to MO 16.(g)
5.(g) PickupP13 at MO 17.(b)
6.(y) Move P13 to Ml

7.(z) Load P13 on M1

8.(b) Move back to M2

9. Wait at M2 until P14 finished
10.(r) Unload P14 from M2

11.(p) Move P14 to M4

12.(r) Drop off P14 at M4

Move back to M1
Unload P13 from M1
Move P13 to M4
Drop off P13 at M4
Move back to MO

92

Total time P12 - PO8& : 139 units

Time Chart of pair: 1) =180
hart of pair: P12 and PO8 Nig (p) = pink
M2 (g) = gray
P12=M3(51) > M2 (20) i g (y) = yellow
- e i (b) =blue
PO8 =M1 (16) > M3 (28) R I” " “.I l |
1] 100 200
The sequence of the robot moves of pair grouping between part P12 and P08
1.(r) Pick up P12 at MO 13.(b). Move back to M1 25.(y) Move P08 to M4
2.(p) Move P12 to M3 14.(g) Unload P08 from M1 26.(g) Drop off PO8 at M4
3.(r) Load P12 on M3 15.(y) Move P08 to M3 27.(b) Move back to MO
4.(b) Move back to MO 16.(2) Unload PO8 to M3
5.(g) Pick up PO8 at MO 17.(b) Move back to M2
6.(y) Move P08 to M1 18. Wait at M2 until P12 finished
7.(g) Load P08 on M1 19.(r) Unload P12 from M2
8.(b) Move back to M3 20.(p) Move P12 to M4
9. Wait at M3 until P12 finished 21.(r) Drop off P12 at M4
10.(r) Unload P12 from M3 22.(b) Move back to M2
11.(p) Move P12 to M2 23. Wait at M2 until POS8 finished
12.(r) Load P12 on M2 24.(g) Unload P08 from M2
Total time PO7 - P05 : 198 units
Time Chart of pair: PO7 and P05 M3 ’ @ = red
M2 | , (p) = pink
P07 =M1 (29) > M2 (9) il | (g) = gray
pos=M3 (55)>Mian->m200 r (I EL IE{H [et
u} 100 200
The sequence of the robot moves of pair grouping between part PO7 and P05
1.(r) Pick up P07 at MO 13. Wait at M2 until PO7 finished 25.(g) Load P05 on M2
2.(p) Move P07 to M1 14.(r) Unload P07 from M2 26. Wait at M2 until PO5 finished
3.(r) Load P07 on M1 15.(p) Move P07 to M4 27.(g) Unload P05 from M2
4.(b) Move back to MO 16.(r) Drop off P07 on M4 28.(y) Move P05 to M4
5.(g) Pick up PO5 at MO 17.(b) Move back to M3 29.(g) Drop off PO5 at M4
6.(y) Move P05 to M3 18. Wait at M3 until PO5 finished 30.(b) Move back to MO
7.(g) Load P05 on M3 19.(g) Unload P05 from M3
8.(b) Move back to M1 20.(y) Move P05 to M1
9. Wait at M3 until PO7 finished 21.(g) Load P05 on M1
10.(r) Unload P07 from M1 22. Wait at M1 until PO5 finished
11.(p) Move P07 to M2 23.(g) Unload P05 from M1
12.(r) Load PO7 on M2 24.(y) Move P05 to M2

93

Time Chart of pair: PO4 and P10

P04 =M2 (27) > M3 (58) > M1 (46)

P10=M2 (51) > M3 (49)

Total time PO4-P10 ;203 units

M3
M2 , !
1 L
r [LL_1EHT [[TIET (W0
a 100 200

(r) =red

(p) = pink
(g) = gray
(y) = yellow
(b) = blue

The sequence of the robot moves of pair grouping between part P04 and P10
Wait at M3 until PO4 finished 25.(r) Drop off PO4 at M4

1.(r) Pick up P04 at MO
2.(p) Move P04 to M2
3.(r) Load P04 on M2

4. Wait at M2 until PO4 finished
5.(r) Unload P04 from M2
6.(p) Move P04 to M3
7.(r) Load P04 at M3
8.(b) Move back to MO
9.(g) Pickup P10 at MO
10.(y) Move P10 to M2
11.(g) Load P10 at M2
12.(b) Move back to M3

13.

