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Abstract

Increasing the implication of Internet of Things (IoT) data puts a focus on extracting

the knowledge from sensors’ raw data. The management of sensors’ data is inefficient

with current solutions, as studies have generally focused on either providing cloud-

based IoT solutions or inefficient predefined rules. Providing IoT gateways with

relevant intelligence is essential for gaining knowledge from raw data to make the

decision of whether to actuate or offload tasks to the cloud. This work proposes

a model that provides an IoT gateway with the intelligence needed to extract the

knowledge from sensors’ data in order to make the decision locally without needing

to send all raw data to the cloud over the Internet. When the gateway is unable to

process a task locally, the data and task are offloaded to the cloud.
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Chapter 1

Introduction

1.1 Problem Description

Recently, the Internet of Things (IoT) has become very popular as Radio Fre-

quency Identification (RFID), wireless networks, Bluetooth Low Energy (BLE), and

sensing and actuating technologies have evolved. It is anticipated that 8.4 billion

smart things will be associated with the Internet by 2022, and the number of machine-

to-machine (M2M) connections is anticipated to reach 27 billion by 2024 [1]. Enabling

the IoT has many challenges that cannot be ignored related to its availability, scal-

ability, energy efficiency, security and privacy, and reliability. Although there are

many proposed research that tried to figure out those challenges, most of them are

cloud-based and are not the best solution because they do not deal with real-time

data [2].

Cloud computing enables using distant servers to handle and process data instead

of a local server. Scholars have started to look at edge computing [3, 4], as it is

1



2 Chapter 1: Introduction

Figure 1.1: IoT and Cloud structure.

closer to smart devices than the cloud. Edge computing enables technologies to allow

computing to be done at the edge of the network, near the smart devices. Processing

data near the smart devices will help to solve problems related to latency, security

and privacy, and power consumption.

Some of the solutions, such as Mozilla gateway [5], have employed rules-based

intelligence in edge computing. However, rules-based intelligence does not scale well

with the requirement of IoT applications [6], as it needs to define plenty of rules to

manage a large number of things. Such intelligence also cannot deal with uncertain

events because it only offers pre-assumed intelligence [7].

In fact, many scholars have proposed combining IoT and the cloud in one model

that has three layers: an end devices layer, an edge layer, and a cloud layer (Fig-

ure 1.1). At the bottom of this model, the end devices layer has sensors and actuators.

Those devices are heterogeneous with regard to power consumption, communication
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capabilities, and processing capabilities. It can be a battery-operated sensor, a track-

ing device, or a smartphone.

In general, sensors collect data from the surrounding physical environment and

communicate this data to the edge layer for processing. After that, the data is

transferred over a local network, such as a wireless network, to the cloud layer. Along

the way, the information crosses the edge layer components, such as a gateway, an edge

router, or an access point. These components usually perform protocol translation to

buffer an incoming message and forward in another format.

The data is then transmitted over the Internet to the cloud layer. The cloud

layer consists of a group of connected, powerful computers that are able to process

vast amounts of data. The cloud then processes the received data, enhances it, and

integrates it with other information in order to convert it either into knowledge that

needs to be stored or into an action that must be taken in the real world.

The action is subsequently passed to the end devices layer through the edge layer

until it reaches a certain actuator. For example, to turn on the heating system in

a smart home, sensors collect data about the temperature, time, and motion in the

home. It then sends this data to the cloud. The cloud processes the received data,

makes a decision either to turn the heating system on or off, and it then tells the

smart home application what decision was made.

However, this method of transferring all the generated IoT data to the cloud and

returning the decision is inefficient. It also causes problems with latency, security and

privacy, and power consumption. Current network architectures and technologies are

not sufficient to transfer the increasing amount of IoT data to the cloud and returning
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information about decisions[2].

Recently, scholars have been investigating the viability of processing data close

to the end devices layer in order to avoid the aforementioned challenges. Many

publications have suggested building an IoT gateway in the edge layer that is capable

of processing data and making a decision without transferring the data to the cloud [2,

4]. Constrained devices (e.g., Arduino and Raspberry Pi) have acceptable processing

capabilities that enable them to act as IoT gateways within the edge layer to process

raw data, make a decision, and perform an action. However, constrained devices do

not have the same computational power as the cloud, and so the cloud cannot yet be

ignored.

This work attempts to solve the problems that are occurred from sending real time

IoT data to the cloud. It also try to improve the edge layer capabilities of processing

IoT tasks locally using machine learning.

1.2 Motivation

The current vision is to integrate people, things, services, and context information

[8]. In order to attain this vision , new IoT models are needed. These models should

consider real-time data and make quick decisions that can be acted upon by enabling

edge computing, as this would provide fast processing, energy efficiency, security,

mobility, and heterogeneity.

On the one hand, it would be beneficial for edge computing to be provided with

the required intelligence to deal with an uncertain event. On the other hand, cloud

computing cannot be omitted since edge computing has limited processing and storage
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capabilities. Cloud computing has the advantages of a much larger storage space and

better processing and data analysis capabilities [9]. Therefore, integrating edge and

cloud into one model is required to include the beneficial features of both into one

system to reinforce IoT applications.

1.3 Contribution and Outline

This work presents a distributed intelligence model (DIM) that integrates the

features of edge and cloud layers. Distributed intelligence (DI) in IoT is a paradigm

that uses models, techniques, and algorithms to make decisions about whether to

process IoT data in the edge layer, cloud layer, or both. In this way, DI provides the

desired functionality and performance for IoT applications.

The proposed model enables an IoT gateway to extract most of the knowledge

from the sensors’ data and make a decision locally without sending the data to the

cloud. Processing and decision-making tasks are done at the IoT gateway instead

of in the cloud, thus solving the problem of latency for real-time applications. In

cases when the gateway cannot reliably process data and make a decision because it

is overloaded or the task is too complex, it offloads the task to the cloud.

The model will be implemented using IBM Cloud and Raspberry Pi as a gateway,

sensors, and actuators. The intelligence provided to the gateway will be based on ar-

tificial neural networks (ANNs) that will let it take necessary actions after processing

the raw data.

In order to validate the effectiveness of the presented model, a smart home appli-

cation will be implemented to verify the model. For example, when controlling the
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temperature in a smart home, the sensors will collect data from temperature sensors

and motion sensors at the home and then send them to the IoT gateway at the edge

layer. The gateway will process the data, make a decision to turn the air condition

system either on or off based on an ANN algorithm, and send the decision back to

the air conditioning system at the home. However, if the gateway is overloaded and

unable to process the data, it will forward the task to the cloud layer.

The rest of this thesis is presented as follows. Chapter 2 discusses the related

work about IoT architecture and bringing the intelligence to the edge layer. It also

provides some proposed work for intelligent IoT systems. Chapter 3 briefly introduces

relevant background information about the IoT, edge computing, cloud computing,

and ANNss. Chapter 4 describes the proposed DIM implemented in a smart home as a

case study that integrates cloud and edge in order to support IoT-based smart home

applications. Chapter 5 provides and discusses the experimental results. Finally,

Chapter 6 concludes the work and presents possible directions for future work.



Chapter 2

Related Work

The concept “ Internet of Things (IoT)” was firstly introduced by Kevin Ashton,

the Executive Director of Auto-ID Labs at Massachusetts Institute of Technology,

in 1990, while giving a talk to Procter and Gamble [10]. During his talk, he stated

that all the data available on the web were first produced by humans who have

limited attention, time and accuracy. He added that we need computers to know

everything about things through analysing gathered data without any human help.

Later on, the IoT has been evolved into systems using a variety of technologies such

as Internet, wireless communication, microelectromechanical systems, and embedded

systems. This chapter discusses some of the related works about IoT architecture and

bringing the intelligence to edge layer.

7
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2.1 Cloud Based IoT Systems

Nowadays, extracting knowledge from collected raw data is one of IoT challenges.

The aim of IoT was to gather raw data from things, transfer them to the cloud for

further processing. The cloud processes the data, makes the decision, and sends it to

the actuators. Many proposals applied the scenario of sending collected data from the

environment to the cloud to store, manage, and make decisions [11–15], as it provides

large storage, complex processing, and access anywhere/anytime [16]. For example,

Hassanalieragh et al. [14] presented a cloud health monitoring and management

system that mainly has three components. Firstly, the data acquisition component

has set of wearable sensors collect physiological biomarkers. The sensors transfer the

data to the network through an intermediate data aggregator such as smart phone.

