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Abstract

The activation of 2'-5'-oligoadenylate synthetase (OAS) enzymes by direct

interaction with viral double-stranded RNA (dsRNA) is a key part of the innate

immune response to viral infection. The downstream effect of the OAS-dsRNA

interaction is to degrade the viral single-stranded RNA (ssRNA) to prevent

the spread of the virus.

The entire OAS activation mechanism is complex and not yet well understood.

Based on experimental data, the process appears to depend on concentrations

and lengths of dsRNA; however, it cannot be completely observed in experi-

ments. Hence, mathematical models can help to understand the detailed OAS

activation mechanism and the effects of dsRNA lengths. Plausible biochemi-

cal scenarios are translated to mathematical models and their responses are

compared to in vitro experimental data provided by McKenna's lab to test

different hypotheses. In total, nine models are derived from enzyme kinetics;

and their mathematical analyses and numerical investigations are provided.

Model selection methods are used to determine the best model accommodating

different dsRNA concentrations and lengths.
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Chapter 1

Introduction

In research on enzyme activation, the whole process cannot always be observed.

Only some parts of the activation can be examined because of the complexity

of mechanisms and technological limitations. However, some possible scenarios

can be explored by mathematical modelling to study the process [1]. For this

reason, the collaboration between Mathematics and Biochemistry is considered

as important [2]. Based on these considerations, this thesis is focused on

mathematical and numerical analysis of models for the OAS2 activation by

dsRNA to decipher possible scenarios of activation.

1.1 OAS family in innate immune system

The 2'-5'-oligoadenylate synthetase (OAS) is a part of the innate immune

response against virus infection [3, 4]. The OAS family has various members,

OAS1, OAS2, and OAS3, which consist of one, two, and three OAS domains

1



2 CHAPTER 1. INTRODUCTION

respectively [5]. OASs enzymes are ATP polymerases that require double-

stranded RNA (dsRNA) as a cofactor ; ATP is the substrate. These enzymes

are activated by binding to dsRNA. Among three OAS family members, we

only focus on OAS2, which is a dimer consisting of two OAS domains and is

activated by dsRNA longer than 35 base pairs (bp) [3, 4].

Once OAS2 binds to dsRNA in the presence of ATPs, OAS2 polymerizes ATPs

Figure 1.1: The simple diagram for OAS2 activation by dsRNA and the immune
response. The focus of this thesis is represented in the red frame in Figure 1.1.

into chains of 2'-5' linked oligoadenylates (2-5A) and pyrophosphate (PPi) is a

byproduct of this activation [6]. Then, 2-5A activates another enzyme, RNase L,

which degrades viral single-stranded RNA (ssRNA) [7, 8]. The antiviral process

driven by OAS2 can be described as in Figure 1.1 [7]. Since OAS enzymes are

involved in the regulation of the viral RNA degradation and eventually block



1.2. REGULATION OF ACTIVATION OF OAS2 3

the viral replication in cells, the OAS family is part of the innate immune system.

1.2 Regulation of activation of OAS2

In this thesis, to investigate OAS2 activation mechanism, we design mathemat-

ical models based on experimental data measuring the concentration of the

byproduct, PPi, over time. Only PPi concentration is experimentally observ-

able instead of the product, 2-5A. PPi is called the product in this work. All

experiments are performed and data are provided by McKenna's lab [3].

In contrast to general enzyme kinetics and OAS1 activation, OAS2 activation

depends on the length of dsRNA, the cofactor of OAS2 [3]. In general enzyme

kinetic, the concentration is the only factor, which affects the production;

however, in OAS2 activation, the concentration and length of dsRNA are both

factors that regulate the yield of the product [3]. It is experimentally observed

that the concentration of the product increases as the concentration or length

of dsRNA increases (Figure 1.2) [3]. Therefore, the main goal of this research

is to find mathematical models representing the effect of dsRNA concentration

and length changes on the activity of OAS2, simultaneously.

Seven sets, which are categorized by lengths of dsRNA (40bp, 50bp, 60bp,

70bp, 80bp, 90bp and 120bp), are considered to investigate the effect of dsRNA

length in this work. The concentration of the product in each set is recorded

at different time points (0min, 5min, 10min, 15min, 20min and 30min) and
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for five concentrations of dsRNA (0.5µg/mL, 1µg/mL, 2µg/mL, 4µg/mL and

8µg/mL). In these in vitro experiments, ATP, the substrate for OAS2 enzyme,

and dsRNA, the cofactor of OAS2 enzyme, are in abundance. Experimental

data is given in Figure 1.2 [3].

1.3 Organization of thesis

In Chapter 2, we assume chemical reactions based on the theory of OAS2

activation by dsRNA [3, 4]. Ordinary differential equation (ODE) systems

for nine different models with different assumptions to accommodate changes

in concentrations and lengths of dsRNA are proposed. In Chapter 3, all the

models introduced in Chapter 2 are mathematically analyzed to conjecture the

amount of the product based on the models' ODE system. In Chapter 4, all the

models are compared to experimental data from McKenna's lab to estimate

the parameter values. The dissociation constants or affinities,
koff
kon

, of reactions

considered are also obtained. Furthermore, the best model is selected by model

selection methods in the last part of Chapter 4. Finally, Chapter 5 gives an

overview of the work and some ideas for future studies.
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Figure 1.2: Concentrations of product, PPi, for each concentration and length
of dsRNA over time. Number codes for the length: (1) 40bp, (2) 50bp, (3) 60bp,
(4) 70bp, (5) 80bp, (6) 90bp and (7) 120bp. Letters represent concentrations:
(a) 0.5µg/mL, (b) 1µg/mL, (c) 2µg/mL, (d) 4µg/mL and (e) 8µg/mL. The
range of y-axis (the concentration of the product) is from 0 to 130µg/mL and
the range of x-axis (time) is from 0 to 30 minutes.
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Chapter 2

Mathematical Modelling

OAS2 is an enzyme, which plays a role in the innate immune system to prevent

from the viral infection; its activation is induced by the binding of viral dsRNA

as a cofactor. This chapter discusses nine different mathematical models of

OAS2 activation by dsRNA, which are divided into four groups. Each group of

models is defined by the dimension of ordinary differential equation systems.

In the first group, the model has the simplest structure. This model assumes

fixed concentrations for OAS2 and dsRNA. This group, group 1, is composed of

only one model, Model-S. In the second group, models are made in consideration

of the enzyme kinetics between OAS2 and dsRNA. These models are Model-E,

Model-ER and Model-EC. Model-E is the base model of group 2, Model-ER

and Model-EC are obtained by considering Model-E with two different kinds of

length dependency on the binding rate. Moreover, the degradation of OAS2 or

the complex formed by the binding of OAS2 and dsRNA is considered. Models

with degradation are called Model-ED; three versions are considered Model-

7



8 CHAPTER 2. MATHEMATICAL MODELLING

ED1, Model-ED2 and Model-ED3 depending on which degradation reactions

are added to Model-E. In the third group, a model assumes that OAS2 and

dsRNA can form a non-productive complex. Two OAS2 domains of OAS2 need

to bind to the same dsRNA, there could exist non-productive bindings for

which only one domain of OAS2 binds properly to dsRNA. Group 3 has one

model, Model-N. The last group, group 4, considers multi-binding models. With

enough length of dsRNA, there is a possibility that multiple OAS2 molecules

bind to one long dsRNA. This group has three models: Model-M, Model-MR

and Model-MC.

Before giving full details of the models in next sections, the diagrams and

variables used in equations are given in Figure 2.1 and the parameters of models

are explained in Figure 2.2.

Figure 2.1: Compounds considered in models and their corresponding variables.
Note that Di refer to a complex formed of a dsRNA bound to i OAS2.
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Figure 2.2: List of parameters used in models.
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2.1 Group 1 - Model-S

The first group has only one model, Model-S. In general enzyme kinetics,

there are binding and catalytic stages when a substrate is changed into a

product. However, in OAS2-dsRNA activation, the enzyme (OAS2) attaches

to the cofactor (dsRNA) and makes the product (PPi) from the substrate

(ATP) while enzyme and cofactor are not consumed. Recall that in the in vitro

experiments considered, the substrate is in abundance; hence, the dynamics of

ATP is not explicitly represented in models. Model-S for the activation reaction

of OAS2 by dsRNA is represented in the diagram shown in Figure 2.3; as the

concentrations of enzyme and cofactor are considered as not varying over time,

a zero order reaction is first assumed for Model-S.

Figure 2.3: Model-S

The model diagram of Model-S can be written as the following chemical

equation:

∅ kpcOcR−−−−→ P .

This chemical equation leads to the following ordinary differential equation:

dP

dt
= kpcOcR, (2.1)
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where cO = E(t) and cR = R(t) for all t ≥ 0 are the concentrations of OAS2

and dsRNA, respectively. Variables and parameters are listed in Figures 2.1

and 2.2.

2.2 Group 2

2.2.1 Model-E: constant rate

Model-E is the base model of group 2 in which an enzyme kinetics is applied.

Once bound to a dsRNA, the OAS2 enzyme is activated and makes the

product from the substrate that is in abundance in the in vitro experiments

considered. Hence, as previously mentioned, the dynamics of the substrate is

not of interest in this work; no equation is used to describe ATP in models

considered. Furthermore, the binding and unbinding of enzymes and cofactors

are reversible reactions; neither enzyme nor cofactor are consumed during these

reactions nor the formation of product. Hence, the complex D, which is the

activated enzyme or productive stage, is not consumed in the formation of

product. The model diagram for Model-E is as in Figure 2.4.

Figure 2.4: Model-E
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Based on this diagram, the chemical equations are

1) E +R
K1−−⇀↽−−
k1m

D

2) D
kp−−→ P

and the system of ODE is stated as follows:

dE

dt
= −K1ER + k1mD,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD,

dP

dt
= kpD.

(2.2)

Variables and parameters are listed in Figures 2.1 and 2.2.

2.2.2 Model-ER and Model-EC: length dependent rates

This section introduces models that are extensions of Model-E. The experi-

mental data of the OAS2 activation by dsRNA shows that the amount of the

product increases as the length of the dsRNA increases (Figure 1.2). Models

with a rate that depends on the length of dsRNA are developed from Model-E.

There are three potential rates, which can be replaced by a length dependent

binding rate (Figure 2.4): K1, k1m, kp. Among these three rates, K1 turned out

to be the most reasonably possible candidate for a length dependent binding
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rate for several reasons. First, in experiments (Figure 1.2), the longer dsRNA

is, the larger amount of the product is made, which means that the longer

dsRNA has the greater possibility of interacting with OAS2. Therefore, it is

reasonable for the length dependency to be applied to K1. Furthermore, for kp,

it is possible to assume that the amount of the product that can be produced

by one OAS2 is fixed, so kp is expected to be a constant rate. Similarly, in

the case of k1m, it is also possible to assume that once OAS2 combines with

dsRNA, the unbinding rate of complex (binding stage) does not depend on the

dsRNA length. For these reasons, the length dependent binding rate is chosen

to be K1 (Figure 2.5).

To derive the length dependent binding rate, it is important to take into account

the shape of OAS2 and dsRNA [9]. For instance, several studies investigated

the effect of length of interacting objects on their association rates [10, 11] or

of tethered ligands on enzymatic reactions [12, 13]. In this work two different

length dependent binding rates, which are based on the rigid properties of

dsRNA, are considered, k1σ1(L) and k1σ2(L), where L is the dsRNA length.

To replace the constant binding rate with a length dependent binding rate, it

Figure 2.5: Binding rate depending on cofactor length L. Replace K1 in Model-E
by k1σ1,2(L), where σ1,2(L) is σ1(L) for Model-ER or σ2(L) for Model-EC.
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is important to consider a collision rate and a binding probability [14]. The

binding rate is the product of the collision rate and binding probability when a

collision occurs. In the next section, the collision rate is calculated based on the

shape of OAS2 and dsRNA. After that, two binding probabilities are proposed

based on two different assumptions. Thus, the two binding rates share the same

collision rate and each of them uses its own binding probability.

Collision rate

To calculate the collision rate of OAS2 and dsRNA, we simplify the shape of

OAS2 and dsRNA as in Figure 2.6. OAS2 is described as a sphere. On the

other hand, dsRNA is considered as a long cylinder.

Figure 2.6: Dashed circles delimit the interaction zones for OAS2 and dsRNA.
L is length of dsRNA, RO is the radius of OAS2.
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Molecules of OAS2 and dsRNA diffuse and rotate freely in solution, so their

effective interaction zone can be represented as the two spheres infered by

dashed circles in Figure 2.6. The radii of interaction spheres are RR for dsRNA

and RO for OAS2. Furthermore, OAS2 and dsRNA diffuse freely; the diffusion

coefficient for dsRNA is DR and DO for OAS2. Consequently, the collision rate

of dsRNA and OAS2 [9] can be expressed as

Collision rate = 4π(DR +DO)(RR +RO), (2.3)

where RR is the half length of dsRNA, RR = L
2
, with L the length of dsRNA, and

RO is the radius of OAS2. The diffusion coefficient of dsRNA is approximated

following the work of [15, 16]:

DR =
KBT

3πηL

[
log
(
2x− 1 +

√
(2x− 1)2 + 1

)
+

1

x

(
x+
√
2−

√
(2x− 1)2 + 1

)

+
1

2x
log

(
(
√
2− 1)2(1 +

√
(2x− 1)2 + 1)

(2x− 1 +
√
(2x− 1)2 + 1)

)]
,

(2.4)

where x = L
d
, d is the diameter of the dsRNA, KB is Boltzmann constant, T

is a absolute temperature in Kelvin, and η is the coefficient of viscosity. The

diffusion coefficient for OAS2 is obtained based on Stokes-Einstein equation

[9]:

DO =
KBT

3πη

(
1

2RO

)
.
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To make (2.4) easier to read, let A = 2x− 1, B =
√

(A2 + 1) and C0 = KBT
3πη

,

then we get the equation,

DR =
C0

L

(
log(A+B) +

1

x
(x+

√
2−B) +

1

2x
log

(
(
√

2− 1)2(1 +B)

(A+B)

))
.

Furthermore, let
(

log(A+B) + 1
x
(x+

√
2−B) + 1

2x
log
(

(
√
2−1)2(1+B)
(A+B)

))
= Z,

then diffusion coefficients of dsRNA and OAS2 can be rewritten as follows:

DR =
C0Z

L
, DO =

C0

2RO

, (2.5)

where only Z
L

depends on dsRNA lengths. Substituting (2.5) into the collision

rate equation (2.3), we get the collision rate between dsRNA and OAS2 [17] as

below.

4πC0

(
Z

L
+

1

2RO

)(
L+ 2RO

2

)
. (2.6)

Binding Probability

The binding probability depends on the assumption how OAS2 binds to dsRNA.

Because two OAS domains need to bind to the same dsRNA, if one domain of

OAS2 binds too close to the tip of dsRNA, then the other domain cannot bind,

there is no formation of product. Based on this idea, it can be induced that

there is the valid binding area on dsRNA for OAS2 binding to result in the

OAS2 activation. Because the valid binding area is determined by the shape of
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dsRNA, the binding probability also depends on the shape of dsRNA.

We discuss two assumptions for the shape of dsRNA in this section. The first

assumption is that dsRNA is a rigid rod, which can bind to OAS2 on one side,

in two dimensional space, and the second one is that dsRNA is a cylinder in

three dimensional space. Consequently, with those binding probabilities, we

get two binding rates of OAS2 and dsRNA.