14.(r)
15.(p)
16.(r)
17.(b)
18.(g)
19.(y)
20.(g)
21.(b)
22.

23.(r)
24.(p)

Unload P04 from M3 26.(b) Move back to M3
Move P04 to M1 27.(g) Unload P10 from M3
Load P04 at M1 28.(y) Move P10 to M4
Move back to M2 29.(g) Drop off P10 at M4
Unload P10 from M2 30.(b) Move back to MO

Move P10 to M3

Load P10 on M3

Move back to M1

Wait at M1 until PO4 finished
Unload P04 from M1

Move P04 to M4

Time Chart of pair: P09 and P11

P09 =M2 (16) > M1 (38)
P11=M3 (40) > M1(19)

Totaltime PO9- P11 ;153 units

M3
Mz |
M | |
r 1A
0 100 200

(r)=red

(p) = pink
(g) = gray
(y) = yellow
(b) =blue

The sequence of the robot moves of pair grouping between part P09 and P

1.(r) Pick up P09 at MO
2.(p) Move P09 to M2
3.(r) Load P09 on M2

4. Wait at M2 until P09 finished
5.(r) Unload P09 from M2
6.(p) Move P09 to M1
7.(r) Load P09 at M1

8.(b) Move back to MO
9.(g) Pickup P11 at MO
10.(y) Move P11 to M3
11.(g) Load P11 at M3
12.(b) Move back to M1

13.

14.(r)
15.(p)
16.(r)
17.(b)
18.

19.(2)
20.(y)
21.(g)
22.

23.(g)
24.(y)

Wait at M1 until PO9 finished 25.(g) Drop off P11 at M1

Unload P09 from M1 26.(b) Move back to MO
Move P09 to M4

Drop off P09 at M4

Move back to M3

Wait at M3 until PI1 finished
Pick up P11 from M3

Move P11 to M1

Load P11 at M1

Wait at M1 until P11 finished
Pick up P11 from M1

Move P11 to M4

94

Appendix B

The information for part family: shortl

| TirstProcess l‘"Syecond'Pmcess‘;, _ Third Process

Pari Name b————————— e

I Machine | Time Machine | Time Machim;‘ Time J
P1 MI 5 M2 30 M3 10
P2 M1 30 M3 40 M2 50
P3 M2 10 Ml 25 M3 60
P4 M2 20 M3 12 Ml 20
P5 M3 30 M1 40 M2 50
P6 M3 15 M2 5 M1 45
P7 M1 20 M2 50 None -
P8 Mi 60 M3 15 None -
P9 M2 45 Ml 30 None -
P10 M2 20 M3 5 None -
P11 M3 55 M1 10 None -
P12 M3 20 M2 60 None -
P13 M1 25 None - None -
P14 M2 35 None - None -
P15 3 3 None - None -
P16 M1 60 M2 60 M3 60
P17 Ml 20 M3 45 M2 10
P18 M2 55 Ml 40 M3 12
P19 M2 15 M3 15 M1 15
P20 M3 25 M1 35 M2 30
P21 M3 10 M2 8 Ml 6
P22 M1 35 M2 40 None -
P23 M1 10 M2 20 None -
P24 M2 30 M1 30 None -
P25 M2 45 M3 9 None -
P26 M3 22 M1 10 None -
P27 M3 50 M2 18 None -
P28 Ml 60 None - None -
P29 M2 55 None - None -
P30 M3 45 None - None -
P31 M1 5 None - None -
P32 M2 10 None - None -
P33 M3 8 None - None -
P34 M1 40 M2 25 M3 40
P35 Ml 45 M3 50 None -
P36 M2 M3 35 M1 10
P37 M3 55 Ml 15 None -
P38 M2 45 M1 40 None -
P39 M3 25 Ml 45 None -
P40 M2 25 Ml 12 M3 30