Secondly, the data transmission components transfer patient’s records to the health

data centre in a real time. Finally, cloud processes component that store, analyse,

and visualize the data.

In the last decade, many researches discussed and proposed models of IoT and

cloud integration. Researches in [17] and [18] demonstrate the need to integrate IoT

with cloud by presenting a deep understanding of the integration between cloud and

IoT. They also provide an overview of the current research related to this topic. Babu

et al. [19] present an architectural design for integrating cloud and IoT called Cloud-

Assisted and Agent-Oriented for IoT. This design has three main components Smart

Interface Agent (SIA), Smart User Agent (SUA) and Smart Object Agent (SOA).

SIA interacts with external IT systems. SUA models users in the context of specific

intelligent system, users can establish a certain request services using a GUI provided
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by SUA. SOA models physical environment, it is supported by cloud computing plat-

form. Li et al. [20] employs the Topology and Orchestration Specification for Cloud

Applications (TOSCA) standard for cloud service management to systematically set

down the elements and configurations of IoT applications. TOSCA describes in de-

tails the topology of application components and the implementation process of the

applications. All the previously mentioned models are totally cloud-based which need

to transfer all raw data to the cloud for processing and making decisions. However,

cloud based systems cause high level of latency for IoT applications [21–23]. More-

over, none of the previously mentioned papers discusses processing raw data collected

from end devices at the edge layer to learn, make the decision, and take actions,

without sending the data to the cloud. Therefore, researchers have started to look

at edge computing to process the data close to things as it provides fast processing,

energy efficiency, reliability, and security and privacy [24].

2.2 Enabling Edge for IoT Systems

A large amount of work is being performed in the field of enabling edge computing

to process raw data generated and making the decision. Some of the work focuses

for enabling IoT gateway at the edge of the network to handle and manage the IoT

data. For example, Mueller et al. [3] introduced a SwissQM/SwissGate system to

program, deploy, and operate wireless sensor networks. They propose a gateway

called SwissGate and apply it on smart home applications. Jong-Wang et al. [25]

also came up with a sensor network system that mainly consists of one main server

and a number of gateways to connect several sensor networks. Designing such system
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requires a lot of configurations and high hardware cost. In another work, Bimschas

et al. [26] presented a middleware for smart gateway to run different applications,

such as protocol translation and request caching with sensor discovery. For general

IoT applications, Guoqiang et al. [27] introduced general purpose smart IoT gateway

that supports several communication protocols to translate different sensor data and

external interfaces for flexible software development. In order to use smartphones

as a gateway, Bian et al. [28] utilized android phone to be temporary smart home

gateway that can predict user behaviour to shut down unused devices. This work

aims at providing a dynamic home gateway that can reduce the wasted energy of a

smart home.

In healthcare IoT application domain, Shen at al. [29] presented an intelligence

6LoWPAN border router that connects the health care sensors with IP network and

uses a hidden Markov Model to make local decisions of health states. Stantchev

et al. [30] introduced three-tier architecture (cloud, gateway, and smart items) to

enable servitization for smart healthcare infrastructure. Servitization is the trend

of convergence between manufacturing and the service sector. Rahmani et al. [31]

also proposed an intelligence e-health IoT gateway for remote health monitors system

at the network’s edge in a three layer architecture. The gateway is able to provide

several services, such as real time data processing, local storage, and data mining.

In another work, Azimi et al. [4] proposed a hierarchical model for IoT monitoring

health systems based on the MAPE-K [32] computing model introduced by IBM. The

model uses fog and cloud computing to partition and execute of machine learning data

analytic.
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Many works have tried to counter the intelligence challenges at edge computing.

For example, Badlani et al. [33] introduced smart home systems based on ANNs. It

aims to reduce power consumption through analysing the human behaviour pattern.

They trained a single perceptron network using random values of temperature and

humidity to control the fan. In order to help disabled persons, Hussein et al.[34] pre-

sented a self-adapting intelligence home system that help disabled people to overcome

their impediment based on neural network. They used Feed-Forward Neural Network

to design intelligent fire alarm system. They also used recurrent neural network to

learn the user habits. However, building such system needs a lot of configuration as

it needs a server at edge to process and save the data. Furthermore, the number

of trained and tested samples was small. In another work, Mehr at al. [35] stud-

ied the human activity detection performance using three ANNs algorithms: Batch

Back Propagation, Quick Propagation, and Levenberg Marquardt. The results illus-

trated that Levenberg Marquardt is the best. Park et al. [36] also presented the

Residual- Recurrent Neural Network architecture for smart home to predict human

activities. They evaluated the proposed system using the Massachusetts Institute of

Technology’s dataset.

To counter the intelligence challenges in IoT gateway, Wang et al. [37] suggested

a framework of smart gateway for smart homes that consists of home layer, gate-

way layer, and cloud layer. While the gateway performs data collection, awareness,

and reporting, the cloud stores the reported data, and adjusts the data collection

and awareness policy. Another work introduced by Calegari et al. [38] suggested to

use Logic Programming as a Service (LPaaS) to provide reasoning service for IoT
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applications. They mentioned that Logic Programming as a Service (LPaaS) can

enhance non-symbolic techniques in order to achieve distributed intelligence. Recent

distributed intelligent approach was presented by Rahman et al. [2], they proposed a

Distributed Intelligence model for IoT gateway based on belief network and reinforce-

ment learning to learn, predict, and make a decision. This system starts based on a

small number of predefined rules, after that, the system can change the rules based on

past experiences. Another recent Distributed Intelligence (DI) approach is proposed

by Allahloh et al. [39], which is an intelligent oil and gas field management and con-

trol system based on Internet of Things (IoT). It uses currently available technologies

such as SCADA and LabVIEW that is installed on the workstations and microcon-

trollers connected to wireless networks. Alsboui et al. [40] proposed Mobile-Agent

Distributed Intelligence Tangle-Based architecture that able to uphold multiple IoT

applications. Tangle is a flow of interconnected and individual transactions. These

transactions are stored across a decentralised network. The architecture consists of

IoT devices, tangle to process transactions, Proof of Work server, and mobile agent.

IoT devices are connected together through TCP/IP protocols for communication.

They communicate with the Tangle to manage process and store data in an efficient

way. Proof of Work (PoW) server is an IoT device that performs computations’

cost on behalf of IoT devices. Mobile agent supports inter-node communications by

transferring a set of transactions when passing through nodes on their path.

As mentioned above, large effort is being performed in the field of IoT gateway

that is located between cloud and end devices. Although there are a large amount of

work being done to enable the gateway at edge layer, there is only small improvement
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towards providing intelligence to the gateway by extracting knowledge from the raw

data at IoT gateway to make decision locally. Moreover, small number of papers

discussed automatic offloading from the gateway to the cloud in overload situations.

In other words, few researches performed in collaborating between the IoT gateway

and the cloud when the gateway is unable to analyse data, make decision and take

action.



Chapter 3

Background

3.1 Internet of Things

Smart devices concept becomes popular in 1990s. IoT term was first introduced

in 1999 by Kevin Ashton, the head of Auto-ID Centre at Massachusetts Institute

of Technology [10]. He explained the possibility of creating IoT by tagging Radio

Frequency Identification (RFID) and sensors to objects. After that IoT has become

popular in research works and industrial fields. The recent innovative developments

of information and communication technologies related to ubiquitous communication,

pervasive computing, and ambient intelligence played an essential role in IoT devel-

opment. Ubiquitous communication is a concept in communication and computer

network where interconnection can be made anywhere and anytime. The pervasive

computing is the improvement in smart devices including the computational feature

process. Ambient Intelligence is the ability of objects to sense and response to physical

environment.

14
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There is no particular definition for IoT, many definitions introduced in the liter-

ature [31, 41–44]. However, the objectives of IoT are similar in most of those defini-

tions. For this work, we will consider the definition that defines IoT as a paradigm

to connect unlimited numbers of objects with their unique identifications anytime

and anyplace using IoT communications protocols [31]. IoT objects might be mobile

phones, clothing, machines, and doors. IoT has been involved in many applications,

such as transportation [45], smart home [46], and health care [47].

3.1.1 IoT Architecture

Architecture for IoT does not have a particular standard because it is a broad

concept. Several proposed architectures are presented such as International Telecom-

munications Union (ITU) architecture, European FP7 Research Project architecture,

IoT Forum Architecture, and Qian Xiaocong, Zhang Jidong Architecture [48].

Although there is a small difference between those architectures, IoT architecture

commonly has three main layers:

• The things layer with physical endpoints that sense and receive information.