Binding rate: dsRNA as a rigid rod

First, a dsRNA is described as a rigid rod (Figure 2.7). Since OAS2 is a dimer

Figure 2.7: Valid binding domain when dsRNA is represented as a rigid rod.

having a non-negligible length, there is a valid domain of binding on dsRNA

for OAS2 to bind. When one of the OAS2 domain binds to dsRNA's valid

binding domain, it needs enough space for the second OAS2 domain to bind in

the valid binding domain. Therefore, with L, the length of dsRNA, L− 2RO

is the valid length and it brings the following probability for both domains of

OAS2 to bind on the valid domain (in the sense of uniform distribution):

L− 2RO

L
.
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Then, the probability of binding given a collision occurs is

k0

(
L− 2RO

L

)
, (2.7)

where the factor k0 is a positive constant accounting for, for instance, electro-

static interactions or other types of forces that can modulate the binding.

Since the binding rate is the multiplication of collision rate (2.6) and binding

probability (2.7), the binding rate of OAS2 with a rigid rod-shaped dsRNA is

described as follows:

k1σ1(L) = 4πC0

(
Z

L
+

1

2RO

)(
L+ 2RO

2

)
k0

(
L− 2RO

L

)

= k1

(
Z

L
+

1

2RO

)(
L+ 2RO

2

)(
L− 2RO

L

)
︸ ︷︷ ︸

σ1(L)

, (2.8)

where k1 = 4πC0k0. Note that d and RO are constant, σ1(L) only depends on

the length of dsRNA.

Binding rate: dsRNA as a cylinder

The second assumption is that dsRNA is a cylinder in three dimensional space

(Figure 2.8). The surface of dsRNA consists of a rod part and two cap parts,

so it is 2π
(
d
2

)2
+ dπL. The valid binding area is only on the rod part, but we

do not know how much area is allowed for binding. Thus, let the percentage

of the valid binding area be k and then the valid binding area can be written



2.2. GROUP 2 19

Figure 2.8: dsRNA is described as a cylinder of length L and diameter d. RO:
radius of OAS2, k: ratio for valid binding area.

as kdπ(L− 2RO). Consequently, assuming the uniform distribution of binding

sites, the probability of binding is

k0

(
kdπ(L− 2RO)

2π
(
d
2

)2
+ dπL

)
= k0

(
k(L− 2RO)

d
2

+ L

)
,

where the parameter k0 represents the modulation of the binding from other

factors.

Then, the binding rate with the cylindrical-shaped dsRNA is described as
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follows:

k1σ2(L) = 4πC0

(
Z

L
+

1

2RO

)(
L+ 2RO

2

)
k0

(
k(L− 2RO)

d
2

+ L

)

= k1

(
Z

L
+

1

2RO

)(
L+ 2RO

2

)(
L− 2RO

d
2

+ L

)
︸ ︷︷ ︸

σ2(L)

, (2.9)

where k1 = 4πC0k0k.

In (2.8) and (2.9), σ1(L) and σ2(L) are functions of L and k1 is the constant

part of the binding rates. In both cases, k1 is unknown and will be estimated

by comparing models' responses to experimental data in Chapter 4.

Model-ER and Model-EC

Model-ER is obtained by considering Model-E with K1 = k1σ1(L) (2.8) and

Model-EC uses K1 = k1σ2(L) (2.9) (Figure 2.5). For simplification, in both

length dependent binding rates, the constant part is called k1, but they are

different values as previously explained.

Chemical reactions considered in Model-ER and Model-EC are as in Model-E

with K1 = k1σ1(L) and K1 = k1σ2(L), respectively (Figure 2.5). Similarly, the

ODE system for Model-ER and Model-EC is system (2.2) considered with

K1 = k1σ1(L) and K1 = k1σ2(L), respectively.
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2.2.3 Model-ED

The activity of OAS2 can decrease after several reactions because of the limit

of durability of enzymes. In any case, it can be interpreted that the active

enzyme is degraded at a rate constant kd1 (Figure 2.9) and it leads to the

reduced rate of product formation. Moreover, after some activation reactions,

it can be assumed that the complex of OAS2 and dsRNA is degraded at a rate

constant kd2 (Figure 2.9). Model-E considered with the degradation reaction(s)

is named Model-ED (Figure 2.9).

Figure 2.9: Model-ED with degradation of OAS2 or complex, ∅: degradation

The case kd1 = kd2 = 0 represents Model-E, and there are three versions of

Model-ED: Model-ED1 (kd1 6= 0, kd2 = 0), Model-ED2 (kd1 = 0, kd2 6= 0)

and Model-ED3 (kd1 6= 0, kd2 6= 0). Here, the general model for Model-ED1,
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Model-ED2 and Model-ED3 assumes the following chemical reactions.

1) E +R
K1−−⇀↽−−
k1m

D

2) D
kp−−→ P

3) E
kd1−−→ ∅

4) D
kd2−−→ ∅

The system of ODE with degradation of E and D is

dE

dt
= −K1ER + k1mD − kd1E,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD − kd2D,

dP

dt
= kpD.

(2.10)

2.3 Group 3 - Model-N

Another way to represent the impact of the dsRNA length on OAS2 activation

is to consider that some interactions are not complete or invalid [18]. Model-N is

established considering that the binding of only one domain of OAS2 to dsRNA

cannot cause OAS2 activation. Based on this assumption, we add two stages to

Model-E. First, a pre-binding stage (C) of the productive binding stage is added
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to represent a stage, which is incomplete with one OAS2 domain binds properly.

Secondly, the invalid bindings are added and called non-productive binding

stages as it cannot result in the formation of the product. Although there are

many possible scenarios for the non-productive binding, we cannot specify all

the cases, so we collectively refer to them as stage N . After a non-productive

binding, OAS2 can detach from dsRNA and attach to dsRNA again.

A two-step binding process and non-productive binding stages are added to

Figure 2.10: Model-N with a two-step binding and non-productive bindings.

Model-E that leads to Model-N (Figure 2.10), the chemical equation set is

1) E +R
K1−−⇀↽−−
k1m

C

2) E +R
k5−−⇀↽−−
k5m

N

3) C
k2−−⇀↽−−
k2m

D

4) D
kp−−→ P
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and the system of ODE for Model-N is constructed as follows:

dE

dt
= −K1ER + k1mC − k5ER + k5mN,

dR

dt
= −K1ER + k1mC − k5ER + k5mN,

dC

dt
= K1ER− k1mC − k2C + k2mD,

dD

dt
= k2C − k2mD,

dN

dt
= k5ER− k5mN,

dP

dt
= kpD.

(2.11)

2.4 Group 4

From experiments [3], there are two significant observations that drive the

derivation of another model. The first observation is that dsRNA is not con-

sumed and changed by the OAS2 activation. OAS2 interacts with dsRNA,

facilitates product formation, and then detaches from dsRNA. The second

observation is that long dsRNA used in experiments makes more products than

short dsRNA with the same amount of OAS2 (Figure 1.2). Hence, another

reasonable scenario is that dsRNA having more than double the length of OAS2

can be bound with more than two OAS2 at the same time, leading to increased

product formation. We focus on this scenario, the multi-binding assumption,
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to describe another possible effect of dsRNA's length on OAS2 activation and

define Model-M, a multi-binding model.

2.4.1 Model-M: constant rate

Model-M is a multi-binding model, which has all constant rates (Figure 2.11).

The chemical equations assumed for Model-M are

Figure 2.11: Model-M, n =
⌊

L
2RO

⌋
, n is the maximum number of OAS2 that

can be bound to one dsRNA simultaneously.
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1) E +R
K1−−⇀↽−−
k1m

D

2) E +Di−1
kib−−⇀↽−−−
kibm

Di, i ∈ {2, · · · , n}

3) Di
ikp−−→ P ,

and the system of ODE is

dE

dt
= −K1ER + k1mD1 +

n−1∑
i=1

[
k(i+1)bmDi+1 − k(i+1)bDiE

]
,

dR

dt
= −K1ER + k1mD1,

dD1

dt
= K1ER− k1mD1 + k2bmD2 − k2bD1E,

...

dDj

dt
= kjbDj−1E − kjbmDj + k(j+1)bmDj+1 − k(j+1)bDjE,

j ∈ {2, 3, · · · , n− 1},

...

dDn

dt
= knbDn−1E − knbmDn,

dP

dt
= kp

n∑
i=1

iDi.

(2.12)

The model equation for Model-M allowing up to n
(

=
⌊

L
2RO

⌋)
OAS2 per dsRNA

is validated by mathematical induction; details can be found in Appendix.
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2.4.2 Model-MR and Model-MC: length dependent rates

For the binding of one OAS2 molecule and dsRNA, constant or length dependent

binding rates can be used. However, since the length dependent binding rates

are calculated for one OAS2 binding an “unoccupied” dsRNA, these rates can

be only used for the binding of the first OAS2 and cannot be applied to the

binding of a second OAS2 to the same dsRNA. In the previous section, we

derived two length dependent binding rates (2.8 and 2.9) that can be used for

Model-M because the principle of the first binding between OAS2 and dsRNA

is not changed. Thus, we discuss two variations of Model-M, Model-MR and

Model-MC, which have a length dependent binding rate for the first binding. We

define Model-MR as Model-M with K1 = k1σ1(L) and Model-MC as Model-M

with K1 = k1σ2(L).

Chemical reactions considered in Model-MR and Model-MC are as in Model-M

with in the first reaction rate K1 = k1σ1(L) and K1 = k1σ2(L), respectively.

Similarly, the ODE system for Model-MR and Model-MC is system (2.12)

considered with K1 = k1σ1(L) and K1 = k1σ2(L), respectively.

2.5 Overview

The main motivation of this work is finding a model which can reflect the effects

of changes in concentrations and lengths of dsRNA on OAS2 activation. The

change of dsRNA concentration is accommodated in general enzyme kinetics,
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but the change of dsRNA length is not reflected in the kinetics. There are two

ways to accommodate the change of length of dsRNA.

The first way is to reduce or extend the common enzyme kinetic model, which

is Model-E, the base model of all groups. Reducing Model-E gives Model-S, in

which the concentrations of OAS2 and dsRNA are assumed to stay constant over

time. Expanding the structure of Model-E following two different assumptions

leads to Model-N and Model-M. In the Model-N, the existence of reversible

non-productive binding stages is considered. In Model-M, it is assumed that

long dsRNA can be bound with more than one OAS2 at the same time.

The second method to accommodate the effect of dsRNA's length is to apply

the effect of the length directly to the binding parameter without changing

the structure of models. Two length dependent binding rates are proposed.

Model-ER and Model-EC are the extended versions of Model-E, and similarly,

Model-MR and Model-MC are the extensions of Model-M. The R-type (Model-

ER and Model-MR) uses the length dependent binding rate based on the rigid

rod representation of dsRNA (2.8) and the C-type (Model-EC and Model-

MC) is based on the cylindrical representation of dsRNA (2.9). Finally, the

degradation of OAS2 or complex of OAS2 and dsRNA are also considered in

Model-ED.

The relations among all the models considered in this work are shown in Figure

2.12.
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Chapter 3

Mathematical Analysis

In this chapter, the mathematical analysis of models introduced in Chapter 2

is carried out. In Chapter 2, models are categorized by groups based on the

dimension of ODE systems. For each group, a general model can be defined;

each model of the group is a particular case of the general model. Hence, the

analysis is carried out on the general system, the representative of the group.

First, the simplest model of group 1 is solved. Then, because the ODE systems

of all the models in group 2 to 4 are composed of non-linear and autonomous

equations of same type, their well-posedness is commonly dealt. The equilibria

of general models and their nature for each group are investigated and the

amount of product is predicted. In all the analyses, cO and cR are referred as

the initial concentrations of OAS2 and dsRNA, respectively.

31
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3.1 Group 1 - Model-S

In Model-S, it is assumed that there are no changes in the concentrations of

OAS2 and dsRNA, so E(t) = cO and R(t) = cR for all t. Recall the ODE

equation of Model-S, (2.1):

dP

dt
= kpcOcR, (3.1)

with kp, cO, cR positive constants.

Theorem 3.1.1. In Model-S (3.1), the product increases linearly as t increases,

P (t) = kpcOcRt, for all t ≥ 0.

Proof. Integrate (3.1) with respect to t with P (0) = 0, then we get the equation,

P (t) = kpcOcRt. (3.2)

Therefore, in Model-S, P is only proportional to t and the amount of the

product increases linearly in time.

3.2 Wellposedness - Group 2 to 4

All models considered in group 2 to 4 take the following generic form:

dX

dt
= f(X), (3.3)

where the state variables X = (E,R,D,Dj, C,N) ∈ Rm with j = {1, 2, 3, . . . n}

and m = {3, 4, . . . n+ 4} represent the concentrations of chemical compounds.
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For all models of group 2 to 4, note that P is not involved in any equation of

systems and the equation dP
dt

only depends on D or Dj ; hence, dP
dt

is decoupled

from all the systems.

The vector field is a vector function f : Rm → Rm and fi(X) are polynomials

of several variables with i ∈ {1, 2, . . . ,m}. Hence, all models are nonlinear

and autonomous and considered with the initial condition, X(0) = X0 =

(cO, cR, 0, 0, 0, 0) ∈ Rm
≥0.

Theorem 3.2.1. System (3.3) considered with X0 ∈ Rm
≥0 is well-posed.

Proof. An initial value problem is defined by considering system (3.3) with the

initial condition, X0 ∈ Rm
≥0. If Xi = 0, then dXi

dt |Xi=0
≥ 0; solutions Xi(t) stay

non-negative, for i ∈ {1, 2, . . . ,m}.

Since fi(X) are polynomials on Rm, they are on C∞ on Rm. Therefore, the

solution of an initial value problem exists and is unique for t ≥ 0 by Existence

and Uniqueness Theorem for ODE [19]. Thus, system (3.3) is well-posed.

Since the equations of dP
dt

only depend on D or Dj and the solution of (3.3)

exists and is unique, P (t) is also determined uniquely for all models.
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3.3 Group 2

Model-ED, (2.10), is the general model of group 2. It is reduced to:

dE

dt
= −K1ER + k1mD − kd1E,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD − kd2D.

(3.4)

Model-ED1 is obtained with kd1 6= 0, kd2 = 0, Model-ED2 with kd1 = 0, kd2 6= 0

and Model-ED3 with kd1 6= 0, kd2 6= 0. Setting kd1 = kd2 = 0 gives the three

versions of Model-E with no degradation: Model-E, Model-ER and Model-EC.

Note that the analysis of the three models can be carried out all at once because

these models only differ from their dependency of binding rate K1 on dsRNA

lengths, which are only parameters for the systems.

1) Model-E

Model-E is obtained by setting kd1 = 0 and kd2 = 0 in (3.4).

dE

dt
= −K1ER + k1mD,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD.

(3.5)
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From (3.5), dE
dt

+ dD
dt

= 0 and dR
dt

+ dD
dt

= 0; so by integrating with respect to t

we obtain two equations, E(t) +D(t) = cO and R(t) +D(t) = cR, for all t ≥ 0.

These two equations are referred as conservation equations of Model-E. Then,

using conservation equations to describe E(t) = cO−D(t) and R(t) = cR−D(t),

system (3.5) can be reduced to one equation for D, as follows,

dD

dt
= K1D

2 − (K1(cO + cR) + k1m)D +K1cOcR. (3.6)

Furthermore, the conservation equations lead to D(t) ≤ min(cO, cR), for all

t ≥ 0.

Theorem 3.3.1. The unique positive equilibrium of system (3.5) is

(E∗,R∗, D∗)

=

(
cO −

K1(cO + cR) + k1m −
√

(K1(cO + cR) + k1m)2 − 4K2
1cOcR

2K1

,

cR −
K1(cO + cR) + k1m −

√
(K1(cO + cR) + k1m)2 − 4K2

1cOcR
2K1

,

K1(cO + cR) + k1m −
√

(K1(cO + cR) + k1m)2 − 4K2
1cOcR

2K1

)
.