95

The information for part family: short2

| FirstProcess | Second Process | Third Process
| Machine | Time | Machine | Time Machine | Time
P1 MI 5 M2 30 M3 10
P2 MIl 30 | M3 40 M2 50
P3 M2 10 M1 25 M3 60
P4 M2 20 M3 12 Mi 20
P5 M3 30 MI 40 M2 50
P6 M3 15 M2 5 MI 45
P7 M1 20 M2 50 None -
P8 M1 60 M3 15 None -
P9 M2 45 Ml 30 None -
P10 M2 20 M3 5 None -
P11 M3 55 MIl 10 None -
P12 M3 20 M2 60 None -
P13 M1 25 None - None -
P14 M2 35 None - None -
P15 M3 3 None - None -
P16 Ml 60 M2 60 M3 60
P17 Mi 20 M3 45 M2 10
P18 M2 55 M1 40 M3 12
P19 M2 15 | M3 15 Mi 15
P20 3 25 M1 35 M2 30
P21 M3 10 M2 8 M1 6
P22 Ml 35 M2 40 None -
P23 Ml 10 M2 20 None -
P24 M2 30 M1 30 None -
P25 M2 45 M3 9 None -
P26 M3 22 M1 10 None -
P27 M3 50 M2 18 None -
P28 Mi 60 None - None -
P29 M2 55 None - None -
P30 M3 45 None - None -
P31 Ml 5 None - None -
P32 M2 10 None - None -
P33 M3 8 None - None -
P34 MI 40 M2 25 M3 40
P35 MIl 45 M3 50 None -
P36 M2 60 M3 35 M1 10
P37 3 55 M1 15 None -
P38 M2 45 Mi1 40 None -
P3 M3 25 MI 45 None -
P40 M2 25 M1 12 M3 30

96

The information for part family: short3

__ Third Process

Second Process
chine | Time | Machine | Time

57 M3 37

40 M2 14

60 M3 48

53 M1 42

24 M2 36

39 M1 21
25 None -
2 49 None -
2 None -
P10 M2 37 M3 28 None -
P11 M3 28 M1 8 None -
P12 M3 44 M2 5 None -
P13 M1 43 None - None -
P14 M2 2 None - None -
P15 M3 48 |- None - None -
P16 Ml 17 M2 45 M3 31

P17 M1 30 M3 3 M2 44
P18 M2 34 MI 20 M3 2

P19 M2 8 M3 12 M1 30
P20 M3 42 MI 41 M2 13

P21 M3 15 M2 24 M1 27
P22 M1 11 M2 49 None -
P23 M1 15 | M2 48 None -
P24 M2 3 M1 23 None -
P25 M2 10 M3 14 None -
P26 M3 11 Mi 41 None -
P27 M3 8 M2 16 None -
P28 M1 38 None - None -
P29 M2 30 None - None -
P30 M3 33 None - None -
P31 Ml 22 None - None -
P32 M2 41 None - None -
P33 M3 12 None - None -

P34 M1 17 M2 14 M3 10
P35 MI 25 M3 44 None -

P36 M2 24 M3 13 M1 30
P37 M3 57 M1 37 None -
P38 M2 17 M1 27 None -
P3 M3 52 M1 34 None -

P40 M2 40 M1 54 M3 26

97

The information for part family: med!