The physical endpoints can be smart devices (e.g smart car and smart phone),

sensors, actuators and microcontrollers. These endpoints is the requisite part

of IoT that uses Radio Frequency Identification (RFID), Bluetooth, Near Field

Communication (NFC), ZigBee, Wireless Sensor Networks (WSN), and embed-

ded intelligence to send the data to the next layer. The technologies that are

used in this work will be discussed in the next section.

• The connectivity layer that has gateways and the core network that usually
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performs protocols transactions.

• The application layer that collects sensors’ data in order to store, process, mea-

sure, and take actions. In most modules, application layer resides on cloud that

has the power to receive and process data coming from multiple resources.

3.1.2 Key Technologies of IoT

The IoT is a promising technology for a smarter future: smart kitchen shelves are

able to search for several groceries, check and compare their prices before ordering

them. Smart mattresses are able to tell you about your sleeping position, give you a

relaxing massage, and more. While most of this might shortly be within our hands,

we still have to care about the great technologies that makes IoT comes true. In this

section, we will introduce some of those technologies that are used to build the model.

• Radio Frequency Identification (RFID): RFID is the technology that uses radio

waves to detect, identify and track an object electronically through a tag that is

attached to the object [49]. It can store and retrieve information using electro-

magnetic transmission and a radio frequency compatible integrated circuit. A

simple RFID system mainly has RFID readers and RFID tags [50]. The RFID

tag can be read by the RFID reader from up to several feet away and does not

require being within a direct line with the reader to be tracked. RFID reader

can scan several tags at the same time and transfer it to the server. RFID tech-

nology is widely used with different RFID applications, such as smart homes,

public transportation, health services, and smart agriculture to identify things

electronically.
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• Wireless Sensor Networks (WSN): sensor is a device that is able to detect a

certain type of input from the physical object or the environment such as heat,

smoke, light, motion and pressure. A sensor consists of four units: power,

sensing, computing and communication [51]. In general, sensor’s output is an

electrical signal that is transmitted to the data centre for processing and ex-

tracting the knowledge. WSN is a number of wireless sensors that communicate

to collect information and detect a certain event in the physical environment

[52]. Sensors in WSN are able to communicate in a centralized or decentral-

ized approach based on several topologies such as mesh and star. Sensors can

communicate together in the point to point or multi-hop models. WSN provide

different beneficial data that might be used in certain applications and services

such as military, healthcare, education, and agriculture. However, it has some

limitations in communication and resources constraints, such as short commu-

nication range, mobility, reliability, and security. Nowadays, scholars are trying

to solve these limitations by several modes such as different routing protocols

and intelligent based approaches[53].

• Addressing: One of the main requirements of IoT is to identify and manage

objects based on its identification, location or functions because it consists of

large number of objects. In fact, addressing has achieved this requirement by

adding more features to IoT such as uniqueness, reliability, persistence and scal-

ability. Unfortunately, the current Internet Protocol (IP) version 4 is only able

to identify a group of sensors based on their geographical location. The solution

is to enable Internet Protocol (IP) version 6 to identify every sensor individually
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based on its identification, location, or functions, as it has a larger address size

in order to address and manage IoT objects efficiently [54]. Internet Engineer-

ing Task Force (IETF) standardized adaption protocol for IPv6 is called IPv6

over Low power Wireless Personal Area Networks (LoWPAN)[55]. 6LoWPAN

is a short form that integrate Internet Protocol (IPv6) with Low power Wireless

Personal Area Networks (LoWPAN). LoWPAN for End devices gives them the

ability to transfer information wireless using Internet Protocol. It allows com-

pression techniques to compress the IPv6 and User Datagram Protocol (UDP)

packets after deleting the excessive data from the header part.

• ZigBee Protocol: Zigbee is a wireless communication protocol that is created

by ZigBee Alliance to enhance the features of WSNs. It is a low power protocol,

designed based on the IEEE 802.15.4 standard that has the attributes of low

cost, low data rate, short transmission range, reliability, scalability, and flexible

protocol design [48]. Although it has range approximately 100 meters, it can

transmit data over a long distance through mesh or tree of intermediate devices.

It is widely used for iot applications such as healthcare, smart agriculture, and

smart home.

• Middleware: Due to objects heterogeneity, limited storage, and processing capa-

bilities, middleware and application layer plays a key role with the main objec-

tives of functional abstraction and device communication [56, 57]. Middleware

is categorized in the layers such as object abstraction, service management,

service composition and application. In generic IoT system, end devices usu-

ally collect specific information such as temperature, light and pressure. This
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information passes through limited processing locally. Then, it is sent to the

external gadget for computations. After that, it can be transmitted to the local

area network until it reaches the Internet then the cloud-based service. The

cloud-based service converts the received data into knowledge after some pro-

cessing operations. This knowledge might need to be stored or action needs to

be performed. In order to support IoT, middleware should handle the following

challenges: interoperability between heterogeneous devices, context awareness,

managing data, privacy and security, and device discovery [58].

3.2 Edge Computing

Few years ago, edge computing was defined as a set of computers, devices and

network resources that produce, collect, process and send data to remote servers in

the Cloud [59]. Nowadays, edge computing’s role exceeds this definition with the

basic role of collecting and sending data. It is defined as a paradigm of processing

part of the data at the edge of the network close to the IoT devices, where the data

is generated, rather than sending the IoT data to the cloud for processing [60]. The

devices in the edge layer can perform both computational and communication tasks.

For example, an embedded device such as Raspberry Pi could serve as an IoT gateway

if it takes data from a smart home camera and performs data processing tasks that

are used for fall detection.

Current cloud architecture fails to handle the huge amount of data produced

by IoT devices, as it causes high latency and bandwidth utilization. Thus, edge

computing is required in order to optimize computing in real time IoT applications.
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The edge is a layer that is located between the cloud and the data sources. For

example, a gateway in health care is the edge between health care things and cloud.

Edge computing is able to perform several tasks such as data pre-processing, local

data storage, data processing and caching, and request and deliver services from the

cloud. Edge computing has been found to improve the reliability, availability, and

security and privacy of IoT applications, as the data is processed locally [61, 62].

For example, Floyer investigated data management and processing costs of a cloud

based wind-farm system versus a hybrid edge cloud based system [63]. The wind-farm

consists of a number of data producing sensors and devices. The hybrid edge cloud

system results 36% less expensive than the cloud based one. The quantity of required

data to be transmitted in the hybrid system was also 96% less, compared to the cloud

based system.

In IoT applications, intelligence requires to take place in edge computing layer.

Computations take place on an edge gateway close to sensors and actors. The advan-

tages of enabling edge computing can be summarized in the following points:

• Reduce the volume of data required to be transferred to a cloud system because

part of it is processed by edge devices.

• Reduce latency and enhance real time data processing because most of the data

is processed at edge layer close to end devices.

• Enhance user privacy and security because edge devices could use some security

and privacy techniques prior of sending data outside the network.

• Enhance the robustness because decentralization system can provide transient
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services during a network failure.

In the model, we use edge gateway for several reasons as not every decision can be

computed in the cloud. First of all, latency impacts several vital decisions that make

a cloud route trip inefficient. Think of a smart home system that is fully managed

by cloud computing, it is nice that the system can control home appliances, such

as doors and windows, However, in case the house is burning, we want the system

to response immediately, connection with Internet is not guaranteed 24/7. Second,

required bandwidth can be too high, if the produced data is too much to be transferred

to the cloud. Recently, smart home applications connect everything at homes such as

shelves, sofas, mattresses, tables, lights, and fridges. Either it is technically difficult

to transfer all the IoT generated data to the cloud due to the current link speed, or

it is only too costly, or both. Finally, security and privacy might be impacted, when

the data is transferred outside the smart home network. Think what can happen,

if somebody accesses your transferred smart home data before reaching the cloud.

He/She can simply figure out when you are at home or away.

On the other hand, edge computing has disadvantages of limited processing and

storage capability. In particular, a single board computer that can act as an IoT

gateway still have a limited computations and storage capabilities that impact their

role to process the big amount of IoT data. The gateway has to be robust and flexible

to care of several issues such as data processing, data management, security, and

quality of service (QoS). It is challenging to accomplish all the tasks instantaneously

using current resource-constrained single board computers. Think what can happen,

if the CPU utilization or the CPU temperature of the gateway is too high. Of course,
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it will stop and will not be able to perform its job. Thus, the solution is to offload the

overloaded tasks to the cloud for processing and making the decision of actuating.