(3.7)

and the equilibrium is globally asymptotically stable.

Proof. Since (3.6) is the reduced system of (3.5), we find an equilibrium of (3.6)

first, and applying the conservation equations of Model-E to find an equilibrium
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of (3.5).

To find the steady state of the model (3.6), let dD
dt

= 0, then

0 = K1D
∗2 − (K1(cO + cR) + k1m)D∗ +K1cOcR.

Let g = (K1(cO + cR) + k1m) > 0 and h = K1cOcR > 0 then we get

0 = K1D
∗2 − gD∗ + h. (3.8)

Thus, the two solutions are

D1 =
g −

√
g2 − 4K1h

2K1

, D2 =
g +

√
g2 − 4K1h

2K1

.

Note that the solutions have to satisfy the following properties: real, positive

and based on conservation laws:

D∗ ≤ min(cO, cR). (3.9)

To determine that D1 and D2 are real solutions, we consider the discriminant:

g2 − 4K1h = (K1(cO + cR) + k1m)2 − 4K1
2cOcR

= (K1(cO + cR))2 + 2(cO + cR)K1k1m + (k1m)2 − 4K1
2cOcR

= (K1(cO − cR))2 + 2(cO + cR)K1k1m + (k1m)2 > 0.

Since cO, cR, K1 and k1m are positive, both D1 and D2 are real solutions.

Consider D∗ = D2.

D∗ = D2 =
g +

√
g2 − 4K1h

2K1

>
g

2K1

>
cO + cR

2
=
E∗ +D∗ +R∗ +D∗

2
,
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re-arranging yields

0 > E∗ +R∗.

Since E∗ and R∗ are positive, there is a contradiction. Therefore, we get

D2 > min(cO, cR) and then D∗ 6= D2.

Now, we consider that D∗ = D1 and prove that 0 ≤ D1 ≤ min(cO, cR). Let

min(cO, cR) = m, then K1m(cO + cR) = K1m
2 +K1cOcR.

k1mm ≥ 0,

m(K1(cO + cR) + k1m) ≥ K1m
2 +K1cOcR,

mg −K1m
2 ≥ h,

g2 − 4K1(mg −K1m
2) ≤ g2 − 4K1h,

(g − 2K1m)2 ≤
(√

g2 − 4K1h
)2
,

g −
√
g2 − 4K1h ≤ 2K1m,

D1 =
g −

√
g2 − 4K1h

2K1

≤ m = min(cO, cR).

Therefore,D1 ≤ min(cO, cR). Moreover,D1 is positive as follows: g >
√
g2 − 4K1h.

Therefore, there is a unique equilibrium for (3.6), D∗ = D1.

To determine the stability of the equilibrium, we use the phase line analysis

of (3.6). The right hand side of (3.6) is a quadratic equation with a positive

leading coefficient, K1, that has two distinct real positive solutions, D1 < D2.

Phase line is shown in Figure 3.1. The unique equilibrium D∗(= D1) is locally
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Figure 3.1: The phase line for (3.6).

asymptotically stable. Note that 0 ≤ D(0) ≤ min(cO, cR), limt→∞D(t) = D∗;

therefore, we obtain that D∗ is globally asymptotically stable.

Since E(t) = cO−D(t) and R(t) = cR−D(t) for all t ≥ 0, we have E∗ = cO−D∗

and R∗ = cR−D∗. Hence, (3.5) has a unique equilibrium (3.7), which is globally

asymptotically stable.

2) Model-ED1 (kd1 6= 0, kd2 = 0)

The reduced system for Model-ED1 is:

dE

dt
= −K1ER + k1mD − kd1E,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD.

(3.10)



3.3. GROUP 2 39

From dR
dt

+ dD
dt

= 0, we get R(t) + D(t) = cR for all t ≥ 0, which is the

conservation law for Model-ED1. Then we can reduce further the system to

two equations:

dE

dt
= −K1E(cR −D) + k1mD − kd1E,

dD

dt
= K1E(cR −D)− k1mD.

(3.11)

Theorem 3.3.2. The unique equilibrium of system (3.10) is

(E∗, R∗, D∗) = (0, cR, 0) (3.12)

and the equilibrium is globally asymptotically stable.

Proof. Note that (3.11) is the reduced system of (3.10), we obtain an equi-

librium of (3.11) first, and then determine an equilibrium of (3.10) with the

conservation law for Model-ED1.

Let dE
dt

= dD
dt

= 0 in (3.11), then

0 = −K1E
∗(cR −D∗) + k1mD

∗ − kd1E∗, (3.13a)

0 = K1E
∗(cR −D∗)− k1mD∗. (3.13b)

By adding (3.13a) and (3.13b), we get E∗ = 0, D∗ = 0.

From (3.11), we get the Jacobian,

JED1 =

(
−K1(cR −D)− kd1 K1E + k1m

K1(cR −D) −K1E − k1m

)
,
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with the following properties at the equilibrium:

det(JED1(E
∗, D∗)) =

∣∣∣∣−K1cR − kd1 k1m
K1cR −k1m

∣∣∣∣ =

∣∣∣∣−kd1 0
K1cR −k1m

∣∣∣∣ = kd1k1m > 0,

Tr(JED1(E
∗, D∗)) = −K1cR − kd1 − k1m < 0.

Therefore, the unique equilibrium point (0, 0) of system (3.11) is locally asymp-

totically stable.

To determine the global stability, we use Poincaré-Bendixson's trichotomy [20].

First, we show that solutions of (3.11) are bounded.

If D = 0 then dD
dt

= K1EcR ≥ 0 and dE
dt

= k1mD ≥ 0 at E = 0 in (3.11), so

E(t) ≥ 0 and D(t) ≥ 0 for all t ≥ 0. Moreover, d(E+D)
dt

= −kd1E ≤ 0. Thus,

solutions are bounded.

Secondly, we use Bendixson's criterion [20] to check the existence of a periodic

solution as follows:

∂
(
dE
dt

)
∂E

+
∂
(
dD
dt

)
∂D

= −K1(cR −D(t))− kd1 −K1E(t)− k1m < 0, ∀t ≥ 0.

Thus, there is no periodic solution. Therefore, the unique equilibrium (0, 0)

of system (3.11) is globally asymptotically stable by the Poincaré-Bendixson

trichotomy.

Since R(t) = cR − D(t) for all t ≥ 0, we get R∗ = cR − D∗ = cR. Hence,

(3.10) has a unique equilibrium (E∗, R∗, D∗) = (0, cR, 0), which is globally

asymptotically stable.
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3) Model-ED2 (kd1 = 0, kd2 6= 0)

The reduced system for Model-ED2 is

dE

dt
= −K1ER + k1mD,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD − kd2D.

(3.14)

In this model, there is no conservation. However, we have dE
dt

= dR
dt

, so R(t)−

R(0) = E(t)−E(0) and R(t) = E(t) + cR − cO = E(t) + a0 with a0 = cR − cO.

Then, we get the reduced system:

dE

dt
= −K1E(E + a0) + k1mD,

dD

dt
= K1E(E + a0)− k1mD − kd2D.

(3.15)

Theorem 3.3.3. The unique equilibrium of system (3.14) is

(E∗, R∗, D∗) =

{
(cO − cR, 0, 0) cO > cR

(0, cR − cO, 0) cR > cO
(3.16)

and the equilibrium is globally asymptotically stable.

Proof. Let dE
dt

= dD
dt

= 0 in (3.15), then

0 = −K1E
∗(E∗ + a0) + k1mD

∗, (3.17a)

0 = K1E
∗(E∗ + a0)− k1mD∗ − kd2D∗. (3.17b)
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By adding (3.17a) and (3.17b), we get D∗ = 0 and two possible values for E∗.

The first one is E∗ = 0 (and R∗ = cR − cO). The second one is E∗ = cO − cR

(and R∗ = 0). However, we know that E∗ and R∗ must be positive, so only one

value for E∗ is possible at the time, which depends on the sign of a0 = cR − cO.

Therefore, system (3.15) has a unique equilibrium whose the value depends on

the initial condition.

To find the stability of the equilibrium, we get the Jacobian for (3.15),

JED2 =

(
−K1E −K1(E + cR − cO) k1m
K1E +K1(E + cR − cO) −k1m − kd2

)
.

If cO − cR < 0, at the equilibrium (E∗, D∗) = (0, 0), the determinant and trace

of the Jacobian are

det(JED2(0, 0)) =∣∣∣∣−K1(cR − cO) k1m
K1(cR − cO) −k1m − kd2

∣∣∣∣ =

∣∣∣∣−K1(cR − cO) k1m
0 −kd2

∣∣∣∣ = K1kd2(cR − cO) > 0

and

Tr(JED2(0, 0)) = −K1(cR − cO)− k1m − kd2 < 0.

If cO − cR > 0, at the equilibrium (E∗, D∗) = (cO − cR, 0) the determinant and

trace of the Jacobian are

det(JED2(cO − cR, 0)) =∣∣∣∣−K1(cO − cR) k1m
K1(cO − cR) −k1m − kd2

∣∣∣∣ =

∣∣∣∣−K1(cO − cR) k1m
0 −kd2

∣∣∣∣ = K1kd2(cO − cR) > 0
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and

Tr(JED2(cO − cR, 0)) = −K1(cO − cR)− k1m − kd2 < 0.

Therefore, the unique equilibrium of (3.15) is locally asymptotically stable.

To use the Poincaré-Bendixson trichotomy, the boundedness of solutions is

proved first. Note that dE
dt

= k1mD ≥ 0 at E = 0 and dD
dt

= K1E(E+cR−cO) ≥

0 at D = 0 because dR
dt

= k1mD ≥ 0 at R = 0 and R(t) = E(t) + cR − cO ≥ 0.

Thus, we get E(t) ≥ 0 and D(t) ≥ 0 for all t ≥ 0. Moreover d(E+D)
dt

= −kd2D ≤

0. Therefore, solutions are bounded.

Moreover, there is no periodic solution by Bendixson's criterion by the following

argument:

∂
(
dE
dt

)
∂E

+
∂
(
dD
dt

)
∂D

= −K1(E(t) + E(t) + cR − cO)− k1m − kd2 < 0, ∀t ≥ 0,

since E(t) ≥ 0 and E(t) + cR − cO = R(t) ≥ 0 for all t ≥ 0.

The equilibrium value is determined by the initial condition cO and cR and

there is a unique equilibrium in any case. Therefore, by the Poincaré-Bendixson

trichotomy, the unique equilibrium defined in (3.15) is globally asymptotically

stable.

Since, R(t) = E(t) + a0 for all t ≥ 0, we have R∗ = E∗ + a0 in (3.14) and the

unique equilibrium

(E∗, R∗, D∗) =

{
(cO − cR, 0, 0) cO > cR,

(0, cR − cO, 0) cR > cO,
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which is globally asymptotically stable.

4) Model-ED3 (kd1 6= 0, kd2 6= 0)

The reduced system for Model-ED3 is

dE

dt
= −K1ER + k1mD − kd1E,

dR

dt
= −K1ER + k1mD,

dD

dt
= K1ER− k1mD − kd2D.

(3.18)

Theorem 3.3.4. The equilibrium of system (3.18) is

(E∗, R∗, D∗) = (0, r, 0) (3.19)

where 0 ≤ r ≤ cR.

Proof. To find the steady state of the model, let dE
dt

= dR
dt

= dD
dt

= 0 in (3.18).

0 = −K1E
∗R∗ + k1mD

∗ − kd1E∗,

0 = −K1E
∗R∗ + k1mD

∗,

0 = K1E
∗R∗ − k1mD∗ − kd2D∗.

(3.20)

From (3.20), we get E∗ = 0, D∗ = 0 and R∗ = r where r is non-negative

constant.

We get the line of equilibria, which is (0, r, 0) with 0 ≤ r ≤ cR. Previous

methods cannot be used on non-isolated equilibrium.
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3.4 Group 3 - Model-N

In this section, Model-N is mathematically studied. To derive an approximation

of OAS2 activity, quasi-steady-state is first assumed. Then, the asymptotic

behavior of the model is characterized by determining its equilibria and their

stability. Recall ODE system of Model-N (2.11).

dE

dt
= −K1ER + k1mC − k5ER + k5mN, (3.21a)

dR

dt
= −K1ER + k1mC − k5ER + k5mN,

dC

dt
= K1ER− k1mC − k2C + k2mD, (3.21b)

dD

dt
= k2C − k2mD, (3.21c)

dN

dt
= k5ER− k5mN, (3.21d)

dP

dt
= kpD.

3.4.1 Quasi-steady-state assumption for Model-N

As the cofactor, dsRNA, is in abundance with respect to the enzyme, it is

assumed that enzymes are bound to dsRNA so quickly that there is no free

enzyme left. If they detach from dsRNA, they instantly bind to dsRNA without
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delay. In this circumstance, quasi-steady-state can be assumed:

dE

dt
= −K1ER + k1mC − k5ER + k5mN ≈ 0. (3.22)

Moreover, dE
dt

= dR
dt

, we get dR
dt
≈ 0.

From (3.22), we get

ER =
k1mC + k5mN

K1 + k5
. (3.23)

By replacing ER in (3.21b), (3.21c) and (3.21d) with (3.23), we get the linear

system in C, D, N .

dC

dt
= K1

(
k1mC + k5mN

K1 + k5

)
− k1mC − k2C + k2mD,

dD

dt
= k2C − k2mD,

dN

dt
= k5

(
k1mC + k5mN

K1 + k5

)
− k5mN.

It can be expressed in the following matrix form


dC
dt

dD
dt

dN
dt

 =


K1k1m
K1+k5

− k1m − k2 k2m
K1k5m
K1+k5

k2 −k2m 0

k5k1m
K1+k5

0 k5k5m
K1+k5

− k5m



C

D

N

 (3.24)

with initial condition (C(0), D(0), N(0)) = (εC , 0, εN ), where εC > 0 and εN > 0.

Solutions are non-negative since Model-N is well-posed. It also is easy to show

that when starting with non-negative initial condition in the linear system

(3.24), solutions stay non-negative.
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Theorem 3.4.1. Using quasi-steady-state assumptions in Model-N (3.21) with

an initial condition (C(0), D(0), N(0)) = (εC , 0, εN), where εC > 0 and εN > 0,

and P (0) = 0 leads to

1. c0 > 4d0

P (t) =kpk2

[
α1

k2m
t+ exp(λ2t)

(
β1

λ2(k2m + λ2)

)
+ exp(λ3t)

(
γ1

λ3(k2m + λ3)

)

−
(

β1
λ2(k2m + λ2)

)
−
(

γ1
λ3(k2m + λ3)

)]
, ∀t ≥ 0,

(3.25)

where a0 = K1k5m
K1+k5

, b0 = k5k1m
K1+k5

, c0 = k2 + k2m + a0 + b0, d0 = k2a0 +

k2ma0 + k2mb0, λ2 =
−c0−
√
c20−4d0

2
, λ3 =

−c0+
√
c20−4d0

2
and

α1 =
k2ma0(εN(λ2 + a0)(λ3 + a0) + b0εC(k2m − a0))

λ2λ3b0(k2m − a0)
,

β1 =
(λ2 + k2m)(λ2 + a0)(a0εN(λ3 + a0) + b0εC(k2m − a0))

λ2b0(a0 − k2m)(λ3 − λ2)
,

γ1 =
(λ3 + k2m)(λ3 + a0)(a0εN(λ2 + a0) + b0εC(k2m − a0))

λ3b0(k2m − a0)(λ3 − λ2)
.
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2. c0 = 4d0

P (t) =kpk2

[
α2

k2m
t+ exp(λ2t)

(
β2

λ2(λ2 + k2m)

)

−γ2 exp(λ2t)

(
(λ2t− 1)

λ22(λ2 + k2m)
− 1

λ2(λ2 + k2m)2

)

− β2
λ2(λ2 + k2m)

+ γ2

(
(λ2t− 1)

λ22(λ2 + k2m)
− 1

λ2(λ2 + k2m)2

)]
, ∀t ≥ 0,

(3.26)

where λ2 = −c0
2

and

α2 =
k2ma0(εN(λ2 + a0)

2 + b0εC(k2m − a0))
λ22b0(k2m − a0)

,

β2 =
b0εC(k2m − a0)(λ22 − k2ma0)− k2ma0εN(λ2 + a0)

2

λ22b0(k2m − a0)
,

γ2 =
b0εC(k2m − a0)(λ2 + k2m)(λ2 + a0) + a0εN(λ2 + k2m)(λ2 + a0)

2

λ2b0(k2m − a0)
.