'Péi"i":Na?nie,,, |

PI

Mi 65 M2 75 M3 100
P2 MI 90 M3 80 M2 120
P3 M2 60 Ml 120 M3 60
P4 M2 110 M3 95 M1 85
P5 M3 100 M1 100 M2 100
P6 M3 65 M2 65 MI 75
P7 M1 110 M2 90 None -
P8 MI 120 M3 95 None -
P9 M2 60 M1 85 None -
P10 M2 85 M3 120 None -
P11 M3 60 M] 60 None -
P12 M3 105 M2 115 None -
P13 Ml 75 None - None -
P14 M2 75 None - None -
P15 M3 75 None - None -
Pl6 M1 120 M2 120 M3 120
P17 Mi 60 M3 60 M2 60
P18 M2 105 M1 75 M3 75
P19 M2 110 M3 85 M1 90
P20 M3 100 MI 70 M2 80
P21 M3 100 M2 65 MI1 115
P22 M1 100 M2 75 None -
P23 MI 95 M2 80 None -
P24 M2 115 MIl 120 None -
P25 M2 75 M3 75 None -
P26 M3 120 M1 80 None -
P27 M3 90 M2 65 None -
P28 M1 120 None - None -
P29 M2 120 None - None -
P30 M3 120 None - None -
P31 M1 90 None - None -
P32 M2 80 None - None -
P33 M3 115 None - None -
P34 M1 90 M2 90 M3 90
P35 Mi 85 M3 70 None -
P36 M2 75 M3 60 M1 60
P37 M3 120 M1 60 None -
P38 M2 115 Ml 80 None -
P39 M3 70 M2 85 None -
P40 M2 115 MI 65 M3 80

98

The information for part family: med2

| Machine | Time | Machine Machine | Time
Pl M1 92 M2 93 M3 92
P2 M1 79 M3 86 M2 83
P3 M2 101 M1 70 M3 65
P4 M2 102 M3 101 MI 32
P5 M3 102 MIl 66 M2 103
P6 M3 61 M2 85 M1 106
P7 MI 108 M2 86 None -
P8 M1 118 M3 110 None -
P9 M2 93 M1 118 None -
P10 M2 76 M3 103 None -
P11 M3 62 MI 88 None -
P12 M3 86 M2 110 None -
P13 M1 75 None - None -
P14 M2 89 None - None -
P15 M3 103 None - None -
Ple MI 86 M2 85 M3 62
P17 M1 98 M3 66 M2 72
P18 M2 116 | Ml 89 M3 60
P19 M2 110 M3 92 \%§! 83
P20 M3 96 M1 63 M2 107
P21 M3 78 M2 111 MI 108
P22 M1 90 M2 61 None -
P23 M1 119 M2 89 None -
P24 M2 109 Mi 67 None -
P25 M2 69 M3 116 None -
P26 M3 112 | Ml 87 None -
P27 M3 98 M2 111 None -
P28 Ml 86 None - None -
P29 M2 74 None - None -
P30 3 78 None - None -
P31 M1 80 None - None -
P32 M2 116 None - None -
P33 3 64 None - None -
P34 M1 64 M2 61 M3 79
P35 M1 113 M3 103 None -
P36 M2 112 M3 84 M1 73
P37 M3 70 MI 113 None -
P38 M2 90 M1 89 None -
P39 M3 104 Mi 118 None -
P40 M2 3 MI 61 M3 76

99

The information for part family: med3

| Second Process | Third Process |

PartName ————+———t— —
| Machine | Time | Machine Machine | Time |
P1 M1 78 M2 85 M3 83
P2 M1 106 M3 94 M2 85
P3 M2 119 | Ml 72 M3 66
P4 M2 105 M3 98 Ml 69
P35 M3 82 Ml 87 M2 83
P6 3 65 M2 113 MI 89
P7 MI 73 M2 62 None -
P8 MI 77 M3 84 None -
P9 M2 113 M1 65 None -
P10 M2 81 M3 118 None -
P11 M3 65 | Ml 76 None -
P12 M3 118 M2 78 None -
P13 M1 93 None - None -
P14 M2 97 None - None -
P15 M3 71 None - None -
P16 M1 96 M2 66 M3 114
P17 M1 85 M3 114 M2 97
P18 M2 98 M1 78 M3 77
P19 M2 70 M3 61 M1 63
P20 3 101 M1 107 M2 64
P21 M3 90 M2 77 M1 111
P22 M]1 120 M2 62 None -
P23 M1 118 M2 73 None -
P24 M2 74 Mi 108 None -
P25 M2 63 M3 104 None -
P26 M3 88 M1 69 None -
P27 M3 85 M2 98 None -
P28 MI 84 | None - None -
P29 M2 93 None - None -
P30 M3 84 None - None -
P31 Ml 106 None - None -
P32 M2 105 None - None -
P33 M3 85 None - None -
P34 M1 117 M2 86 M3 60
P35 M1 65 M3 111 None -
P36 M2 88 | M3 61 M1 104
P37 M3 89 M1 64 None -
P38 M2 99 Ml 100 None -
P39 M3 73 M1 85 None -
P40 M2 115 Mi1 95 M3 104