3.3 Cloud Computing

Cloud computing is a model to enable ubiquitous, convenient, on demand network

access to a shared set of configurable computing resources, such as networks, servers,

storage, applications, and services that can be provisioned and managed easily [64].

Over the last ten years, cloud computing started to be popular in IT industry, as it

has the advantages of unlimited storage, complex processing capabilities, and access

anywhere/ anytime. It also provides virtual resources on demand. Leading IT com-

panies such as IBM, Amazon, Microsoft, and Google adopted this model to provide

services over the Internet.

Cloud services are categorized into three layers as shown in (Figure 3.1). Soft-

ware as a Service (SaaS), Platform as a Service (PaaS), and IaaS [9]. SaaS is the

applications operating on a cloud infrastructure provided by a cloud provider, such

as force.com, Microsoft and IBM.SaaS delivers applications running on Cloud envi-

ronments through the browser to clients. PaaS refers to provide the operating en-

vironment including the operating system and software development frameworks. It

provides a development environment that can be accessed through web browser to de-

velop applications without taking care of the processor power and memory size. IaaS

refers to provide instant computing infrastructure, storage, and network resources in

order to manage the operating system, cloud applications, and cloud storage. clients

has the authority to do many things such as install operating system, install a virtual
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Figure 3.1: Cloud Service Models.

disk, turn on/off the server, set access policy.

IoT devices are process and storage constraint that limits their capability,but

Cloud has considerable process and storage resources. For this reason, IoT can use

cloud’s resources to make up its limited resources. IoT can be supported by Cloud

through several ways such as, communication, computation and storage. For example,

IoT data can be stored on cloud and processed in a low cost and an effective way. In

particular, Cloud is useful for IoT applications that are computation intensive, such

as using complex analytic algorithms.

On the other hand, connecting IoT application with cloud mainly depends on the

internet connectivity. Due to interrupted network connectivity, network latency is

high which is inefficient for real time IoT applications. As the amount of data being

generated by IoT devices is increasing, it is very challenging to transfer all the IoT

data to cloud due to restricted bandwidth. Furthermore, the process of transferring

data to cloud could face major security and privacy issue. For example, data transfer

through intermediate networks might be compromised.

In the model, we use cloud computing since not every decision can be computed in

the edge. Edge computing has limited processing and storage capability that impacts
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its role to process the big amount of IoT data. So, we use cloud computing to process

the data and tasks that are unable to be processed by edge computing. Think of a

smart home system that is fully managed by edge computing, it is nice that an edge

device can control home appliances, such as doors and windows, however, in case the

edge device receives large number of tasks that is unable to process them together,

simultaneously, the edge device will try to process them together and it most probably

will cause deadlock. We want the system to be available 24/7.

3.4 Artificial Neural Networks (ANNs)

ANNs is a technique of doing machine learning that try to realize implicit rela-

tionships in a series of data through a process that imitate the human brain. ANN is,

like others machine learning algorithms, used for tasks that are very sophisticated for

human to program directly. Some tasks are very complicated that it is difficult for

humans to formulate and code them. So instead, we provide a dataset to a machine

learning algorithm and the algorithm tries to analyze the data and search for a model

that can perform what the programmer has programmed it to perform. For example,

it is not easy to write a program that controls smart home appliances. Even if we

have a good idea how to program it, it needs to implement a considerable number of

complicated rules.

The problem of writing a program with large number of complicated rules is solved

by using machine learning; we provide an algorithm with many examples that assign

the correct output for a specific input. The algorithm then uses these examples

to produce a model that perform the job. The program created by the algorithm
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may look very different from a hand written program. If we implement it correctly,

the program will work for new states as efficient as the examples we trained it on.

For this work, the following ANN algorithms are used: Multi-layer Perceptron Neu-

ral Networks (MLPNNs) and two feedforward neural networks algorithms based on

Long-Short Term Memory (LSTMs) and Gated Recurrent Units (GRUs) architectures

respectively.

3.4.1 Multi-layer Perceptron Neural Networks (MLPNNs)

A perceptron is a binary classification algorithm that helps to classify a group of

input into two parts yes or no [65]. Each input has a weight to indicate how important

it is, and produce an output decision of 0 or 1. However, when it is joined with other

perceptrons, it forms an artificial neural network. Multi-layer Perceptron Neural

Networks (MLPNNs) is a perceptron that collaborate with other perceptrons, stacked

in different layers, to resolve sophisticated problems. Figure 3.2 represents an Multi-

layer Perceptron Neural Networks (MLPNNs) with three layers. Each perceptron

in the input layer, sends outputs to all the perceptrons in the hidden layer, and all

perceptrons in the hidden layer send outputs to the output layer. Each signal going

to each perceptron in the next layer has a particular weight.

The Perceptron Learning Process can be summarized in the four steps [66]. Firstly,

multiplies the inputs by their weights, and calculate their sum. Secondly, adds a bias

factor in to be able to tune the numeric output of the perceptron. Third, feeds

the sum through the activation function such as sigmoid, tanh and relu, it allocate

the input values to the desired output values. For instance, input values could be
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Figure 3.2: Multi-layer Perceptron Neural Network.

between 1 and 10, and outputs can be 0 or 1. Finally, the result is the perceptron

output. Equation 3.1 shows how we can calculate the output for Single Perceptron

Architecture, where σ represent the activation function, w is the weight of each link

between input and output, x is the input, and b is the bias.

Y = σ(
n∑

n=1

wi ∗ xi + b) (3.1)

3.4.2 Recurrent Neural Networks (RNNs)

RNNs are artificial neural networks where connections between perceptrons com-

pose a directed graph along a temporal sequence [65, 67]. This helps it to show

temporal dynamic behavior. RNNs uses their internal state to handle variable length

sequences of inputs. RNNs combine two properties: first, they are able to save a lot

of information about the past, Second, they are able to update their hidden state in

sophisticated ways. As shown if figure 3.3, RNNs can be describe as a chain of several
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copies of the same network, each passing a message to a next.

A A A A=RNN
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Figure 3.3: Recurrent Neural Networks.

On the other hand RNNs suffers from vanishing gradient problem where informa-

tion quickly gets lost over time. The problem can be solved using Long-Short Term

Memory (LSTMs) or Gated Recurrent Units (GRUs).

LSTMs networks are an extension for RNNs [65], which extends the memory.

Therefore it is convenient to learn from the experiences that have extremely long

time gaps in between. LSTMs is able to store and recall information over a long

period of time. A LSTMs block has three gates: input, forget and output gate.

Input gate allocate whether to allow new input in or not, forget gate deletes the

unimportant information, output gate let it impact the output at the current time

step. A LSTMs cell state passes the information among each LSTMs block. The cell

state modifications are controlled with the previously mentioned three gates. Figure

3.4 presents a LSTMs cell; In particular, it illustrates the connections between the

gates and the cell state itself.

Each gate and cell state are calculated according to equations 3.2, where w, x, σ,

c, tanh are the weight matrix, input, sigmoid, and activation function respectively.
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Figure 3.4: LSTM Cell [68]

The terms i, f, o, c represent the input gate, forget gate, and output gate. Finally, c

represents the memory cell [68].

ft = σ(wf .[ht−1, xt] + bf ),

it = σ(wi.[ht−1, xt] + bi),

ĉt = tanh(wc.[ht−1, xt] + bc),

ct = ft ∗ ct−1 + it ∗ ĉt,

ot = σ(wo.[ht−1, xt] + bo),

ht = ot ∗ tanh(ct)

(3.2)

Another extension for RNNs is Gated Recurrent Units (GRUs) which also can

solve vanishing gradient problem of a standard RNNs [65, 69]. The update gate and

reset gate are used to solve the vanishing gradient problem. Both gates determine

what information has to be passed to the output. They can be trained to hold
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information for long time, without taking it out through time.

zt = σ(Wzxt + Uzht−1 + bz),

rt = σ(Wzxt + Uzht−1 + br),

ĥt = tanh(Whxt + rt � Uhht−1 + bh),

ht = zt � ht−1 + (1 − zt) � ĥt

(3.3)

GRUs can be considered as a simplified version of LSTMs[70]. GRUs modifies

the way the vector ht is calculated. The GRUs components are calculated by the

equations that are presented in 3.3, where zt, rt, σ,ht are the update gate, the reset

gate, sigmoid, and the modified hidden layer respectively.