3. c0 < 4d0

P (t) =kpk2

[
α3

k2m
t+

4β3 exp
(
− c0

2 t
)

(c20 + f20 )(e
2
0 + f20 )

(
(e0 − c0)f0 sin

(
f0
2
t

)
− (c0e0 + f20 ) cos

(
f0
2
t

))

+
4γ3 exp

(
− c0

2 t
)

(c20 + f20 )(e
2
0 + f20 )

(
(c0e0 + f20 ) sin

(
f0
2
t

)
+ (e0 − c0)f0 cos

(
f0
2
t

))

+
4β3(c0e0 + f20 ) + 4γ3(c0 − e0)f0

(c20 + f20 )(e
2
0 + f20 )

]
, ∀t ≥ 0,

(3.27)
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where e0 = 2k2m − c0, f0 = 4d0 − c20, g0 = 2a0 − c0 and

α3 =
k2ma0(εN(g20 + f 2

0 ) + 2b0εC(e0 − g0))
b0(k2m(g20 + f 2

0 )− a0(e20 + f 2
0 ) + 2k2ma0(e0 − g0))

,

β3 =
k2m(g20 + f 2

0 )(b0εC − a0εN)− a0b0εC(e20 + f 2
0 )

b0(k2m(g20 + f 2
0 )− a0(e20 + f 2

0 ) + 2k2ma0(e0 − g0))
,

γ3 =
2k2me0(g

2
0 + f 2

0 )(b0εC − a0εN) + a0(e
2
0 + f 2

0 )(εN(g20 + f 2
0 )− 2b0εCg0)

2b0f0((g20 + f 2
0 )k2m − a0(e20 + f 2

0 ) + 2k2ma0(e0 − g0))
.

Proof. System (3.24) or dX
dt

= AX, where X =

CD
N

, is homogeneous so there

is a trivial solution. Non-trivial solutions of (3.24) can be calculated with

eigenvalues and eigenvectors of A.

The eigenvalues of A are the solutions of the characteristic polynomial of A:

λ
(
λ2 + (k2 + k2m + a0 + b0)λ+ k2a0 + k2ma0 + k2mb0

)
= 0,

where a0 = K1k5m
K1+k5

and b0 = k5k1m
K1+k5

.

Thus, the eigenvalues of A are

λ1 = 0, λ2 =
−c0 −

√
c20 − 4d0

2
, λ3 =

−c0 +
√
c20 − 4d0

2
,

where c0 = k2 + k2m + a0 + b0 and d0 = k2a0 + k2ma0 + k2mb0.

For λ2 and λ3, we consider three cases: c20− 4d0 > 0, c20− 4d0 = 0, c20− 4d0 < 0.
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First, we find solutions for c20 − 4d0 > 0. Then, there are three distinct real

eigenvalues and we get the general solution,


C(t)

D(t)

N(t)

 = α1


1

k2
k2m

b0
a0

+β1 exp(λ2t)


1

k2
k2m+λ2

b0
a0+λ2

+γ1 exp(λ3t)


1

k2
k2m+λ3

b0
a0+λ3

 , ∀t ≥ 0,

(3.28)

with arbitrary constants α1, β1, and γ1.

To satisfy the initial condition, (C(0), D(0), N(0)) = (εC , 0, εN), let t = 0 in

(3.28), then

α1 + β1 + γ1 = εC ,

α1
k2
k2m

+ β1
k2

k2m + λ2
+ γ1

k2
k2m + λ3

= 0,

α1
b0
a0

+ β1
b0

a0 + λ2
+ γ1

b0
a0 + λ3

= εN .

Solving the linear algebraic system for α1, β1 and γ1, we obtain

α1 =
k2ma0(εN(λ2 + a0)(λ3 + a0) + b0εC(k2m − a0))

λ2λ3b0(k2m − a0)
,

β1 =
(λ2 + k2m)(λ2 + a0)(a0εN(λ3 + a0) + b0εC(k2m − a0))

λ2b0(a0 − k2m)(λ3 − λ2)
,

γ1 =
(λ3 + k2m)(λ3 + a0)(a0εN(λ2 + a0) + b0εC(k2m − a0))

λ3b0(k2m − a0)(λ3 − λ2)
.

(3.29)

The solution starting with the initial condition (C(0), D(0), N(0)) = (εC , 0, εN )

is (3.28) with α1, β1 and γ1 as defined in (3.29).
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Secondly, we assume that c20− 4d0 = 0. Then, there are two eigenvalues, λ1 = 0

and λ2 = − c0
2

with multiplicity 2. For the eigenvalue 0, we obtain the same

eigenvector as in the previous case, v1v1v1 =
(

1, k2
k2m

, b0
a0

)T
. For the eigenvalue

− c0
2

, we get a first eigenvector, v2v2v2 =
(

1, k2
k2m+λ2

, b0
a0+λ2

)T
. A second linearly

independent eigenvector ρρρ is obtained using the generalized eigenvector method:

(A− λ2)ρρρ = v2v2v2.

We obtain ρρρ =


0

− k2
(k2m+λ2)2

− b0
(a0+λ2)2

 . Then the general solution is


C(t)

D(t)

N(t)

 = α2


1

k2
k2m

b0
a0

+ β2 exp(λ2t)


1

k2
k2m+λ2

b0
a0+λ2



+ γ2

t exp(λ2t)


1

k2
k2m+λ2

b0
a0+λ2

+ exp(λ2t)


0

− k2
(k2m+λ2)2

− b0
(a0+λ2)2


 , ∀t ≥ 0

(3.30)

with arbitrary constants α2, β2, and γ2.

To satisfy the initial condition, the arbitrary constants are chosen to be solutions
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to the following linear algebraic system:

α2 + β2 = εC ,

α2
k2
k2m

+ β2
k2

k2m + λ2
− γ2

k2
(k2m + λ2)2

= 0,

α2
b0
a0

+ β2
b0

a0 + λ2
− γ2

b0
(a0 + λ2)2

= εN .

Hence, we obtain:

α2 =
k2ma0(εN(λ2 + a0)

2 + b0εC(k2m − a0))
λ22b0(k2m − a0)

,

β2 =
b0εC(k2m − a0)(λ22 − k2ma0)− k2ma0εN(λ2 + a0)

2

λ22b0(k2m − a0)
,

γ2 =
b0εC(k2m − a0)(λ2 + k2m)(λ2 + a0) + a0εN(λ2 + k2m)(λ2 + a0)

2

λ2b0(k2m − a0)
.

(3.31)

Consequently, the unique solution satisfying the initial condition, when c20 −

4d0 = 0, is (3.30) with α2, β2 and γ2 as defined in (3.31).

Finally, we consider that c20 − 4d0 < 0 and A has one zero eigenvalue and two

complex conjugate eigenvalues,
−c0±i
√

4d0−c20
2

, with the negative real part. The
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eigenvector corresponding to eigenvalue λ2 =
−c0−i
√

4d0−c20
2

is

vvv =


1

k2
k2m+λ2

b0
a0+λ2

 =


1

2k2

2k2m−c0−i
√

4d0−c20
2b0

2a0−c0−i
√

4d0−c20

 =


1

2k2(e0+if0)

e20+f
2
0

2b0(g0+if0)

g20+f
2
0

 =


1

2k2e0
e20+f

2
0

2b0g0
g20+f

2
0

+ i


0

2k2f0
e20+f

2
0

2b0f0
g20+f

2
0

 := v1v1v1 + iv2v2v2

where e0 = 2k2m − c0, f0 =
√

4d0 − c20 and g0 = 2a0 − c0.

Hence, the solution corresponding to λ2 is

xxx(t) = exp(λ2t)vvv. (3.32)

Then,

xxx(t) = exp(λ2t)vvv = exp

(
−c0

2
t

)(
cos

(
f0
2
t

)
− i sin

(
f0
2
t

))
(v1v1v1 + iv2v2v2)

= exp

(
−c0

2
t

)
(x1x1x1(t) + ix2x2x2(t)),
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where

x1x1x1(t) =


cos
(
f0
2
t
)

cos
(
f0
2
t
) (

2k2e0
e20+f

2
0

)
+ sin

(
f0
2
t
) (

2k2f0
e20+f

2
0

)
cos
(
f0
2
t
) (

2b0g0
g20+f

2
0

)
+ sin

(
f0
2
t
) (

2b0f0
g20+f

2
0

)


x2x2x2(t) =


− sin

(
f0
2
t
)

− sin
(
f0
2
t
) (

2k2e0
e20+f

2
0

)
+ cos

(
f0
2
t
) (

2k2f0
e20+f

2
0

)
− sin

(
f0
2
t
) (

2b0g0
g20+f

2
0

)
+ cos

(
f0
2
t
) (

2b0f0
g20+f

2
0

)


Note that if y = y1 + iy2y = y1 + iy2y = y1 + iy2 is the solution of y′ =y′ =y′ = Ayyy and A is a real matrix, then

both y1y1y1 and y2y2y2 are real solutions of y′ =y′ =y′ = Ayyy. Thus, the general solution is


C(t)

D(t)

N(t)

 = α3


1

k2
k2m

b0
a0

+ β3 exp

(
−c0

2
t

)
x1x1x1(t) + γ3 exp

(
−c0

2
t

)
x2x2x2(t), ∀t ≥ 0

(3.33)

with arbitrary constants α3, β3 and γ3.

To determine the values of the arbitrary constants α3, β3 and γ3 that satisfy

the initial condition, the following linear system must be solved:

α3 + β3 = εC ,

α3
k2
k2m

+ β3
2k2e0
e20 + f 2

0

+ γ3
2k2f0
e20 + f 2

0

= 0,

α3
b0
a0

+ β3
2b0g0
g20 + f 2

0

+ γ3
2b0f0
g20 + f 2

0

= εN .
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Its solution is:

α3 =
k2ma0(εN(g20 + f 2

0 ) + 2b0εC(e0 − g0))
b0(k2m(g20 + f 2

0 )− a0(e20 + f 2
0 ) + 2k2ma0(e0 − g0))

,

β3 =
k2m(g20 + f 2

0 )(b0εC − a0εN)− a0b0εC(e20 + f 2
0 )

b0(k2m(g20 + f 2
0 )− a0(e20 + f 2

0 ) + 2k2ma0(e0 − g0))
,

γ3 =
2k2me0(g

2
0 + f 2

0 )(b0εC − a0εN) + a0(e
2
0 + f 2

0 )(εN(g20 + f 2
0 )− 2b0εCg0)

2b0f0((g20 + f 2
0 )k2m − a0(e20 + f 2

0 ) + 2k2ma0(e0 − g0))
.

(3.34)

Consequently, the unique solution satisfying the initial condition, when c20 −

4d0 < 0, is (3.33) with α3, β3 and γ3 as defined in (3.34).

From dP
dt

= kpD, we get the following three expressions for P (t) by integrating

with respect to t with P (0) = 0.

1. c0 > 4d0

P (t) =kpk2

[
α1

k2m
t+ exp(λ2t)

(
β1

λ2(k2m + λ2)

)
+ exp(λ3t)

(
γ1

λ3(k2m + λ3)

)

−
(

β1
λ2(k2m + λ2)

)
−
(

γ1
λ3(k2m + λ3)

)]
, ∀t ≥ 0
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2. c0 = 4d0

P (t) =kpk2

[
α2

k2m
t+

β2
λ2(λ2 + k2m)

exp(λ2t)

−γ2 exp(λ2t)

(
(λ2t− 1)

λ22(λ2 + k2m)
− 1

λ2(λ2 + k2m)2

)

− β2
λ2(λ2 + k2m)

+ γ2

(
(λ2t− 1)

λ22(λ2 + k2m)
− 1

λ2(λ2 + k2m)2

)]
, ∀t ≥ 0

3. c0 < 4d0

P (t) =kpk2

[
α3

k2m
t+

4β3 exp
(
− c0

2 t
)

(c20 + f20 )(e
2
0 + f20 )

(
(e0 − c0)f0 sin

(
f0
2
t

)
− (c0e0 + f20 ) cos

(
f0
2
t

))

+
4γ3 exp

(
− c0

2 t
)

(c20 + f20 )(e
2
0 + f20 )

(
(c0e0 + f20 ) sin

(
f0
2
t

)
+ (e0 − c0)f0 cos

(
f0
2
t

))

+
4β3(c0e0 + f20 ) + 4γ3(c0 − e0)f0

(c20 + f20 )(e
2
0 + f20 )

]
, ∀t ≥ 0.

3.4.2 Asymptotic behavior of Model-N

Before discussing equilibria of Model-N, the equation dP
dt

is decoupled from

system (3.21) similarly to other models of group 2 and it is called reduced

Model-N.

Note that dE
dt

+ dC
dt

+ dD
dt

+ dN
dt

= 0 and dR
dt

+ dC
dt

+ dD
dt

+ dN
dt

= 0, so by integrating
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with respect to time t we obtain:

E(t) + C(t) +D(t) +N(t) = cO, R(t) + C(t) +D(t) +N(t) = cR.

for all t ≥ 0. These two equations are referred as the conservation laws of

Model-N. These laws are used to further reduce the system of equations:

dC

dt
= k1(cO − (C +D +N))(cR − (C +D +N))− k1mC − k2C + k2mD,

dD

dt
= k2C − k2mD,

dN

dt
= k5(cO − (C +D +N))(cR − (C +D +N))− k5mN,

(3.35)

and we get C(t) +D(t) +N(t) ≤ min(cO, cR) for all t ≥ 0.

Theorem 3.4.2. The unique positive equilibrium of reduced Model-N is

(E∗, R∗, C∗, D∗, N∗)

= (cO − C∗ −D∗ −N∗, cR − C∗ −D∗ −N∗ ,

a0(cO + cR) + 1
b1
−
√(

a0(cO + cR) + 1
b1

)2
− 4a20cOcR

2a20
,

b2

a0(cO + cR) + 1
b1
−
√(

a0(cO + cR) + 1
b1

)2
− 4a20cOcR

2a20

 ,

b5
b1

a0(cO + cR) + 1
b1
−
√(

a0(cO + cR) + 1
b1

)2
− 4a20cOcR

2a20


 ,

(3.36)
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where a0 =
(

1 + b2 + b5
b1

)
, b1 = K1

k1m
, b2 = k2

k2m
, b5 = k5

k5m
and the equilibrium is

locally asymptotically stable.