100

The information for part family: mix]1

P2 Mi 65 M3 150 M2 30
3 M2 100 M1 55 M3 150
P4 M2 15 M3 90 M1 20
P5 M3 180 \%§! 150 M2 165
P6 3 20 M2 15 MI 90
P7 M1l 10 M2 100 None -
P8 M1 90 M3 35 None -
P9 M2 155 M1 145 None -
P10 M2 65 M3 78 None -
P11 M3 20 Ml 95 None -
P12 M3 15 M2 145 None -
P13 M1 15 None - None -
P14 M2 20 None - None -
P15 M3 35 None - None -
P16 M1 170 M2 35 M3 150
P17 M] 45 M3 95 M2 155
P18 M2 30 M1 155 M3 40
P19 M2 160 M3 15 M1 100
P20 M3 75 Mi 75 M2 60
P21 M3 85 M2 70 M1 35
P22 M1 160 M2 90 None -
P23 M1 165 M2 55 None -
P24 M2 25 M1 65 None -
P25 M2 15 M3 20 None -
P26 3 50 M1 15 None -
P27 M3 90 M2 180 None -
P28 %8 175 None - None -
P29 M2 155 None - None -
P30 M3 145 None - None -
P31 M1 75 None - None -
P32 M2 90 None - None -
P33 M3 80 None - None -
P34 M1 65 M2 45 M3 165
P35 MI 180 M3 145 None -
P36 M2 110 M3 35 M1 85
P37 M3 15 Ml 105 None -
P38 M2 115 MIl 25 None -
P39 M3 95 M2 175 None -
P40 M2 45 M1 145 M3 65

- 101

The information for part family: mix2

.| FirstProcess | Second Process | Third Process
PaiName o= Lo o e |
P1 M1 63 M3 24
P2 Mi 168 M3 59 M2 145
P3 M2 105 MI 6 M3 56
P4 M2 38 M3 89 Ml 37
P5 M3 170 M1 55 M2 57
P6 M3 27 M2 110 MI 96
P7 Ml 89 M2 125 None -
P8 Mi 153 M3 83 None -
P9 M2 24 M1 161 None -
P10 M2 38 M3 144 None -
P11 M3 121 MI 88 None -
P12 M3 43 M2 6 None -
Pi3 M1 134 None - None -
P14 M2 161 | None - None -
P15 M3 1 None - None -
Pl6 M1 69 M2 116 M3 163
P17 Ml 152 M3 83 M2 39
P18 M2 48 M1 44 M3 175
P19 M2 55 M3 108 MI 4
P20 M3 90 M1 65 M2 96
P21 M3 94 M2 151 MIl 166
P22 Ml 23 | M2 47 None -
P23 M1 31 M2 136 None -
P24 M2 152 M1 51 None -
P25 M2 153 M3 123 None -
P26 M3 109 M1 55 None -
P27 M3 104 M2 45 None -
P28 M1 147 None - None -
P29 M2 3 None - None -
P30 M3 156 None - None -
P31 Ml 36 None - None -
P32 M2 19 None - None -
P33 3 79 None - None -
P34 M1 79 M2 167 M3 60
P35 M1 157 M3 168 None -
P36 M2 133 3 72 MI 108
P37 M3 23 M1 103 None -
P38 M2 54 Ml 92 None -
P39 M3 160 || Ml 52 None -
P40 M2 180 M1 175 M3 105