3.5 Node-Red

Node-RED is a streaming flow based programming tool, developed by IBM and

now a part of the JavaScript Foundation, for developers to wire hardware devices,

online services, and APIs [71]. Node-red has a Node.js based runtime that provides

developers with browser based flow editor that is used to drag nodes from a palette

and connect them together to create IoT application. In the flow editor, you can

create application by pulling nodes from a palette into a work space and start to wire

them together. With a single click, the application is deployed back to the run time

where it is executed. Several types of nodes are existed to receive, send, process,

transform, and store data [72]. New nodes made by the community can be easily

added and the flows can be saved and shared as a JSON file.

In our model, we use Node-red on both edge and cloud for several reasons. First of
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all, it is an easy way to connect wide range of common devices and sensors. Second, it

also can act as a software gateway on raspberry pi that brings additional functionality

to the IoT application. Finally, it is available on several cloud platforms such as IBM

and Groove, it is freely to connect end devices layer and edge layer with a cloud

services.

3.6 Distributed Intelligence in IoT

DI in IoT is a paradigm that uses various models, techniques, and algorithms to

make decisions to process IoT data either in the edge layer, cloud layer, or both. The

development of IoT applications has recently become easier with the availability of

development kits, open hardware, and software. IoT applications have also become

easy to deploy on the cloud with the availability of PaaS resources and IoT cloud

services.

Computer boards such as Arduino and Raspberry pi have shortened the devel-

opment of IoT applications because these boards can be an IoT gateway between

the cloud and the end layer, at the edge layer. However, complications remain at

the software level. These boards are not intelligent enough to educe the IoT-based

knowledge from data that it receives from sensors and to ultimately make a decision

[73].

Figure 3.5 illustrates the current approach. First, sensors gather raw data from

the environment and forward it to the gateway at the edge layer. Thereafter, the

gateway converts between the protocols and forwards the data to the cloud. Then,

the cloud processes the data, extracts knowledge, and makes a decision of whether
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Figure 3.5: Existing Model of the integration between Cloud and IoT.

to actuate a device. Finally, the cloud sends the decision to the actuator at the end

devices layer.

This existing approach of sending all raw data created by end devices to the cloud

using an IoT gateway is not efficient. It negatively impacts the network’s reliability,

availability, robustness, and security and privacy. Regarding availability, suppose we

have a smart home system that is totally cloud-based. Assume there is a fire inside

the home, and the Internet connection is lost. In this case, the system will fail to

connect with the cloud to process the data and perform the appropriate action.

Some contributions have proposed a basic function for the IoT gateway, such as

applying predefined rules that are not efficient, especially when complex IoT applica-

tions are involved, as they require a large number of rules. IoT applications connect a

considerable number of factors. As a result, the intelligence developed by predefined



32 Chapter 3: Background

rules fails to scale well. Furthermore, predefined rules cannot offer intelligence in

undefined conditions since they can only offer presumed intelligence [74].

On the other hand, intelligence should not reside only on the cloud. Nowadays,

there is a need for providing intelligence both in the cloud and edge layers. Decisions

should be made in either of these layers, depending on which layer will provide the

desired functionality and performance. This can be achieved by distributing the

intelligence between the edge and cloud layers. DI in IoT means distributing the

intelligence over both the edge and the cloud layers in order to provide the required

functionality and performance for IoT applications. The IoT gateway at the edge

layer should be able to process data, make a decision in most cases, sending data to

the cloud only for overloaded tasks.

The question, then, is, ‘How can a gateway be provided with the intelligence

needed to obtain knowledge from the data?’ Algorithms and techniques should be

running on the IoT gateway. They should also be able to process real-time IoT data

and extract knowledge in order to make a decision. Finally, algorithms should be able

to perform their functions even when cloud connectivity is lost.

Machine learning can be a powerful solution for processing data produced by IoT

devices. Combining machine learning and IoT gateways can help when analyzing data

and making decisions locally [75]. This combination can also provide real-time pre-

diction, security, reliability, and availability. However, many IoT gateway controllers,

such as Raspberry Pi and Arduino, have limited processing capabilities. Therefore,

the gateway should use several techniques based on CPU utilization, CPU tempera-

ture, the number of tasks, and the type of application to determine where to process
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each incoming task. For example, the gateway might processes only a certain number

of incoming tasks simultaneously and offload the rest to the cloud.

The benefits of enabling DI in IoT are summarized below:

• Most real-time data is processed locally to speed up decisions and actions.

• Tasks are offloaded to the cloud when the gateway is unable to process them

locally.

• The amount of data transmitted to the cloud is reduced, which improves security

and privacy.

• IoT networks are more resourceful in terms of energy and communication band-

width.

• Devices can interact with each other even when the system is disconnected from

the cloud.

3.7 Summary

This chapter discussed all concepts related to the DIM. Also, the IoT was described

as a paradigm that connects unlimited numbers of objects with unique identifications

anytime and anyplace using IoT communications protocols. IoT is the primary aspect

related to our work that aims to connect and manage several smart home appliances.

We also presented the edge computing concept as a paradigm for processing part of

IoT data at the edge of the network (i.e., close to IoT devices), where the data is

generated, rather than sending IoT data to a cloud service for processing.
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The brain of our model is an IoT gateway that is located in the edge layer. This

gateway receives data and tasks from end devices. It then decides whether to process

each task locally or to offload it to the cloud. The gateway processes a task based on

ANNs, which were also discussed in this chapter.

In addition, we presented a cloud computing architecture that enables ubiquitous,

convenient, on-demand network access to a shared set of configurable computing

resources, such as networks, servers, storage, applications, and services, that can be

provisioned and managed easily. We highlighted its importance and power, as it

processes any data and tasks that edge computing cannot handle.

We also presented Node-RED, which is a streaming-flow-based programming tool

that developers use to wire hardware devices, online services, and APIs. Node-RED

is used to connect all the model’s components so that they can exchange data and

process tasks.

Finally, we presented DI in IoT, which is the main feature of our model, as it

combines edge computing and cloud computing to manage IoT devices. DI in IoT

is a paradigm that uses models, techniques, and algorithms to make decisions about

whether to process IoT data in the edge layer, the cloud layer, or both.
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Design and Implementation of the

Distributed Intelligence Model

The goal of this work is to build a model that integrates cloud and edge computing

in the field of IoT, thus avoiding the need to send all raw data produced by end

devices to the cloud. To do this, we need a smart IoT gateway that is able to provide

the necessary intelligence and make decisions closer to the end devices. The gateway

should extract knowledge from the raw data that comes from sensors without sending

them to the cloud.

This chapter presents a model that integrates edge and cloud computing by en-

abling the IoT gateway at the edge layer to process most of the tasks that come

from the end layer. As we mentioned, chips that can act as a gateway have limited

computation capabilities. To overcome this challenge, the gateway offloads tasks to

the cloud when the gateway is unable to process them.

35
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4.1 The Proposed Model

This section presents a DIM by offering intelligence at both the edge and the cloud

layers. The model was designed in two main steps: designing edge intelligence and

designing cloud intelligence.

4.1.1 Designing Edge Intelligence

Edge intelligence represents the intelligence offered by an IoT gateway based on

the data collected from end devices. After receiving an IoT task, the first function of

the gateway is to decide where the task should be executed. This is done by testing

the gateway’s CPU utilization. The offloading decision is performed using equation

4.1, where x is CPU utilization and t is the threshold value of CPU utilization . If the

value of f(x) is less than or equal to the threshold value, the task will be processed

locally. If the value of f(x) is greater than the threshold value, the task will be

offloaded to the cloud.

f(x) =

 0 0 ≤ x ≤ t

1 x > t

(4.1)

The second function of the gateway is to process tasks and take actions locally.

This is performed by implementing an ANNs algorithm. ANNs uses multiple layers of

neural networks to decode higher-level information at other layers based on the input

data. For this model, three ANNs algorithms are tuned, implemented, and evaluated

to build an algorithm that helps the gateway extract the knowledge from raw data,

make decisions, and take action.
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The following three ANNs algorithms are tested: multi-layer perceptron neural

networks, and two feedforward neural networks. One of these algorithms will be cho-

sen to be implemented in the gateway based on the analysis results in the evaluation

chapter.