Proof. Let dC
dt

= dD
dt

= dN
dt

= 0 in (3.35). Then we get the system:

0 =K1(cO − (C∗ +D∗ +N∗))(cR − (C∗ +D∗ +N∗))

− k1mC∗ − k2C∗ + k2mD
∗,

(3.37a)

0 =k2C
∗ − k2mD∗, (3.37b)

0 =k5(cO − (C∗ +D∗ +N∗))(cR − (C∗ +D∗ +N∗))− k5mN∗. (3.37c)

By substituting (3.37b) into (3.37a),

(cO − (C∗ +D∗ +N∗))(cR − (C∗ +D∗ +N∗)) =
k1m
K1

C∗.

By arranging (3.37b) and (3.37c), we get

D∗ =
k2
k2m

C∗ (3.39)

and

(cO − (C∗ +D∗ +N∗))(cR − (C∗ +D∗ +N∗)) =
k5m
k5

N∗.

Then we get the following equations:

k1m
K1

C∗ =
k5m
k5

N∗ ⇒ N∗ =
k1mk5
K1k5m

C∗, (3.40)
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then,

C∗ +D∗ +N∗ = C∗
(

1 +
k2
k2m

+
k1mk5
K1k5m

)
= a0C

∗, (3.41)

where a0 =
(

1 + k2
k2m

+ k1mk5
K1k5m

)
> 0. Substitute (3.41) to (3.37a), then

0 = (cO − a0C∗)(cR − a0C∗)−
k1m
K1

C∗.

Hence, C∗ satisfies the following quadratic equation:

a20C
∗2 −

(
a0(cO + cR) +

1

b1

)
C∗ + cOcR = 0,

1

b1
=
k1m
K1

≥ 0, (3.42)

having for solutions

C1 =
a0(cO + cR) + 1

b1
−
√(

a0(cO + cR) + 1
b1

)2
− 4a20cOcR

2a20
, (3.43)

C2 =
a0(cO + cR) + 1

b1
+

√(
a0(cO + cR) + 1

b1

)2
− 4a20cOcR

2a20
.

Note that the solutions have to satisfy the following properties: real, positive

and based on conservation laws:

C∗ +D∗ +N∗ = a0C
∗ ≤ min(cO, cR).

Both solutions, C1 and C2, are real as(
a0(cO + cR) +

1

b1

)2

− 4a20cOcR > (a0(cO + cR))2 − 4a20cOcR

= (a0(cO − cR))2 ≥ 0,
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and positive as

a0(cO + cR) +
1

b1
>

√(
a0(cO + cR) +

1

b1

)2

− 4a20cOcR ≥ 0.

Consider C∗ = C2, then

C∗ +D∗ +N∗ = a0C
∗ = a0C2 > a0

(
a0(cO + cR)

2a20

)
=
cO + cR

2
≥ min(cO, cR).

Hence, C∗+D∗+N∗ ≥ min(cO, cR) and it is a contradiction to the conservation

laws. Thus, C∗ 6= C2.

Consider C∗ = C1 and prove that C∗+D∗+N∗ ≤ min(cO, cR). Let min(cO, cR) =

m, then (4a20(cO + cR)m− 4a20m
2 − 4a20cOcR) = 0.

4a0
1

b1
m ≥ 0,

4a0
1

b1
m+ (4a20(cO + cR)m− 4a20m

2 − 4a20cOcR) ≥ 0,

4a0m

(
a0(cO + cR) +

1

b1

)
− 4a20m

2 ≥ 4a20cOcR,

(
a0(cO + cR) +

1

b1

)2

− 4a0m

(
a0(cO + cR) +

1

b1

)
+ 4a20m

2 ≤
(
a0(cO + cR) +

1

b1

)2

− 4a20cOcR,

(
a0(cO + cR) +

1

b1

)
− 2a0m ≤

√(
a0(cO + cR) +

1

b1

)2

− 4a20cOcR,

a0C
∗ =

(
a0(cO + cR) +

1
b1

)
−
√(

a0(cO + cR) +
1
b1

)2
− 4a20cOcR

2a0
≤ m = min(cO, cR).
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Thus, C∗ +D∗ +N∗ = a0C
∗ ≤ min(cO, cR), then C∗ = C1.

Hence, system (3.35) has a unique equilibrium (C∗, D∗, N∗) with C∗ = C1

defined in (3.43), D∗ defined in (3.39) and N∗ defined in (3.40).

To determine the stability of the equilibrium, the Jacobian of system (3.35) is

evaluated at the equilibrium.

JN(C∗, D∗, N∗) =
[
A1 A2 A3

]
, (3.44)

where the columns are

A1 =


−K1(cO − C∗ −D∗ −N∗)−K1(cR − C∗ −D∗ −N∗)− k1m − k2

k2

−k5(cO − C∗ −D∗ −N∗)− k5(cR − C∗ −D∗ −N∗)

 ,

A2 =


−K1(cO − C∗ −D∗ −N∗)−K1(cR − C∗ −D∗ −N∗) + k2m

−k2m
−k5(cO − C∗ −D∗ −N∗)− k5(cR − C∗ −D∗ −N∗)

 ,

A3 =


−K1(cO − C∗ −D∗ −N∗)−K1(cR − C∗ −D∗ −N∗)

0

−k5(cO − C∗ −D∗ −N∗)− k5(cR − C∗ −D∗ −N∗)− k5m

 .

To determine the sign of the eigenvalues of (3.44), we use the Routh-Hurwitz

criterion [21]; but first we simplify the expression of the matrix. From the

conservation laws of Model-N, we replace cO−C∗−D∗−N∗ and cR−C∗−D∗−N∗
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by E∗ and R∗, respectively. Then the Jacobian JN(C∗, D∗, N∗) is


−K1(E

∗ +R∗)− k1m − k2 −K1(E
∗ +R∗) + k2m −K1(E

∗ +R∗)

k2 −k2m 0

−k5(E∗ +R∗) −k5(E∗ +R∗) −k5(E∗ +R∗)− k5m

 .

The characteristic polynomial of JN(C∗, D∗, N∗) is

pJN (C∗, D∗, N∗) = det(xI − JN(C∗, D∗, N∗)) = x3 + c1x
2 + c2x+ c3,

where c1 = (E∗ +R∗)(K1 + k5) + k1m + k2 + k2m + k5m,

c2 = (E∗ +R∗)((k2 + k2m + k5m)K1 + (k1m + k2 + k2m)k5)

+ (k1m + k2 + k2m)k5m + k1mk2m,

c3 = (E∗ +R∗)((k2 + k2m)K1k5m + k1mk2mk5) + k1mk2mk5m.

Since all the parameters and E∗ + R∗ are positive, we get c1 > 0 and c3 > 0.

All the terms of c1, c2 and c3 are positive. By simple comparison, all the

terms of c3 can be found in c1c2 and then c3 is cancelled in c1c2 − c3. For

example, the term (E∗+R∗)(k2 +k2m)K1k5m in c3 can be made by multiplying

(E∗ + R∗)(k2 + k2m)K1 in c2 by k5m in c1. And so on, all the other terms of

c3 are cancelled. Hence, we satisfy the last condition of the Routh-Hurwitz

criterion c1c2 − c3 > 0. Consequently, the equilibrium is locally asymptotically

stable by Routh-Hurwitz criterion.

Hence, the reduced Model-N has a unique equilibrium (3.36), which is locally

asymptotically stable.
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3.5 Group 4

Finally, the multi-binding models, Model-M, Model-MR and Model-MC, are

mathematically analyzed. We deal with only Model-M in this section because

Model-M, Model-MR and Model-MC only differ from the use of a dsRNA

length dependent binding rate for K1 in the version MR and MC. As the

dsRNA length is only a parameter, the nature of the system does not change.

In the ODE system of Model-M, (2.12), the equation dP
dt

only depends on Di,

so it is decoupled.

dE

dt
= −K1ER + k1mD1 +

n−1∑
i=1

[
k(i+1)bmDi+1 − k(i+1)bDiE

]
,

dR

dt
= −K1ER + k1mD1,

dD1

dt
= K1ER− k1mD1 + k2bmD2 − k2bD1E,

dDj

dt
= kjbDj−1E − kjbmDj + k(j+1)bmDj+1 − k(j+1)bDjE,

j ∈ {2, 3, · · · , n− 1},

dDn

dt
= knbDn−1E − knbmDn.

(3.45)

Note that (3.45), dE
dt

+ dD1

dt
+2dD2

dt
+· · ·ndDn

dt
= 0 and dR

dt
+ dD1

dt
+ dD2

dt
+· · · dDn

dt
= 0,

so by integrating with respect to time t, we obtain:

E(t) +
n∑
i=1

(iDi(t)) = cO, R(t) +
n∑
i=1

(Di(t)) = cR, (3.46)
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for all t ≥ 0. These two equations are referred as the conservation laws of

Model-M.

Theorem 3.5.1. ODE system (3.45) has a unique positive equilibrium (E∗, R∗, D∗1, . . . , D
∗
n)

with E∗ being the unique positive solution of

bnE
n+1 + En (bn−1 + bn(ncR − cO)) + · · ·+ E (1 + b1(cR − cO))− cO = 0,

where bn =
n∏
i=1

ai with a1 =
K1

k1m
and al =

klb
klbm

, l ∈ {2, 3, . . . , n},

R∗ =
cR

1 + b1E∗ + b2E∗
2 + · · ·+ bnE∗

n ,

Di =
cRbiE

∗i

1 + b1E∗ + b2E∗
2 + · · ·+ bnE∗

n , i ∈ {1, 2, · · · , n}.

(3.47)

Proof. Let dE
dt

= dR
dt

=
dDj

dt
= 0, j ∈ {1, 2, · · · , n} in (3.45). Then, we obtain:

0 = −K1E
∗R∗ + k1mD

∗
1 +

n−1∑
i=1

[
k(i+1)bmD

∗
i+1 − k(i+1)bD

∗
iE
∗] ,

0 = −K1E
∗R∗ + k1mD

∗
1, (3.48a)

0 = K1E
∗R∗ − k1mD∗1 + k2bmD

∗
2 − k2bD∗1E∗, (3.48b)

0 = kjbD
∗
j−1E

∗ − kjbmD∗j + k(j+1)bmD
∗
j+1 − k(j+1)bD

∗
jE
∗, j ∈ {2, 3, · · · , n− 1},

0 = knbD
∗
n−1E

∗ − knbmD∗n.

K1

k1m
E∗R∗ = D∗1 is obtained from (3.48a). By substituting (3.48a) into (3.48b),
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we get

−k2bD∗1E∗ + k2bmD
∗
2 = 0⇒ k2b

k2bm
E∗D∗1 = D∗2.

Similarly we get the following equations,

K1

k1m
E∗R∗ = D∗1,

k2b
k2bm

E∗D∗1 = D∗2, · · · , knb
knbm

E∗D∗n−1 = D∗n.

Let K1

k1m
= a1,

k2b
k2bm

= a2, · · · , knb

knbm
= an. Then

a1E
∗R∗ = D∗1,

a2E
∗D∗1 = D∗2 = a2a1E

∗2R∗ = D∗2,

...

anan−1 · · · a2a1E∗nR∗ = D∗n.

Let
n∏
i=1

ai = bn. Then we get equations for D∗j as follows:

D∗j =

j∏
i=1

aiE
∗jR∗ = bjE

∗jR∗. (3.49)

where 1 ≤ j ≤ n.

The following two equations are valid by conservation laws of Model-M:

E∗ +
n∑
i=1

(iD∗i ) = cO, R∗ +
n∑
i=1

(D∗i ) = cR. (3.50)

By substituting (3.49) into (3.50), we get

E∗ + b1E
∗R∗ + 2b2E

∗2R∗ + · · ·+ nbnE
∗nR∗ = cO, (3.51a)

R∗ + b1E
∗R∗ + b2E

∗2R∗ + · · ·+ bnE
∗nR∗ = cR. (3.51b)
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From (3.51b), R∗ = cR
1+b1E∗+b2E∗2+···+bnE∗n and it is plugged into (3.51a). Then

we get the following equation for E∗:

E∗ +R∗
(
b1E

∗ + 2b2E
∗2 + · · ·+ nbnE

∗n) = cO,

E∗ +
cR

1 + b1E∗ + b2E∗
2 + · · ·+ bnE∗

n

(
b1E

∗ + 2b2E
∗2 + · · ·+ nbnE

∗n) = cO.

Hence, E∗ satisfies the following polynomial equation:

bnE
∗n+1 + E∗n (bn−1 + bn(ncR − cO)) + · · ·+ E∗ (1 + b1(cR − cO))− cO = 0.

(3.53)

The coefficient of the term of degree 0 is −cO < 0; in the experiments cR > cO

and recall that n is a positive integer. Hence, there is only one change in sign

in the coefficients of the polynomial. Therefore, by the Descartes' rule of signs,

we can conclude there is only one positive real solution E∗ to the polynomial

equation (3.53). Thus we get the unique positive equilibrium (3.47).

The system of n multi-binding model, (3.45), has n+ 2 equations; however,

by using the conservations of Model-M, the system can be reduced to the
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following n-dimensional ODE system.

dD1

dt
= K1

(
cO −

n∑
i=1

(iDi)

)(
cR −

n∑
i=1

(Di)

)
− k1mD1 + k2bmD2 − k2bD1

(
cO −

n∑
i=1

(iDi)

)
,

dDj

dt
= kjbDj−1

(
cO −

n∑
i=1

(iDi)

)
− kjbmDj + k(j+1)bmDj+1 − k(j+1)bDj

(
cO −

n∑
i=1

(iDi)

)
,

j ∈ {2, 3, · · · , n− 1},

dDn

dt
= knbDn−1

(
cO −

n∑
i=1

(iDi)

)
− knbmDn.

(3.54)

In this thesis, the cases, n = 1, n = 2 and n = 3, are only investigated because

the longest length of dsRNA in the experimental data is 120bp that allows

maximum 3 OAS2 to bind to a dsRNA. The case n = 1 is Model-E, so the

analyses of double (n = 2) and triple (n = 3) binding of OAS2 to dsRNA are

only carried out here.

Based on (3.54) and the conservation laws, the reduced ODE system of Model-M

with n = 2 is

dD1

dt
=K1(cO −D1 − 2D2)(cR −D1 −D2)− k1mD1

+ k2bmD2 − k2bD1(cO −D1 − 2D2),

dD2

dt
=k2bD1(cO −D1 − 2D2)− k2bmD2.

(3.55)

Corollary 3.5.1.1. Model-M with n = 2 has a unique positive equilibrium
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(E∗, R∗, D∗1, D
∗
2) with E∗ being the unique positive solution of

b2E
3 + E2(b1 + b2(2cR − cO)) + E(1 + b1(cR − cO))− cO = 0,

where b2 = a1a2 with b1 = a1 =
K1

k1m
and a2 =

k2b
k2bm

,

R∗ =
cR

1 + b1E∗ + b2E∗
2 ,

D∗i =
cRbiE

∗i

1 + b1E∗ + b2E∗
2 , i ∈ {1, 2}.

(3.56)

and the equilibrium is globally asymptotically stable.

Proof. The equilibrium of Model-M with n = 2 is obtained by substituting

n = 2 to (3.47). To determine the stability, we get the Jacobian, JM2 , of system

(3.55):

JM2 =
[
A1 A2

]
,

where

A1 =

−K1(cO −D1 − 2D2)−K1(cR −D1 −D2)− k1m − k2b(cO −D1 − 2D2) + k2bD1

k2b(cO −D1 − 2D2)− k2bD1

 ,

A2 =

−K1(cO −D1 − 2D2)− 2K1(cR −D1 −D2) + k2bm + 2k2bD1

−2k2bD1 − k2bm

 .