102

The information for part family: mix3

rocess | Third Process
| Machine ,, Time | Machine | Time
P1 M1 142 M2 49 M3 91
P2 M1 157 M3 148 M2 29
P3 M2 154 Ml 179 M3 171
P4 M2 42 M3 115 Ml 171
Ps5 M3 59 Ml 164 M2 155
P6 M3 5 M2 23 MI 74
P7 Ml 37 || M2 151 None -
P8 MI 32 M3 123 None -
P9 M2 137 M1 3 None -
P10 M2 33 M3 113 None -
P11 M3 - 26 M1 74 None -
P12 M3 147 M2 163 None -
P13 MIl 178 None - None -
P14 M2 5 None - None -
P15 M3 114 None - None -
P16 M1 165 M2 163 M3 67
P17 M1 117 3 132 M2 56
P18 M2 64 M1 109 M3 93
P19 M2 83 M3 157 MI 161
P20 3 93 MI 72 M2 51
P21 M3 71 M2 163 M1 126
P22 M1 31 M2 95 None -
P23 MI1 36 M2 5 None -
P24 M2 101 M1 99 None -
P25 M2 164 M3 54 None -
P26 M3 29 MI1 146 None -
P27 M3 178 M2 111 None -
P28 MIl 61 None - None -
P29 M2 174 None - None -
P30 M3 152 None - None -
P31 M1 179 None - None -
P32 M2 117 | None - None -
P33 M3 76 None - None -
P34 M1 120 M2 73 M3 28
P35 M1 169 M3 92 None -
P36 M2 6 M3 138 Ml 113
P37 M3 60 MI 167 None -
P38 M2 49 M1 158 None -
P39 M3 161 MI 82 None -
P40 M2 21 M1 77 M3 11

103

Appendix C

1. Prepare part family data as shown below in .txt format

Processing time of part
on the second machine

The second machine that
part will be processed

File' “Edit. Format: Visw Help

1
M1
2
M2
M3

M3
M1

— Processing time of part
. on the third machine

The third machine that
part will be processed

Part Name L
Processing time of part

The first machine that on the first machine
part will be processed

2. Input rebot information into the GA program
Robot pick up / unloading time (second)
Robot drop off/ loading time (second)
Robot movement time between two adjacent stations (second)

3. Input the necessary parameters into the GA program

File name: filename. txt (prepared form step 1)
Crossover probability: 03-0.5

Crossover type: Any type

Mutation probability: 04-1.0

Mutation type: Arbitrary Two-Job Exchange Mutation
Population size: 20-35

Number of Evaluations: 600 —700

104

4. Run GA program
S. Get the result from GA program

The result will provide the minimum makespan, number of generation that
produces min makespan, chromosome that produces the minimum makespan, its
pair grouping detail and the time charts. The result examples are as shown

below.

Start Time : 12082807
JStop Time @ 120322
Elepsed Time : 34.09 seconds

4]

Populstion aize : 20

JGenertation no s 500

Pick ¢ 3, Drop @ 3, Howe : 3

Hreoasover Typs ¢ 1 - One Point Croasover
Poo ¢ 0,5
Mutation Ivpes
Pm o: 0.5

File Heme : newldd.txt

[

- Arbitrary Two-Jck Exchangs Mutstion

;@iﬂ ¥Mgkespen @ 123&.0
in k¥espen at Generstion no @ 34
v&in Mzkespen Chromozome

ga g A
3 i4 1o 7 13 5 15

4 1 8 11 & 2 12 8

PD3-P14 = 156.0
{P10-PO7 = 142.0
JB13-B00 = 46.0

IPOS-P15 = 198.0
PO4-PD1 = 191.0
POS-Pll = 153.0
POE-D02 = 211.0
P12-PO2 = 133.0
Total = 1238.0

105

Totaltime PO3- P14 ;156 units

3
2
11
R I
0 100 200
Totaltime P10-POY : 142 units
200
Totaltirne P13 : 46 units
3
b2
P 1
R
0 100 200

Total time PO5- P15 198 units

200

[4]

106

Total time P04 - PO1

2181 units

200

2153 units

i

Total time PO9- P11

3

M2

200

211 units

a 100 200

139 units

P12-P08

200

[

[4]

(The above result use move, drop, pick times = 3 seconds.)