Algorithm 1 The Role of IoT Gateway

while There is task do

Data: input values of presenters related to the task

if CPU utilization less than or equal the threshold then

use the trained learning algorithm to control the home appliances

else

offload the task to the cloud

end

end

Algorithm 1 is employed to provide the necessary level of intelligence to the gate-

way while the gateway keeps listening to a coming task. Once a task arrives, the

gateway checks its CPU utilization. If it is less than or equal to the threshold, the

gateway processes the task locally based on the learning algorithm. If the task exceeds

the threshold, the gateway offloads it to the cloud.

To explain further, suppose the motion sensor starts to detect motion in the

living room and the CPU utilization threshold is 75%. A task comes to the gateway

to control the light. The gateway checks its CPU utilization, which is 70%. Thus,

the gateway decides to process the task locally. The gateway obtains the values of

motion, the husband’s location, the wife’s location, the time (morning, afternoon, or

evening), and the day (weekday or weekend). Then, the gateway inputs these values
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Figure 4.1: Probability Distribution of Light Attributes.

Figure 4.2: Probability Distribution of Air Condition Attributes.

into the ANN algorithm to decide whether to turn the light on or off. The learning

algorithm should be trained using a dataset before being implemented on the gateway.

4.1.2 Designing Cloud Intelligence

Cloud intelligence is the intelligence offered by a cloud-based service based on the

data collected from end devices. After the offloading decision is performed by the

gateway, the cloud receives the task. The cloud processes the task based on the prior-
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belief probability distribution of the attributes controlling home appliances (e.g., light

and air-conditioning).

The smart home cloud application is configured to have the prior-belief probability

[2] needed for the attributes that control the light and air conditioning (Figures 4.1

and 4.2). The beliefs are calculated according to equation 4.2, where P(A) is the

probability that an action will be taken, and xi and yi are the belief and its value,

respectively. The predefined threshold for taking an action is 0.5.

The equation shows how to calculate the probability that the cloud will make one

decision over another. For example, for controlling the light, if the motion sensor

does not detect motion, if the husband and wife are inside, if it is the evening during

the weekend, The probability of turning the light on/off is as follows: P(l) = (0.35 *

0.3) + 2 (0.2 * 0.5 * 0.6) + (0.3 * 0.6) + (0.15 * 0.6) = 0.495. as P(l) less than the

threshold (0.5), the decision will be to turn the light off.

P (A) =
n∑

n=1

xi ∗ yi (4.2)

4.1.3 Workflow

The present work proposes a distributed intelligence model that integrates edge

and cloud computing. The model enables fast local data processing of most of the

real-time data to support fast decision-making and actions at the gateway. When

the gateway is unable to process a task, it is offloaded to the cloud. Figure 4.3

illustrates the distributed intelligence model, and the workflow is explained below

with controlling the light. The same steps are applied to control the temperature.
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Figure 4.3: Workflow of the IoT Gateway.

• Sensors send respective data to the gateway. For example, to control the light

in the living room, the gateway needs to collect data from the motion sensor,

the husband’s location, the wife’s location, and the light status at each time

period to train the ANN model.

• The gateway saves data and keeps track of the date and time on a CSV file to

train the learning algorithm.

• The gateway keeps listening to an event. When an event happens, it collects

the current status of the motion sensor, the husband’s location, and the wife’s
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location, along with the date and time.

• After that, the gateway checks its CPU utilization. For the purpose of dynamic

offloading, the CPU utilization threshold of 75% recommended in [76] is used.

• If the CPU utilization is below the threshold, the gateway processes the task

locally. The gateway uses the learning trained algorithm to control the light,

and then the gateway sends the decision to the smart light to actuate.

• If the CPU utilization is equal to or greater than the threshold, the gateway

offloads the task to the cloud.

• The cloud receives the task with the current values of the motion sensor, the

husband’s location, and the wife’s location, as well as the date and time.

• The cloud uses the probability distribution values of motion sensors and the

husband’s location, as well as the date and time (according to Figure 4.1) to

decide whether to turn the light on or off. If the value is equal to or greater than

the predefined threshold (0.5), the decision is to turn the light on; otherwise,

the decision is to turn it off.

• The cloud sends the decision to the gateway, which passes it to the smart light

to actuate.

4.2 The Operational Model

To demonstrate our model , a real experiment of DI in a smart home IoT system

is conducted. The experiment combines cloud and edge computing to control the
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Figure 4.4: Gateway and End Devices in Smart Home System.

light and temperature in the living room. It is assumed that a husband and wife live

in the house.

As shown in Figure 4.4, we have implemented a smart home system. The system

includes the gateway, ZigBee USB, the husband’s phone, the wife’s phone, a motion

and temperature sensor, a smart bulb, an air conditioning system, and a smart plug.

The laptop is used to remotely access the gateway.

The implementation has three main phases: end devices layer implementation,

edge layer implementation, and cloud layer implementation (Figure 4.5). The imple-

mentation of the three phases is explained below. Table 4.1 also summarizes the role

of each component of the operational model.
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Sensors

Actuators
Node-Red Gateway

End Devices Layer

Watson IoT Node-Red IBM Cloud

Edge Layer Cloud Layer

Figure 4.5: Operational Model for Distributed Intelligence.

Table 4.1: Operational model components

Component

Name

Component

Type
Location Description

Sensors and Ac-

tuators

Physical sensors

and actuators
End devices

Used to collect

data and control

appliances.

Node-RED

Gateway
Node-RED Edge

Creates a data

flow application

Watson IoT
IBM IoT Plat-

form

Between edge

and cloud

MQTT message

broker

Node-RED IBM

Cloud
Node-RED Cloud

Processes IoT

sensor data

4.2.1 End Devices Layer

The end devices layer mainly consists of sensors and actuators. Sensors basically

detect the physical phenomena or properties that occur around them and sense sev-

eral parameters according to the goals of usage, such as temperature and motion.
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Actuators are the component of the system that performs the actions in response to

instructions given by the system, such as turning lights on or off.

In the experimental model, a motion sensor, temperature sensor, smart bulb,

smart plug, and two mobile phones (one each for the husband and wife) are configured

to control the light and temperature. We use one device to track both motion and

temperature. The details of all devices implemented in the end device layer are shown

in Table 4.2.

Table 4.2: Description of sensors and actuators.

Devices Producer Communication

Smart Plug Sylvania ZigBee

Motion Sensor Samsung ZigBe

Temp Sensor Samsung ZigBe

Bulb Cree ZigBee

iPhone 7 Apple Wi-Fi

iPhone 8 Apple Wi-Fi

The motion sensor is used to detect whether anyone is home. When the motion

sensor detects motion, it means somebody is in the house. When the motion sensor

is unable to detect motion, it means either nobody in the house or someone is in the

house but is asleep. The two phones are used to detect whether the husband and

wife are inside or outside based on whether their phones are connected to the home’s

Wi-Fi. For example, When the husband’s phone is connected to the Wi-Fi, it means

he is inside the house.
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The temperature sensor tracks the temperature inside the house. The values are

considered as either low, medium, or high. The smart plug is used to connect the air

conditioner to the home’s electricity.

4.2.2 Edge Layer

The edge layer mainly consists of the IoT gateway. Raspberry Pi 3 Model B

with a Raspbian GNU/Linux version 10 operating system is used as an IoT gateway

controller in order to manage and control end layer devices. Raspberry Pi 3 model

B has the following technical specifications [77]: Broadcom BCM2837 64-bit Quad

Core Processor running at 1.2 GHz, 1 GB DDR2 internal RAM, Dual Core Video

Core IV®Multimedia Co-Processor GPU, 16 GBytes SSD memory card for loading

an operating system and storing data, and BCM43143 (802.11 b/g/n Wireless LAN

and Bluetooth4.1) wireless connectivity.

The implementation starts by connecting devices in the end layer to the IoT gate-

way controller so that the model can control the light and temperature of the living

room. The data is transmitted from the sensors and the actuators to the gateway

either via Wi-Fi or ZigBee. Fortunately, the Raspberry Pi supports Wi-Fi wireless

communication, and so the mobile phones are connected to the gateway through

Wi-Fi. The Raspberry Pi, however, does not support ZigBee by default. A ZigBee

USB (Conbee II) is attached to the gateway to connect the end devices that sup-

port ZigBee protocol. The hardware specifications of Conbee II are ATSAMR21B18

ARM®Cortex®-M0+ microcontroller, 10 mW transmission power, 200 m signal

range in free line of sight, and 256 KByte flash memory.
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Sensors and actuators are connected using a Node-Red platform (v1.0.3) that is

installed on the gateway. After connecting the sensors to the gateway, the gateway is

configured to obtain the sensors’ data every 10 minutes for two weeks and save it in

a CSV file to create two datasets (one for light and one for temperature).