Note that, from (3.46), cO−D1(t)−2D2(t) = E(t) and cR−D1(t)−D2(t) = R(t)

for all t ≥ 0 so cO − D∗1 − 2D∗2 = E∗ > 0 and cR − D∗1 − D∗2 = R∗ > 0. By
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using cO −D∗1 − 2D∗2 = E∗ and cR −D∗1 −D∗2 = R∗ to determine the sign of

determinant and trace of JM2 more easily, we obtain the following Jacobian

evaluated at the equilibrium:

JM2(D
∗
1, D

∗
2)

=

−K1E
∗ −K1R

∗ − k1m − k2bE∗ + k2bD
∗
1 −K1E

∗ − 2K1R
∗ + k2bm + 2k2bD

∗
1

k2bE
∗ − k2bD∗1 −2k2bD

∗
1 − k2bm

 .

Then we get the determinant of JM2 :

det(JM2(D
∗
1, D

∗
2))

= (K1E
∗ +K1R

∗ + k1m)(2k2bD
∗
1 + k2bm) + (K1E

∗ + 2K1R
∗)(k2bE

∗ − k2bD∗1)

= k2bm(K1E
∗ +K1R

∗ + k1m) + k2bE
∗(K1E

∗ + 2K1R
∗) + k2bD

∗
1(K1E

∗ + 2k1m) > 0,

and the trace of JM2 :

Tr(JM2(D
∗
1, D

∗
2)) = −(K1E

∗ +K1R
∗ + k2bE

∗ + k2bD
∗
1 + k1m + k2bm) < 0,

since E∗ > 0, R∗ > 0 and D∗1 > 0. Thus the equilibrium of (3.55) is locally

asymptotically stable.

To determine the global stability, Bendixson's criterion and the Poincaré-

Bendixson trichotomy are used. Since E(t) ≥ 0, R(t) ≥ 0 and D1(t) ≥ 0 for all

t ≥ 0, we have

∂
(
dD1

dt

)
∂D1

+
∂
(
dD2

dt

)
∂D2

= −(K1E
∗ +K1R

∗ + k2bE
∗ + k2bD

∗
1 + k1m + k2bm) < 0, ∀t ≥ 0.
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Thus, there is no periodic solutions in system (3.55). Moreover, there is only

one equilibrium and the solutions are bounded by the conservation laws of

Model-M, (3.46), so the equilibrium of (3.55) is globally asymptotically stable

by the Poincaré-Bendixson trichotomy.

Since cO −D∗1 − 2D∗2 = E∗ and cR −D∗1 −D∗2 = R∗, the equilibrium (3.56) of

Model-M with n = 2 is globally asymptotically stable.

From (3.54) and conservation laws, the reduced ODE system of Model-M

with n = 3 is

dD1

dt
=K1(cO −D1 − 2D2 − 3D3)(cR −D1 −D2 −D3)− k1mD1

+ k2bmD2 − k2bD1(cO −D1 − 2D2 − 3D3),

dD2

dt
=k2bD1(cO −D1 − 2D2 − 3D3)− k2bmD2 + k3bmD3

− k3bD2(cO −D1 − 2D2 − 3D3),

dD3

dt
=k3bD2(cO −D1 − 2D2 − 3D3)− k3bmD3.

(3.57)

Corollary 3.5.1.2. ODE system (3.57) has a unique positive equilibrium
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(E∗, R∗, D∗1, D
∗
2, D

∗
3) with E∗ being the unique positive solution of

b3E
4 + E3(b2 + b3(3cR − cO)) + E2(b1 + b2(2cR − cO)) + E(1 + b1(cR − cO))− cO = 0,

where bn =
n∏
i=1

ai with a1 =
K1

k1m
and al =

klb
klbm

, l ∈ {2, 3},

R∗ =
cR

1 + b1E∗ + b2E∗
2 + b3E∗

3 ,

D∗i =
cRbiE

∗i

1 + b1E∗ + b2E∗
2 + b3E∗

3 , i ∈ {1, 2, 3}.

(3.58)

and the equilibrium is locally asymptotically stable.

Proof. The equilibrium of Model-M with n = 3 is obtained by substituting

n = 3 to (3.47). For the stability, from system (3.57), we get the Jacobian JM3

evaluated at the equilibrium.

JM3(D
∗
1, D

∗
2, D

∗
3) =

[
A1 A2 A3

]
,

where

A1 =


−K1(cO−D∗

1−2D∗
2−3D∗

3)−K1(cO−D∗
1−D∗

2−D∗
3)−k1m−k2b(cO−D∗

1−2D∗
2−3D∗

3)+k2bD
∗
1

k2b(cO −D∗1 − 2D∗2 − 3D∗3)− k2bD∗1 + k3bD
∗
2

−k3bD∗2

 ,

A2 =


−K1(cO −D∗1 − 2D∗2 − 3D∗3)− 2K1(cO −D∗1 −D∗2 −D∗3) + k2bm + 2k2bD

∗
1

−2k2bD
∗
1 − k2bm − k3b(cO −D∗1 − 2D∗2 − 3D∗3) + 2k3bD

∗
2

k3b(cO −D∗1 − 2D∗2 − 3D∗3)− 2k3bD
∗
2

 ,
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A3 =


−K1(cO −D∗1 − 2D∗2 − 3D∗3)− 3K1(cO −D∗1 −D∗2 −D∗3) + 3k2bD

∗
1

−3k2bD
∗
1 + k3bm + 3k3bD

∗
2

−3k3bD
∗
2 − k3bm

 .

Note that, from (3.46), cO −D1(t)− 2D2(t)− 3D3(t) = E(t) and cR −D1(t)−

D2(t) − D3(t) = R(t) for all t ≥ 0 so cO − D∗1 − 2D∗2 − 3D∗3 = E∗ and

cR − D∗1 − D∗2 − D∗3 = R∗. We replace cO − D∗1 − 2D∗2 − 3D∗3 = E∗ > 0 and

cR−D∗1−D∗2−D∗3 = R∗ > 0 to determine the sign of coefficients of characteristic

polynomial of JM3 more easily. Hence, the Jacobian is now

JM3(D
∗
1, D

∗
2, D

∗
3)

=

−K1E∗ −K1R∗ − k1m − k2bE∗ + k2bD
∗
1 −K1E∗ − 2K1R∗ + k2bm + 2k2bD

∗
1 −K1E∗ − 3K1R∗ + 3k2bD

∗
1

k2bE
∗ − k2bD∗

1 + k3bD
∗
2 −2k2bD∗

1 − k2bm − k3bE∗ + 2k3bD
∗
2 −3k2bD∗

1 + k3bm + 3k3bD
∗
2

−k3bD∗
2 k3bE

∗ − 2k3bD
∗
2 −3k3bD∗

2 − k3bm.

,

and its characteristic polynomial is

λ3 + a1λ
2 + a2λ+ a3 = 0,
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where

a1 =(K1 + k2b + k3b)E
∗ +K1R

∗ + k2bD
∗
1 + k3bD

∗
2 + k1m + k2bm + k3bm,

a2 =(K1k2b +K1k3b + k2bk3b)E
∗2

+ ((2k2b + k3b)K1R
∗ + (K1 + 2k3b)k2bD

∗
1 + (K1 + k2b)k3bD

∗
2

+K1(k2bm + k3bm) + k1mk3b + k2bk3bm)E∗

+ (k2bm + k3bm)K1R
∗ + (2k1m + k3bm)k2bD

∗
1 + (k1m + 2k2bm)k3bD

∗
2

+ k1mk2bm + k1mk3bm + k2bmk3bm,

a3 =(K1k2bk3b)E
∗3 + (3K1k2bk3bR

∗ + 2K1k2bk3bD
∗
1 +K1k2bk3bD

∗
2 +K1k2bk3bm)E∗2

+ (2K1k2bk3bmR
∗ + (K1k3bm + 3k1mk3b)k2bD

∗
1 + 2K1k2bmk3bD

∗
2 +K1k2bmk3bm)E∗

+K1k2bmk3bmR
∗ + 2k1mk2bk3bmD

∗
1 + 3k1mk2bmk3bD

∗
2 + k1mk2bmk3bm.

Since E∗, R∗, D∗1, D
∗
2, K1, k2b, k3b, k1m, k2bm, and k3bm are positive, a1 > 0

and a3 > 0. All the terms of a3 also can be made by multiplication of parts of

a1 and a2 and only positive terms are remained, since all the terms of a1 and

a2 are positive. Hence, we satisfy a1a2 > a3.

By using Routh-Hurwitz criterion, we know that the unique equilibrium of

(3.57) is locally asymptotically stable. Then, we get the equilibrium (3.58) of

Model-M with n = 3 by the conservation laws of Model-M; this equilibrium is

locally asymptotically stable.
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3.6 About the Product

In this chapter, we have obtained the exact solution of Model-S, quasi equilib-

rium approximation of Model-N and equilibria of Model-E, Model-ED, Model-N

and Model-M. Based on these analyses, we summarize the dynamics of P (t)

for each model and illustrate the behaviour of the product here.

First, Model-S has the unique solution, P (t) = kpcOcRt, for all t ≥ 0; P (t) is

linearly proportional to kp, cO, cR and t.

Assume that t is sufficiently large, t > T , then all systems dX
dt

for group 2 to 4

approach an equilibrium. Integrating with respect to time, dP
dt

= g(D∗, D∗j ) with

j ∈ {1, . . . , n} and P (T ) = ρ0, where ρ0 ≥ 0, an expression of the production

of P is obtained as a function of time for each model and assumption.

First, the product under the assumption of Model-E follows:

P (t) =
kp
2

(cO + cR) +
1

b1
−

√(
cO + cR +

1

b1

)2

− 4cOcR

 (t− T ) + ρ0,

(3.59)

for all t > T , where b1 = K1

k1m
, so P (t) linearly increases with time t. Replacing

K1 with k1σ1,2(L) for Model-ER and Model-EC gives

P (t) =
kp
2

(cO + cR) +
1

b1σ1,2(L)
−

√(
cO + cR +

1

b1σ1,2(L)

)2

− 4cOcR

 (t−T )+ρ0,

(3.60)
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where b1 = k1
k1m

, for all t > T . The product P (t) increases as σ1,2(L) increases

when L gets larger since dP
dσ1,2(L)

> 0 for all t ≥ 0 and dσ1,2(L)

dL
> 0 for all

L > 2RO. Hence, P (t) well reflects the relation between the length of dsRNA

and the amount of product: if the length of dsRNA increases, the amount of

product increases.

When considering non-productive bindings in Model-N, the product follows

P (t)=
kpb2

2(1+b2+
b5
b1

)

(cO+cR)+ 1

b1(1+b2+
b5
b1

)
−

√√√√√
(cO+cR)+ 1

b1(1+b2+
b5
b1

)

2

−4cOcR

(t−T )+ρ0,

(3.61)

for all t > T , with the association constants b1 = K1

k1m
, b2 = k2

k2m
and b5 = k5

k5m
. By

differentiating with respect to bi, we obtain dP
db1

> 0, dP
db2

> 0 and dP
db5

< 0. Hence,

increasing the association constants of the two-step bindings will promote the

production whereas the more non-productive stages the less product.

We also have assumed a quasi-steady-state in Model-N, which hypothesizes

that the enzyme is very diligent and dE
dt
≈ 0 in t > ε with 0 < ε� 1. Under this

assumption, we obtained three different forms for the solution, (3.25), (3.26)

and (3.27), depending on parameter values. For t > t0 > ε, the contributions to

solutions associated to negative eigenvalues or with negative real part vanish.

Hence, for t > t0, the three forms of solutions overlap and correspond to the

contribution associated with the zero eigenvalue. Hence,

P (t) ≈ kpb2(
1 + b2 + b5

b1

)(εC + εN)t, ∀t ≥ t0,
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where b1 = K1

k1m
, b2 = k2

k2m
and b5 = k5

k5m
are association constants and εC and εN

are concentrations of intermediate stages C and N at t = ε. Similar to (3.61),

we have dP
db1

> 0, dP
db2

> 0 and dP
db5

< 0.

In the long run, the two equations for P in Model-E (3.59) and Model-N (3.61)

are similar. However, in (3.61), we have b5 such that dP
db5

< 0 for all t ≥ 0. Hence,

since b5 is the association constant for the non-productive binding stages, the

non-productive bindings play a role of inhibitor in the OAS2 activation by

making the process slower.

Model-ED1, which assumes the degradation of enzyme, Model-ED2, which

assumes the degradation of complex, and Model-ED3, which assumes the

degradations of both enzyme and complex, have a unique equilibrium, D∗ =

0. Hence, for models with degradations, P (t) = ρ0 as t > T . Thus, the

concentration of P will be a constant as t > T . From Model-ED1, Model-ED2

and Model-ED3, we know that if there is degradation of enzyme, complex or

both, then the concentration of the product will reach a plateau after some

time.

When multiple bindings are considered as in Model-M, the product follows:

P (t) = kp

n∑
i=1

iD∗i (t− T ) + ρ0 = kpE
∗R∗

(
b1 + 2b2E

∗ + · · ·+ nbnE
∗n−1) (t− T ) + ρ0

= kpa1E
∗R∗

(
1 + 2a2E

∗ + · · ·+ n
n∏
i=2

aiE
∗n−1

)
(t− T ) + ρ0,
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for all t > T , where,
n∏
i=1

ai = bn, a1 = K1

k1m
and al = klb

klbm
, l ∈ {2, 3, . . . , n}.

Constants bi = K1k2b···kib
k1mk2bm···kibm

, i ∈ {1, 2, . . . , n} are the product of the association

constants (ai) of multiple subsequent OAS2 bindings to the same dsRNA. They

can be interpreted as chance of having i OAS2 attached to the same dsRNA.

If kib
k1bm

> 1, then the total amount of the product increases; if kib
k1bm

< 1, the

total amount of the product decreases. By the definition of bi, the association

constant of the first binding (a1) is the most influential of the contributions to

the dynamics of the product.
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Chapter 4

Numerical Investigations

In this chapter, we fit responses of models introduced in Chapter 2 to experi-

mental data from McKenna's lab to parametrize the models. After fitting every

model to data, we use Akaike criterion and weights to compare the models

and select the most suitable model to represent the experimental data. In

the process, the shortcomings and complements of each model are explained

highlighting the development process of the collection of models.

First, the fitting procedures are explained and fitting results are then discussed

for each model. Two cost functions are used in this chapter. Both cost functions

are based on the square sum of differences between the predicted concentrations

of models and the observed concentrations of the experimental data. Let the

square sum of the differences be called RSS (the residual sum of squares).

The first cost function is calculated for a given length, lk, and all five concen-

trations of dsRNA at all five time points: the parameters are estimated on 25

79
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observation points:

RSSlk(ppp) =
5∑
i=1

(
5∑
j=1

(
Pcj ,lk(ppp, ti)−Dti,cj ,lk

)2)
, (4.1)

where ppp is the parameter set, ppp = (K1 or k1, k1m, . . . , kp), Pcj ,lk(ppp, ti) is the

predicted concentration of the product (solution of model) at time ti, for a

concentration of dsRNA cj = cR and the length of dsRNA lk = L, Dti,cj ,lk

is the experimental concentration of the product at ti, cj and lk. Recall that

ti ∈ {t1 = 5min, t2 = 10min, t3 = 15 min, t4 = 20min, t5 = 30min} and cj ∈

{c1 = 0.5µg/mL, c2 = 1µg/mL, c3 = 2µg/mL, c4 = 4µg/mL, c5 = 8µg/mL}.