In order to build the light dataset, the gateway saves information about light

status, motion, the husband’s location, the wife’s location, and the date and time.

The day is recorded either as a weekday or weekend, and the time is recorded either

as morning, afternoon, or evening. The date and time parameters are added because

people’s daily activities change depending on whether it a weekday or weekend. For

example, people usually wake up earlier on weekdays than on weekends.

In order to build the temperature dataset, the gateway saves the parameters of

the air condition’s status, temperature, motion, the husband’s location, the wife’s

location, and the time. The air conditioner’s status is either on or off. The temper-

ature is saved as either cold, medium, or high. The other parameters have the same

settings as the light dataset.

4.2.3 Cloud Layer

After creating the end devices layer and the edge layer, a Node-Red Starter Kit

application is created that runs on IBM Cloud [78]. IBM Cloud is a platform on which

developers can build, run, and manage applications by integrating existing services

from IBM or third-party providers. IBM Cloud is based on an open-source PaaS

called cloud foundry, which offers middleware services such as data and workload

management.
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When the gateway is unable to process a task, it is offloaded to the cloud. The

Node-Red cloud application processes the offloaded tasks based on prior beliefs for

controlling the light and temperature (Figures 4.1 and 4.2). For example, when the

gateway is unable to decide whether to turn the light on or off, it offloads the task to

the Node-Red IBM Cloud, which will use prior beliefs to decide whether to turn the

light on or off.

Next, an IoT platform service instance is created to act as asynchronous glue

among all the components of the IoT DI operational model. As such, the IoT platform

service (Watson IoT) is connected to the Node-RED Starter application located on

IBM Cloud. Thereafter, the gateway is connected to the IoT Platform.

4.2.4 Intelligent IoT Gateway

Providing intelligence to the gateway can be achieved by implementing an ANN

algorithm. In this work, three artificial neural networks (ANN) algorithms are tuned,

implemented, and evaluated to build an algorithm that will help the gateway ex-

tract the knowledge from raw data, make decisions, and take appropriate actions.

The following ANN algorithms are tested: multi-layer perceptron neural networks

(MLPNNs) and two feedforward neural networks (FFNN1 and FFNN2) based on

long-short-term memory (LSTMs) and gated recurrent units (GRUs) architectures.

We built the two feedforward neural networks based on RNNs (e.g LSTMs and GRUs)

architectures because they performed well in some works of non-sequential data [79,

80], Although RNNs are designed for processing sequential data.

The algorithms are implemented in Python. In general, building an ANN classifier
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includes two essential steps: (a) building the network by determining the appropriate

numbers of layers and neurons and (b) training the network. Every implemented

algorithm consists of three layers: an input layer, a hidden layer, and an output

layer. For controlling the light, the input layer has five neurons, which is equal to the

number of parameters used to control the light. The five input neurons correspond

to motion, the husband’s location, the wife’s location, time, and weekday/weekend.

For controlling the temperature, the input layer has five neurons, which is also equal

to the number of parameters used to control the temperature. The five input neurons

correspond to motion, temperature, the husband’s location, the wife’s location, and

time.

For MLPNNs, the number of neurons in the hidden layer is chosen experimentally

using cross-validation. After testing all the values, from the number of neurons in

the input layer to less than twice the number of neurons in the input layer [81], the

network with the highest accuracy is selected as the best one.

For the two feedforward neural networks (FFNN1 and FFNN2), the number of

units in the hidden layer is specified using equation 4.3 [82], where Ni is the number

of input time steps (input), No is the number of output nodes (features), Ns is the

number of rows (samples) in the training data, and α is a scaling factor between 2

and 10. After testing α values ranging from 2 to 10 (representing the number of units

in the hidden layer), the network with the highest accuracy is selected as the best

one.

Nh =
Ns

(α(Ni +No))
(4.3)
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Table 4.3: Algorithms parameters configuration.

Parameters MLPNN FFNN1 FFNN2

Hidden Layers 1 1 1

Activation func-

tion
sigmoid relu relu

Nodes 9 50 50

Optimizer adam adam adam

Loss
binary crossen-

tropy

binary crossen-

tropy

binary crossen-

tropy

Epochs 10 10 10

Batch size 5 5 5

verbose 1 1 1

In the output layer, for controlling the light, one neuron is used in each algorithm

that represents the light status or air condition status. The next step is training,

which involves using a learning algorithm to estimate network weight to reduce the

overall error between the value estimated by the trained network and the target value.

Light and air conditioning had the same training set up.

The loss function used for the three algorithms is categorical crossentropy. The

adam optimizer is also used for optimizing the model for the three algorithms. Next,

we fit the training data into the network. Ten iterations are chosen before training is

stopped. A batch size of 5, a verbosity mode of 1, and a validation split of 20% were

also chosen. Table 4.3 shows the configurations of the algorithms’ parameters.
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After collecting sensors’ data every 10 minutes for two weeks, the best ANN model

is implemented and executed on the gateway. In general, training ANN models can

take up to several weeks, so we saved the model’s weights after training in order to

make predictions again later.

4.2.5 Intelligent Cloud

After creating end devices and edge layers, a Node-Red Starter Kit application

is created and run in IBM Cloud. IBM Cloud is a platform on which developers

can build, run, and manage applications by integrating existing services from IBM

or third-party providers. IBM Cloud is based on an open-source PaaS called cloud

foundry, which offers middleware services such as data and workload management.

First, the Node-Red cloud application will process the offloaded tasks based on

the prior-belief probability distribution of the attributes controlling the light and air

condition. The Node-Red cloud is configured to have prior-belief probability [2] for

the attributes that control the light and air conditioning (Figures 4.1 and 4.2). The

beliefs are calculated according to equation 4.2, where P(A) is the probability of

taking an action, xi and yi are the belief and its value, respectively, and the threshold

for deciding to perform an action is 0.5. The equation shows how to calculate the

probability that the cloud will decide to perform an action.

4.3 Summary

This chapter presented the steps for implementing the DIM that integrates cloud

and edge computing in order to develop a robustness model that can deal with the
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increasing size of IoT data. The implementation starts by configuring several smart

home sensors and devices. The IoT gateway in the edge layer, which provides intel-

ligence and makes decisions closer to the end devices than the cloud can, was built.

Node-RED was subsequently installed and configured to connect all the layers. As

we mentioned, the Raspberry Pi, which acts as a gateway in the model, has limited

computation capabilities. To overcome these challenges, a cloud layer is required. Ac-

cordingly, a cloud layer was implemented on IBM Cloud. This way, when the gateway

is unable to process a task locally, it can offload the task to the cloud. After receiving

a task, the cloud processes them and decides how to control the home appliances.
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Evaluation

This chapter discusses the evaluation method of the DI smart home system shown

in Figure 5.1. As mentioned above, this model is tested using a smart home appli-

cation. It is assumed that two people (a husband and wife) live in the house. Data

regarding the motion sensor, the husband’s location, the wife’s location, and the date

and time are used to control the light using an ANN algorithm. A temperature sen-

sor, the husband’s location, the wife’s location, and the date and time are used to

control the air conditioning system.

5.1 Artificial Neural Networks Algorithms

In this work, 20% of the data is classified through MLPNNs, FFNN1, and FFNN2.

Comparisons are made regarding true positive (TP), false positive (FP), accuracy,

precision, recall, and F1-score. The classifier that performs the best is implemented

in the gateway to control home appliances.

52
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Figure 5.1: DI smart home system.

In order to summarize the performances of the three classifiers, a receiver operat-

ing characteristic (ROC) curve (a type of graph plot) is used to identify the extent

to which a binary classifier can distinguish between classes [83]. The ROC curve

indicates the TP rate against the FP rate for various threshold settings.

For evaluating the algorithms mentioned above, this work considers some prelimi-

nary results. For deciding whether to turn the light on or off, for example, a confusion

matrix is used to describe the performance of the classification models on a set of test

data for which the true values are known.
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In order to understand the confusion matrix, we define the most basic terms

related to it. The first is TN (i.e., we predicted no, and the decision actually was no).

The second is FP (i.e., we predicted yes, but the decision was actually no). The third

is FN (i.e., we predicted no, but the decision was actually yes). Finally, TP (i.e., we

predicted yes, and the decision actually was yes).

Table 5.1: Confusion Matrix of ANN Algorithms.

Predicted: No Predicted: Yes

MLPN FFNN1 FFNN2 MLPN FFNN1 FFNN2

Actual: No 626 612 603 1 15 24

Actual: Yes 98 20 17 39 117 120

Table 5.1 represents the confusion matrix, which summarizes the prediction results

of the algorithms, which are used to evaluate the algorithms. Although MLPNNs

exhibit the highest TN (626), the TN of FFNN1 and FFNN2 are close to it (612 and

603, respectively). Both FFNN2 and FFNN1 are almost three times higher in terms

of TP (120 and 117) than MLPNNs (39). Furthermore, MLPNNs exhibit almost five

times higher FN (98) than FFNN2 (17) and FFNN1 (20). According to the confusion

matrix, FFNN1 and FFNN2 are better for deciding whether to turn the light on or

off.

Table 5.2 also shows a comparison between the algorithms with regard to accuracy,

precision, recall and F1-score. Accuracy is simply a ratio of correct predictions to the

overall observations. FFNN1 and FFNN2 were the most accurate, with a value of 0.95

recorded for each. Precision is the ratio of correctly predicted positive observations to
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Table 5.2: Comparison of the three algorithms.

Parameters Accuracy Precision Recall F1-Score

MLPNN 0.87 0.28 0.80 0.44

FFNN1 0.95 0.85 0.89 0.87

FFNN2 0.95 0.88 0.83 0.85

all predicted positive observations. FFNN2 exhibit the highest precision, with 0.88.

Recall is a ratio of correctly predicted positive observations to all observations in the

actual ‘yes’ class. FFNN1 exhibits the highest recall (0.88). F1-score is a weighted

average of precision and recall. FFNN1 exhibits the highest F1-score (0.87). Based

on these findings, FFNN1 is deemed the best algorithm, although the parameters of

FFNN2 are very close.

As shown in Figure 5.2, the ROC curve’s x-axis acts as the FP rate while the

y-axis represents the FN rate. The areas that appear under the curves of MLPNNs,

FFNN1, and FFNN2 are 50%, 84%, and 80%, respectively. This results that FFNN1

is the most appropriate classifier.

The results in this section show that FFNN1 exhibits the highest percentage for

most of the metrics discussed here. Thus, FFNN1 is implemented at the gateway of

the proposed model for task processing.
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Figure 5.2: ROC Curve for the ANN Algorithms.

5.2 IoT Gateway Performance

In order to demonstrate the effectiveness of offloading strategy and the benefits it

provides, we evaluate the performance of the IoT gateway in the model by running

the smart home application. This process starts with four parallel tasks (two light-

control tasks and two temperature-control tasks). When one of the tasks ends, the

gateway chooses a random delay (1-20 seconds) to start another task.

The evaluation starts by measuring the processing time and CPU utilization of

the gateway when offloading is not enabled. Then, offloading is deployed, and the

operational characteristics are measured. Later, we will compare offloading and no-

offloading scenarios with regard to the operational characteristics.

Figure 5.3 presents the processing times of the first 50 tasks processed locally for
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Figure 5.3: Tasks Processing Time.

both no-offloading and offloading. For both curves, the tasks processing time is too

high at the beginning because the system was establishing connections with the end

devices and IBM cloud.

For no-offloading, the task processing time is around 60 s at the start of the

execution before increasing to 72 s for task 5 and then decreasing sharply to about

48 s for task 9. For all remaining tasks, the duration fluctuates between 42 s and 53

s.

On the other hand, For offloading, task duration starts at around 56 s. It peaks

at almost 58 s for task 5 before falling to about 42 s for task 9. For all remaining

tasks, the duration fluctuates between 36 s and 46 s.

In general, it is obvious that the task duration of the offloading scenario is lower

than that of the no-offloading scenario. This is because enforcing the gateway to

process all coming tasks locally causes either a delay or a connection loss when it is
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Figure 5.4: Gateway CPU Utilization.

overloaded. Offloading some tasks to the cloud (when the gateway is busy) prevents

the gateway from being overloaded and keeps it under control.

As mentioned at the beginning of the chapter, the system starts with four parallel

tasks (two light-control tasks and two temperature-control tasks). When one of the

tasks is finished, the gateway chooses a random delay (between 1 and 20 seconds) to

start another task (when a shorter delay period was chosen, the system went down).

Figure 5.4 presents the CPU utilization while the first 50 tasks were being pro-

cessed locally, both for no-offloading and offloading. For both curves, the CPU uti-

lization is too high at the beginning because the system was establishing connections

with the end devices and IBM cloud.

For no-offloading, CPU utilization is around 36% at the start of the execution. It

then goes up sharply to 86% for tasks 5-8. After that, it goes up again, fluctuating

between 87% and 96% for all remaining tasks.
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On the other hand, for offloading, CPU utilization starts at around 38%. It then

goes up sharply to 88% for tasks 5-7 before it falls to about 73% for task 11. After

that, it goes up again to 89% at task 18. From this point on, it fluctuates between

72% and 94%.

It is obvious that the CPU utilization with offloading is less than 90% most of

the time, while the CPU utilization without offloading is usually greater than 90%.

The no-offloading scenario enforces all new tasks to be processed locally without

testing the operation of the gateway. The gateway might be unable to process more

tasks because doing so would cause service interruptions. The offloading threshold

guarantees that the CPU utilization never reaches 100%, which ensures that the

gateway runs smoothly and continuously without any service interruptions.
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Conclusion and Future Work

The primary goal of this thesis was to investigate a proposed model that inte-

grates edge and cloud computing to support Internet of Things (IoT) applications.

This is important because cloud-based IoT applications suffer from several problems.

Moreover, current network architectures and technologies are not sufficient for send-

ing large amounts of IoT data to a cloud service and returning with a decision for

controlling devices. At the same time, current edge technologies are unable to pro-

cess the increasing amounts of IoT-generated data. Therefore, the IoT gateway at the

edge layer should be able to process IoT data so that it can control IoT applications.

In this work, the concepts of edge computing, IoT gateways, cloud computing,

neural networks, and DI in the context of the IoT were presented. We investigated

the ability of an IoT gateway and cloud to process IoT data. Enabling an IoT

gateway at the edge layer could overcome many challenges currently experienced

by IoT systems, such as issues related to latency, robustness, availability, energy-

efficiency, and security and privacy. We also discussed the role that DI plays in

60
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supporting IoT systems.

We conducted a proof of concept implementation of an IoT system that includes

our demonstration of the DIM. We built an IoT gateway in the edge layer to demon-

strate the ability of this layer to serve as an intermediate processing layer that can

decide whether to perform a task locally or to offload it to the cloud. Our model was

applied to a smart home system designed to control home appliances. The model

demonstration involves all the data flow processes from data collected at the sensor

nodes to the cloud.

We also configured and evaluated three types of ANNs for processing local tasks

based on past experiences. The results showed that the FFNN1 algorithm performs

better than MLPNNs and FFNN2. We later implemented FFNN1 on the gateway

to process local tasks for controlling home appliances based on past experiences. For

processing offloaded tasks on the cloud, we implemented a prior-belief probability

distribution.

We constructed two scenarios for evaluating our model: an edge-based smart

home system and a DI-based smart home system. We compared the scenarios with

regard to task processing time and gateway CPU utilization. The results showed

that the DIM outperformed the edge-based model, as the collaboration between the

gateway and the cloud helps the gateway run smoothly and continuously without

service interruptions. Moreover, providing the gateway with the intelligence required

to make decisions for controlling end devices was one of the significant capabilities of

the DIM. The DIM combines the advantages of edge- and cloud-based computing in

one model to support IoT systems. It also tackles many challenges associated with
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edge- and cloud-based computing. The DIM can be applied in a wide range of IoT

systems, such as smart home, smart health, and smart farming.

More works can be performed in the future to enhance the presented model. For

example, researchers might try to implement an ANN algorithm on the cloud that

would enable the cloud to process offloaded tasks based on machine learning instead

of prior beliefs. Researchers could also try to investigate other offloading criteria

and compare them for supporting service level. Finally, the model’s application in

large-scale IoT systems, such as traffic management systems, could be tested.



Appendix A

Research Publications

• Rababah B, Alam T, Eskicioglu R. The Next Generation Internet of Things

Architecture Towards Distributed Intelligence: Reviews, Applications, and Re-

search Challenges. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 12(2), 2020 Jul 1.

• Rababah B, Eskicioglu R. Distributed Intelligence Model for IoT Applications

Based on Neural Networks. International Journal of Computer Network and

Information Security(IJCNIS), accepted.
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