The second cost function quantifies the errors for all five concentrations and

seven lengths of dsRNA at all five time points. Parameters are estimated over

175 observation points. The second cost function is:

RSS(ppp) =
7∑

k=1

RSSlk(ppp) =
7∑

k=1

(
5∑
i=1

(
5∑
j=1

(
Pcj ,lk(ppp, ti)−Dti,cj ,lk

)2))
, (4.2)

where ppp is the parameter set, ppp = (K1 or k1, k1m, . . . , kp), Pcj ,lk(ppp, ti) is the

predicted concentration of the product at ti, cj = cR and lk = L, Dti,cj ,lk is

the experimental concentration of the product at ti, cj and lk. Recall that

lk ∈ {l1 = 40bp, l2 = 50bp, l3 = 60bp, l4 = 70bp, l5 = 80bp, l6 = 90bp,

l7 = 120bp}.

To find the estimates p̂̂p̂p of parameter values, we solve RSS(p̂̂p̂p) = min
ppp
RSS(ppp).

This optimization problem is solved using a genetic algorithm developed in
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the R package GA. The two cost functions return RSS for the parameter values

ppp. The package GA chooses the best parameter set to make RSS as small as

possible among candidates of parameter sets by stochastic optimisation.

The package GA uses several genetic operators to find better parameter sets

than the previous generation's best parameter set. For this genetic algorithm,

we choose the following options: popSize=100, pcrossover=0.5, pmutation=0.5,

maxiter=300, run=100, lower=0 and upper=50. In one generation, the program

chooses 100 random candidates of parameter set (popSize=100) to find the best

set of that generation. The probability of crossover is 0.8 and the probability

of mutation is 0.1 as a default setting. However, we use the probability of

crossover (pcrossover=0.5) and mutation (pmutation=0.5) to find more suitable

parameter sets, which are not located in the neighborhood of the previous best

set. We set 300 generations (maxiter=300) based on some test simulations,

300 is the best values for the number of generations. If the best set does not

change in 100 generations, the simulation is stopped (run=100). Moreover, we

set upper bounds for parameters, upper=50. All the parameters are positive,

so the lower limit of parameters is set to 0 (lower=0).

One simulation returns one parameter set, which is the best parameters having

the smallest RSS through 300 generations. We carry out 50 independent

simulations to get 50 parameter sets, so we compute the average, standard

deviation (SD) and interval for reaction rates and affinities. We call “the best

parameter set” the set of parameter allowing the smallest RSS among the 50

results.
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4.1 Models versus experimental data

4.1.1 Model-S

Figure 4.1: The experimental data: concentrations of product as a function of
cR with fixed t.

In the previous chapter for Model-S, we found that the solution for P (t)

(3.2) is not only a linear function of t but also a linear function of cR if t is

fixed and cR is varying. However, for different times, Figure 4.1 shows that, in

the experimental data, the change of the concentration of P is not linear in

cR. Thus, Model-S is not a proper model to explain the activation of OAS2 by

dsRNA, as it is wrongly accommodated the effects of dsRNA concentrations,

cR.
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4.1.2 Fitting: all concentrations at one length

Because the general enzyme kinetics have no length dependency, we firstly

fix the length at lk and carry out fittings for all models (Model-E, Model-

ED, Model-N and Model-M) using the cost function (4.1). Since the length

binding rates are computed at one length, they are dealt as constants, such

that K1 = k1σ1(L) = k1σ2(L) with L = lk. Hence, outputs of Model-E, Model-

ER and Model-EC are the same. Same holds for Model-M, Model-MR and

Model-MC. For illustration, the length lk is chosen equal to 120bp, because it

gives the most clear fitting results. Graphs of predicted concentrations, shown

in Figure 4.2, are obtained with the best parameter set of each model. Table 4.1

displays values and statistics of the best parameters, affinities and RSS for the

models; corresponding box-plots are given in Figure 4.4. For the interpretation

of Table 4.1, we use [RSS,Model-E,Best] to represent the value at RSS column

and Model-E row in Best section.

First of all, all models fit well data for all concentrations at a given length

(Figure 4.2); similar results are obtained when other lengths are chosen (results

not shown).

Model-E and Model-ED

Model-E, which has the smallest number of parameters, has RSS and parameters

with the smallest standard deviations (SD) (see Table 4.1 and Figure 4.4):

predictions of Model-E are very sensitive to parameter values. The smallest
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Figure 4.2: Experimental data (solid line) and prediction for the product P
(dashed line) of (a) Model-E, (b) Model-ED, (c) Model-N and (d) Model-M by
using all concentrations and one length (120bp) of dsRNA. Color code is given
in Figure 4.3.

Figure 4.3: Legend table for Figure 4.2. High to low concentrations: rainbow
order.
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Figure 4.4: Affinities of reactions for (a) Model-E, (b) Model-ED, (c) Model-N
and (d) Model-M by using all concentrations at one length (120bp) of dsRNA.
Ten outliers are ignored for k5m/k5 in (c), outliers > 110.
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k1m/K1 kd1 kd2 k2m/k2 k5m/k5 k2bm/k2b k3bm/k3b kp RSS

Mean

Model-E 4.278 20.159 352.942

Model-ED 2.049 7.443 0.026 23.62 2116.951

Model-N 9.914 0.892 124.805 40.448 394.014

Model-M 9.81 1.642 0.344 24.574 285.475

SD

Model-E 0.087 0.198 1.219

Model-ED 1.965 11.620 0.029 6.795 1593.305

Model-N 4.412 0.287 350.621 4.712 66.908

Model-M 2.876 0.835 0.156 1.762 11.009

Best

Model-E 4.253 20.108 348.39

Model-ED 4.37 0 0 20.448 343.203

Model-N 27.076 0.266 17.094 34.264 336.615

Model-M 16.711 0.991 0.16 28.146 264.06

Table 4.1: Mean, standard deviation (SD) and best parameter set for Model-E,
Model-ED, Model-N and Model-M obtained when fitting all concentrations at
one length of dsRNA, 120bp.

values for the rate of production kp of activated OAS2 are found for Model-E

(Figure 4.4). For Model-ED, [kd1,Model-ED,Best] and [kd2,Model-ED,Best]

are both zero; the best result is obtained with no degradations of OAS2 and

complex within 30 minutes (Table 4.1).

Model-N

In Model-N, the affinity k5m/k5 shows the unbinding power of non-productive

complex. Hence, high value of [k5m/k5,Model-N,Mean] means that if OAS2 and

dsRNA combine in non-productive forms, they detach instantly and then there
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is no hindrance for the production. From [k5m/k5,Model-N,SD], k5m/k5 seems

to have little effect on model responses.

Model-M

Model-M has the smallest value in [RSS,Best], a RSS of 264, which is almost

70 less than for other models' [RSS,Best]. Thus, the multi-binding assumption

can be considered as a possible scenario for the activation of OAS2 and

dsRNA. However, Model-M is the model with the largest number of parameters.

Furthermore, from the affinities of the first and subsequent bindings in Figure

4.4, k1m
K1

> k2bm
k2b

> k3bm
k3b

, we can conclude that the system exhibits positive

cooperative binding when the multi-bindings are allowed [22]. The interaction

of OAS2 to a dsRNA helps the binding of subsequent OAS2 to the same

dsRNA.

4.1.3 Fitting: all concentrations at all lengths

By using the second cost function (4.2), we fit all the models to the data that

consists of the concentrations of product obtained with all concentrations and all

lengths of dsRNA at all time points. For readability, the 175 data points are split

into 5 graphs and each graph displays the data for one concentration. Figure

4.5 shows the experimental data and predicted data by Model-E, Model-ED,

Model-N and Model-M. The legend of the graphs is given in Figure 4.6. Table
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4.2 summarizes values of parameters to obtain the best fits and corresponding

RSSs of Model-E, Model-ED, Model-N and Model-M.

k1m/K1 kd1 kd2 k2m/k2 k5m/k5 k2bm/k2b k3bm/k3b kp RSS

Mean

Model-E 5.727 13.126 30790.5

Model-ED 2.155 5.847 0.051 17.056 38013.4

Model-N 12.145 1.355 182.819 34.996 30896.8

Model-M 27.691 0.214 0.291 24.247 10058.7

SD

Model-E 0.083 0.11 2.364

Model-ED 2.998 11.524 0.046 6.132 5092.1

Model-N 6.714 0.58 1010.015 7.154 139.604

Model-M 5.413 0.023 0.05 3.344 387.416

Best

Model-E 5.642 13.066 30779.4

Model-ED 5.357 0 0 12.71 30783.3

Model-N 44.943 0.317 11.412 33.661 30750.1

Model-M 35.854 0.241 0.312 29.287 9725.4

Table 4.2: Mean, standard deviation (SD) and the best parameter set for
Model-E, Model-ED, Model-N and Model-M with all concentrations at all
lengths of dsRNA.

Model-E

In contrast to Figure 4.2(a), the predicted data in Figure 4.5(1) does not

represent the experimental data well. Recall, Model-E does not accommodate

explicitly the length of dsRNA. Hence, model responses of Model-E do not

change with the lengths. Even when fitting Model-E to all concentrations and

lengths data, similar responses are obtained for the seven lengths (Figure 4.5(1)).

Predicted data does not accommodate neither concentrations nor lengths.
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Figure 4.6: Legend table for fitting graphs. Long to short dsRNA: rainbow
order.

Model-ED

As in Model-E, Model-ED responses do not change with the lengths (Figure

4.5(2)). In Table 4.2, [Model-ED,Best] are almost the same as [Model-E,Best]

and they are obtained with kd1 = kd2 = 0, which gives Model-E. As previously

observed, we consider that the degradation of the enzyme or complex are not

applicable within 30min.

Model-N

The predicted data of Model-N does not properly fit to the experimental data

(Figure 4.5(3)). From these results, the two-step binding process with non-

productive bindings does not accommodate the impact of dsRNA lengths on

the OAS2 activation properly.
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Model-M

From Figure 4.5(4), the predicted data from Model-M does not properly fit to

the experimental data; however, the smallest RSS is obtained with Model-M

(Table 4.2). For fitting all lengths simultaneously, Model-M consists of three

systems: for the lengths 40, 50, 60 and 70, we use (2.12) with n = 1, for the

lengths 80 and 90, (2.12) with n = 2, and for the 120 length, (2.12) is used with

n = 3. However, all systems share the same parameter set that is estimated

simultaneously. For example, K1, k1m and kp are used in all systems while k3b

and k3bm are used only in (2.12) with n = 3. Due to the use of these three

systems, Model-M allows three groups of response accommodating slightly

the lengths (Figure 4.5(4)). The multi-binding assumption, depicting a sort of

length dependency, improves the representation of data.

Accommodation of length by length dependent binding rate

The length dependent parts of binding rates, σ1(L) and σ2(L), are slightly

different for a given length of dsRNA as shown in Table 4.3. σ2(L) is smaller

than σ1(L) for each length. However, by focusing on the third and fifth rows

in Table 4.3, we see that σ2(L)/σ2(40) is greater than σ1(L)/σ1(40) for every

length. From these observations, we know that using σ2(L) gives more impact

of the length on the binding rates than using σ1(L).

Figure 4.9 shows the experimental data and predicted data by Model-ER,
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Length of dsRNA 40bp 50bp 60bp 70bp 80bp 90bp 120bp

σ1(L) 0.3455 0.872 1.2738 1.6062 1.8955 2.1563 2.838

σ1(L)/σ1(40) 1 2.5232 3.686 4.6476 5.4848 6.2393 8.2121

σ2(L) 0.3012 0.7802 1.1601 1.4816 1.7657 2.024 2.7054

σ2(L)/σ2(40) 1 2.5896 3.8506 4.9178 5.8604 6.7178 8.9795

Table 4.3: Length dependent parts of binding rate; σ1(L) and σ2(L)

Model-EC, Model-MR and Model-MC. Table 4.4 gives the results of the four

models' fitting procedures using all data (all concentrations, all lengths and all

time points); corresponding box-plots are given in Figure 4.7.

Model-ER, Model-EC, Model-MR and Model-MC fit better to the experimental

data their analogue using constant binding rates. Furthermore, M-series (Model-

MR and Model-MC) has smaller values of RSS in [RSS,Mean] and [RSS,Best]

than E-series (Model-ER and Model-EC). E-series does not represent well data

obtained with small concentrations of dsRNA; in contrast, M-series fits well

data for all concentrations (Figure 4.9). Note that estimates of parameters are

of the same order in both E- and M-series (Table 4.4). Interestingly, k1m
k1σ1(L)

in

Model-ER and Model-MR and k1m
k1σ2(L)

in Model-EC and Model-MC similarly

decrease as dsRNA length increases (Figure 4.8). The length dependent binding

rates allow the increase of the product as length increases. Furthermore, for

any length L, the affinity of the first binding k1m
k1σ1,2(L)

is always larger than the

affinities of subsequent bindings for Model-MR and Model-MC (Figures 4.7, 4.8

and Table 4.4). In other words, the association constant of the second binding
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Figure 4.7: Affinities of reactions for (a) Model-ER, (b) Model-EC, (c) Model-
MR and (d) Model-MC by using all concentrations at all lengths of dsRNA.
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k1m/k1 k2bm/k2b k3bm/k3b kp RSS

Mean

Model-ER 26.2699 27.987 4465.9

Model-EC 22.6004 26.5732 4037.9

Model-MR 24.6716 1.0297 0.4925 23.0366 2621.5

Model-MC 22.2607 1.1071 0.5297 22.84 2498.9

SD

Model-ER 1.1401 0.8431 6.457

Model-EC 1.2403 0.9726 11.1481

Model-MR 2.0653 0.0659 0.092 1.3023 68.8882

Model-MC 1.5716 0.0771 0.0555 1.0517 71.8797

Best

Model-ER 26.599 28.4526 4458.3

Model-EC 22.9278 26.9336 4026.6

Model-MR 23.0399 1.0931 0.311 22.2341 2577.6

Model-MC 23.0398 1.1693 0.4892 23.4766 2464.6

Table 4.4: Mean and standard deviation (SD) of parameters of Model-ER,
Model-EC, Model-MR and Model-MC

is higher than that of the first OAS2 binding. Hence, once the first OAS2 is

bound to dsRNA, subsequent bindings of OAS2 to the same dsRNA are easier.

Therefore, Model-MR and Model-MC exhibit positive cooperative binding of

multiple OAS2 enzymes.

The E-series has only one length dependency, the length dependent binding

rates. In contrast, the M-series has two length dependencies: the structure

of Model-M and length dependent binding rates. As previously mentioned,

Model-M structure allows us to specify three types of responses depending on

dsRNA lengths; then, the accommodation of length is more refined through

the length dependent binding rates.
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Figure 4.8: Affinities of length dependent binding rates in Model-ER, Model-EC,
Model-MR and Model-MC for seven lengths.
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4.2 Model Selection

The best model is selected based on the Akaike Information Criterion (AIC),

Akaike Information Criterion corrected (AICc) and Akaike weights. We use the

following equations for AIC and AICc [23],

1) AIC = N ln
RSS

N
+ 2K, (4.3a)

2) AICc = N ln
RSS

N
+

2KN

N −K − 1
, (4.3b)

where K is the number of estimated parameters +1, N is the number of

observations. To calculate the AIC and AICc, the best parameter set is used

for each model. The best model has the smallest AIC or AICc. However, values

of AIC or AICc do not allow us to interpret how a model is credible. Thus, we

use Akaike weights to supplement the AIC and AICc.

The Akaike weight is one of the normalization methods that allows to compare

models; the Akaike weight of models can be interpreted as the probability of

the models to be the most likely given the data and set of models considered.

In this section, we use AICc for Akaike weights. The Akaike weight wi of model

i is [23],

wi =
exp

(
−∆i

2

)
∑R

r=1 exp
(
−∆r

2

) , (4.4)

where ∆i = AICci −min
i
AICci. A model can be considered as the single best

model if wi > 0.9.
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One length fitting

Model-E Model-ED Model-N Model-M

N 25 25 25 25

K 4 6 8 8

RSS 348.3 343.2 336.6 264.1

AIC 73.8 77.4 81.0 74.9

AICc 75.8 82.1 90.0 83.9

∆i 0 6.29 14.14 8.07

exp
(
−∆i

2

)
1 0.04 0.0008 0.017

wi 0.94 0.04 0.0008 0.0166

Table 4.5: AIC, AICc and Akaike weights for four models of OAS2 activation
by dsRNA (one length).

From Table 4.5, Model-E is the best model among four models when all

concentrations are considered with only one length of dsRNA, wE = 0.94 > 0.9.

Even though Model-M has the smallest RSS, due to the parameter number,

Model-E is considered as the single best model in no length change data.

All lengths fitting

Model-MR and Model-MC have relatively small differences in RSS, AIC and

AICc (Table 4.6). However, Model-MC is selected as the best model by an over-

whelming margin. Hence, Model-MC is the single best model to accommodate

varying lengths.

Effects of length dependencies are observable in Table 4.6. Note that considering

both length dependent binding rates and multi-binding improve predictions.
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Model-E Model-ED Model-N Model-M Model-ER Model-EC Model-MR Model-MC

N 175 175 175 175 175 175 175 175

K 4 6 8 8 4 4 8 8

RSS 30779.4 30783.3 30769.6 9725.4 4458.3 4026.6 2577.6 2464.6

AIC 912.7 916.7 920.6 719.1 574.6 556.7 486.7 478.8

AICc 912.9 917.2 921.5 719.9 574.8 557.0 487.5 479.7

Ranks 6 7 8 5 4 3 2 1

∆i 433.20 437.49 441.78 240.22 95.09 77.27 7.84 0

exp
(
−∆i

2

)
8.5E-95 9.9E-96 1.1E-96 6.8E-53 2.2E-21 1.6E-17 0.0198 1

wi 8.3E-95 9.8E-96 1.1E-96 6.7E-53 2.2E-21 1.6E-17 0.0194 0.9805

Length
dependency

0 0 1 1 1 1 2 2

Table 4.6: AIC, AICc and Akaike weights for eight models of OAS2 activation
by dsRNA (all lengths). The ranks are obtained by sorting AIC and AICc
values from the smallest to the largest.

Evidence ratio

By using evidence ratio of Akaike weights, the effect of length dependencies

can be evaluated. The evidence ratio of model i over model j is [24]:

wi
wj
.

Note that evidence ratio could be interpreted as an index of relative strength

of two models or hypotheses. For instance, if wi

wj
= 10, the hypothesis of model

i is 10 times more likely than that of model j [25].

The hypotheses for Model-E and Model-ED are not accommodating changes in

the dsRNA lengths but other models are based on at least one length dependent

hypothesis. The evidence ratio of Akaike weights for length dependency over
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non-length dependency is (Table 4.6)

wN + wM + wER + wEC + wMR + wMC

wE + wED
= 1.07× 1094.

The models, which have length dependency, are 1.07× 1094 times more likely

than the models having no length dependency.

The effectiveness of each length dependency can be tested. First, the evidence

ratio of Model-N based on non-productive binding stages over Model-E, which

considers only one-step binding of productive stages, is

wN
wE

= 0.013.

The evidence ratio is smaller than 1: non-productive binding stages are unlikely

to occur in OAS2 activation for the data used in this work.

Secondly, the evidence ratio for multi-binding assumption over single binding

assumption is

wM + wMR + wMC

wE + wER + wEC
= 6.14× 1016.

This ratio shows the effectiveness of the multi-binding assumption over the

single binding assumption. Since the value is greater than 1 and large, the

multiple binding is more likely to occur in OAS2 activation by dsRNA in these

data.

We also test the effect of the assumptions for the length dependent binding

rates. The relative strengths of 2-dimensional rigid rod assumption versus
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3-dimensional cylindrical rigid rod assumption for the dsRNA shape are

wEC
wER

= 7402.3,
wMC

wMR

= 50.48.

For both models, the 3-dimensional cylindrical rigid rod assumption is more

likely than 2-dimensional assumption for the shape of dsRNA.

Furthermore, we test the effect of the use of length dependent binding rates:

wEC + wMC

wE + wM
= 1.45× 1052.

Models with length dependent binding rates allow a better representation of

data.

Finally, the effect of the number of the length dependency can be evaluated:

wMR + wMC

wN + wM + wER + wEC
= 6.14× 1016.

The two length dependencies is significantly more likely than the one length

dependency. From evidence ratios, we can conclude that one length dependency,

multi-binding assumption or length dependent binding rates, is effective to

accommodate the changes in concentrations and lengths; however, both length

dependencies are needed to describe the experimental data.
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Chapter 5

Discussion and conclusion

In the preceding chapters, we have developed, mathematically analyzed and

numerically investigated models. In this chapter, we outline the important

results from this work and discuss some future directions.

5.1 Mathematical remarks and discussion

In Chapter 3, we characterized the dynamics of the product P for all the models

through mathematical analysis before carrying out calibrations of models.

The different analyses carried out in Chapter 3 and 4 deal with different

time periods. Numerical investigations presented in Chapter 4 focus on the

time period defined by the experimental data, i.e, from 0 to 30 minutes. The

exact solution of Model-S, which is a function of t, holds for all t ≥ 0. A

quasi-equilibrium is assumed in Model-N and we have obtained three different

solutions of P (t) based on parameter values. These three solutions differ in

103
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their transient regimes (short run); however, they overlap in their asymptotic

regime (long run). The quasi-equilibrium is valid for t ≥ ε > 0 because dE
dt

is

assumed to approach to 0 after a very short time.

An asymptotically stable equilibrium is a constant solution that is approached

by other solutions when time is large enough (t > T ). All the reduced models

except Model-S and Model-ED3 have a unique non-negative equilibrium. Model-

E, Model-ED1, Model-ED2 and Model-M (n = 2) have a globally asymptotically

stable equilibrium. In other words, regardless of the initial condition, the

concentration of P is uniquely determined by parameters and t > T . Model-N

and Model-M (n = 3) have a locally asymptotically stable equilibrium. Even

thought the global stability is not mathematically proved, it is numerically

conjectured. Results of the qualitative analysis carried out in Chapter 3 and

the resulting long-time predictions for product concentrations are summarized

in Figure 5.1. With the aim of combining results from the mathematical and

numerical work, Figure 5.2 presents graphs of P (t) for t > 30 minutes using

the estimates of parameters from Chapter 4 with functions given in Figure

5.1. These graphs represent the predictions for the product concentrations for

t > 30 minutes for the different models.
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5.2 Model evaluations

Since models are based on different assumptions, comparing the dynamics of

P (t) from the different models to experimental data (model parametrization

and selection) allows us to test different sets of assumptions. A summary of

conclusions of the work is given in Figure 5.3.

Figure 5.3: Summary of conclusions.

Model-E, which is the base model of the work and based on enzyme kinetics,

is the best model accommodating all concentrations for a fixed length. Since

Model-S, a structural reduction of Model-E, does not accommodate even the

change in dsRNA concentration, Model-E can be considered as the simplest

model describing the change in concentrations. However, in Figure 5.2, pre-

dictions from Model-E for short (40bp) and long (120bp) dsRNA are parallel
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lines; Model-E cannot explain the effect of the cofactor length on the formation

of the product.

Model-ER and Model-EC, which are the base model with binding rates de-

pending on the cofactor length, almost fit data; an improved approximation

for valid binding area on dsRNA could improve predictions.

In Figure 5.2, Model-E and Model-N have the same predictions. From this

observation and affinities of non-productive stages found in Chapter 4, non-

productive stages appear to be unfavorable or structurally unstable.

Model-N and Model-M are the models with a length dependent structural

expansion of Model-E; Model-N and Model-M are extended by adding to

Model-E non-productive binding stages and subsequent multi-binding stages,

respectively. The assumption of non-productive stages fails to explain data;

however, the multi-binding assumption provides a better explanation of data.

Model-MC is the best model to accommodate the changes in concentrations

and lengths of dsRNA (Figure 5.4). Each length-dependency type improves

fits. They are not enough by themselves; both length dependencies and their

interplay are needed to describe well the regulation of the OAS2 enzyme activity

by the cofactor.

Even though Model-ED fails to fit data, degradation could be applied to

data over longer periods. In this thesis, we use data sets, which measure the

concentration of the product within only the first 30 minutes. However, for

longer times, we could expect that OAS2, dsRNA or complex would degrade as

enzyme activity would decrease over time. In the recent study, Koul et al. [3],
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the amount of the product reaches a plateau for longer times. A plateau is also

observed in the estimated equilibria for Model-ED (Model-ED in Figure 5.2).

5.3 Limitation and idea for future study

In Model-MR and Model-MC, the length dependent binding rates are only

applicable to the first binding of OAS2 and dsRNA. A future study could

develop the binding probability accommodating the cofactor length for the

second and subsequent binding stages in Model-M.

Furthermore, in a recent study, Koul et al. [4] shows that OAS2 potentially

works as a dimer in solution. From the significant difference in RSS between

Model-MR and Model-MC, we can expect that the advanced investigation

of the shape of OAS2 will help greatly improve mathematical modelling. For

instance, the derivations of the binding probabilities/rates could also consider

the dimeric structure of OAS2 to improve and explain better OAS2 activation

by dsRNA.

Moreover, since the experimental data has its own inevitable errors [26], the

mathematical consideration of how to handle errors in the data could help to

improve model responses.

Driven by experimental data, we developed nine models. Since Model-MC is the

best model based on the data, length dependent binding rates and multi-binding

assumption can be considered as valid hypotheses. The multi-binding of OAS2

to dsRNA should be now investigated experimentally as well as its potential
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positive cooperative nature. For example, the multi-binding assumption could

be investigated if there is a noticeable increase between two similar lengths when

each of them has the different number of bindings: n− 1 and n OAS2 bindings.

If multi-binding with positive cooperativity is experimentally validated, we

could add one more proof of the effectiveness of mathematical modelling.
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Appendix A

Model-M: model equations

Theorem: Model-M allowing up to n OAS2 on the same dsRNA has equation

(2.12) as the ODE system.

Proof. The theorem is proved by mathematical induction. Let (2.12) be P(n).

Check P(2).

Figure A.1: Diagram associated to P(2)
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From Figure A.1, the ODE system is:

dE

dt
= −K1ER + k1mD1 + k2bmD2 − k2bD1E,

dR

dt
= −K1ER + k1mD1,

dD1

dt
= K1ER− k1mD1 + k2bmD2 − k2bD1E,

dD2

dt
= k2bD1E − k2bmD2,

dP

dt
= kpD1 + 2kpD2,

which is P(n) with n = 2, so P(2) is valid.
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Fix ` ≥ 2, assume that P (`) is true. P(`) is,

dE

dt
= −K1ER + k1mD1 +

`−1∑
i=1

[
k(i+1)bmDi+1 − k(i+1)bDiE

]
,

dR

dt
= −K1ER + k1mD1,

dD1

dt
= K1ER− k1mD1 + k2bmD2 − k2bD1E,

dDj

dt
= kjbDj−1E − kjbmDj + k(j+1)bmDj+1 − k(j+1)bDjE,

j ∈ {2, 3, · · · , `− 1},

dD`
dt

= k`bD`−1E − k`bmD`,

dP

dt
= kp

∑̀
i=1

iDi.

(A.1)

Figure A.2: `th and (`+ 1)th bindings

By adding the terms of (`+ 1)th binding and unbinding into (A.1), we get the
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following ODE system:

dE

dt
= −K1ER + k1mD1 +

`−1∑
i=1

[
k(i+1)bmDi+1 − k(i+1)bDiE

]
+k

(`+1)bm
D`+1

− k
(`+1)b

D`E+k
(`+1)bm

D`+1
− k

(`+1)b
D`E+k

(`+1)bm
D`+1

− k
(`+1)b

D`E,

dR

dt
= −K1ER + k1mD1,

dD1

dt
= K1ER− k1mD1 + k2bmD2 − k2bD1E,

dDj

dt
= kjbDj−1E − kjbmDj + k(j+1)bmDj+1 − k(j+1)bDjE,

j ∈ {2, 3, · · · , `− 1},

dD`
dt

= k`bD`−1E − k`bmDl + k
(`+1)bm

D`+1
− k

(`+1)b
D`Ek

(`+1)bm
D`+1

− k
(`+1)b

D`Ek
(`+1)bm

D`+1
− k

(`+1)b
D`E,

dD`+1

dt
= k

(`+1)b
D`E − k(`+1)bm

D`+1

dD`+1

dt
= k

(`+1)b
D`E − k(`+1)bm

D`+1

dD`+1

dt
= k

(`+1)b
D`E − k(`+1)bm

D`+1
,

dP

dt
= kp

∑̀
i=1

iDi +(`+ 1)kpD`+1
+(`+ 1)kpD`+1+(`+ 1)kpD`+1

.

(A.2)

Then, (A.2) is P(` + 1). Consequently, by the Principle of Mathematical

Induction, P(n) is valid for all n ≥ 2.



Bibliography

[1] John J. Tyson, Katherine C. Chen, and Bela Novak. Sniffers, buzzers,

toggles and blinkers: dynamics of regulatory and signaling pathways in

the cell. Current Opinion in Cell Biology, 15(2):221 – 231, 2003. (Cited

on page 1.)

[2] Francisco Dionisio. The importance of mathematics to biology. Journal

of Ecosystem & Ecography, 2(4):1–1, 2012. (Cited on page 1.)

[3] Amit Koul, Soumya Deo, Evan P. Booy, George Orriss, Matthew Genung,

and Sean A. McKenna. Impact of double-stranded RNA characteristics

on the activation of human 2'-5'-oligoadenylate synthetase 2 (OAS2).

Biochemistry and Cell Biology, 98(1):70–82, 2020. (Cited on pages 1, 2, 3,

4, 24 and 108.)

[4] Amit Koul, Darren Gemmill, Nikhat Lubna, Markus Meier, Natalie Krahn,

Evan P. Booy, Jörg Stetefeld, Trushar R. Patel, and Sean A. McKenna.

Structural and hydrodynamic characterization of dimeric human oligoad-

119



120 BIBLIOGRAPHY

enylate synthetase 2. Biophysical Journal, 118(11):2726 – 2740, 2020.

(Cited on pages 1, 2, 4 and 109.)

[5] Anthony J. Sadler and Bryan R. G. Williams. Interferon-inducible antiviral

effectors. Nature Reviews Immunology, 8(7):559–568, 2008. (Cited on

page 2.)

[6] Charles E. Samuel. Antiviral actions of interferons. Clinical microbiology

reviews, 14(4):778–809, 2001. (Cited on page 2.)

[7] Robert H. Silverman. Viral encounters with 2', 5'-Oligoadenylate syn-

thetase and RNase L during the interferon antiviral response. Journal of

Virology, 81(23):12720–12729, 2007. (Cited on page 2.)

[8] Helle Kristiansen, Hans Henrik Gad, Signe Eskildsen-Larsen, Philippe

Despres, and Rune Hartmann. The oligoadenylate synthetase family:

An ancient protein family with multiple antiviral activities. Journal of

Interferon & Cytokine Research, 31(1):41–47, 2011. (Cited on page 2.)

[9] Otto G. Berg and Peter H. von Hippel. Diffusion-controlled macromolecular

interactions. Annual Review of Biophysics and Biophysical Chemistry,

14(1):131–158, 1985. PMID: 3890878. (Cited on pages 13 and 15.)
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