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Abstract

Automatic storage and retrieval systems (AS/RS) are widely used in warehousing
due to such benefits as condensed storage and fast retrieval of goods. An end-of-aisle
type of AS/RS is one of the most effective automatic storage and retrieval systems
for warehousing and distribution operations.

This thesis presents a stochastic analysis of a simplified end-of-aisle AS/RS using
a queueing model with two linked queues. A simplified AS/RS with one storage
rack, and one storage/retrieval (S/R) device of unit-load is considered. There are
two queues, one of infinite capacity for the items waiting for storage and the other of
finite capacity for the requests for items to be removed from storage based on the size
of the storage rack. The S/R machine places them into storage and retrieves items
on an alternating basis.

Arrivals in both queues are assumed to follow a Poisson distribution, where the
arrivals in the second queue are linked to the first queue. Service times of both queues
follow an exponential distribution.

A double-ended queueing model is developed and is studied as a Markov pro-
cess. The resulting Markov chain is of the quasi-birth-and-death type. The Matrix-
geometric approach is used to analyze this system and efficient algorithmic procedures
for the computation of the rate matrix, steady state vector and important performance
measures have been developed.

Numerical examples are presented that show the behavior of the system for var-
ious rack sizes. As the rack size increases, the queue length and waiting time both
decrease and system performance improves. However, it is shown that under certain
conditions increasing the rack size gains minor improvements in system performance.
The behavior of the system when jamming occurs is also discussed.

The queueing model presented in this thesis is only for a basic AS/RS. It is limited
to Poisson arrivals and exponential service. Extensions of this work might be to non-
Poisson arrivals and non-exponential service times.
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Chapter 1

Introduction

Automatic storage and retrieval systems (AS/RS) are widely used in warehousing and
often found in manufacturing. An automatic storage and retrieval (AS/R) system
has many benefits such as faster retrieval and condensed storage over conventional
warehousing systems and are ideal for integrating with existing automation. These
systems have the capability to integrate storage with inventory control and material
resource planning. As a result, AS/R systems provide savings in labor costs, improved
material flow and inventory control. These systems effectively utilize floor space since
they are able to reduce storage requirements by using random storage assignment
and minimize the wasted space due to aisles (Allen (1], Bafna [3] and [4], Rygh [16],
Hill [11]).

The basic components of an automatic storage and retrieval system are storage
racks and storage/retrieval (S/R) machines that transport the items into storage and
retrieve them when a request for removal arises. There are several types of AS/R

systems available:

& horizontal carousel - consists of shelving mounted on a motor driven horizontal

track,
& vertical carousel - consists of shelving and a mechanism that rotates the shelving

1



on a vertical track,

e vertical lift - consists of modular column storage units with a storage/retrieval

mechanism that moves vertically to the location of the desired item,

e end of aisle - consists of rows of storage units and a storage/retrieval mecha-

nism(s) that moves the length of the aisles.

The best known type of AS/RS is the end-of-aisle type. An end-of-aisle AS/RS
consists of opposed racks on either side of an aisle. Each aisle contains a stacker crane
that is able to move the full length of the aisle and can travel vertically and side to
side. There are many benefits to an end-of-aisle system. It is extremely flexible and
only limited by the available floor space. The most effective applications are high
volume with low to moderate activity, making it one of the most cost effective AS/R
systems for warehousing and distribution operations (Allen [1]).

AS/R systems are generally designed to meet the specific needs of the individual
user. Systems will differ in many respects such as the number of storage racks, the
height, length and depth of the storage racks, and the number and size of the storage
spaces. They will also vary in the number of S/R machines used, the number of items
that can be carried at one time by the S/R machine (unit load or more), the manner
in which the system carries out storage and retrievals of items, and whether the S/R
machine is dedicated to one aisle or has the capability of transferring between aisles to
service multiple storage racks. Other parameters include arrival and retrieval request
rates, speed of service, and acceleration/deceleration rates of the S/R machines.

It is therefore important to have a model of an AS/RS that will provide informa-
tion on the system performance. The use of a model as a tool in the design process

of an AS/RS can help to ascertain the behavior of the system with respect to the
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Figure 1.1: Simplified Model of an Automatic Storage and Retrieval System

capacity of the storage racks, the arrival and service rates and the many other param-
eters, before the system is installed. The model will aid in the decision process of an
appropriate rack size resulting in the design of an efficient and cost effective system.

A very complex AS/RS can be decomposed into various simplified systems which
can be easily modeled. A model can then be used to gain an understanding of the
system behavior. This thesis presents a stochastic model that can be used to evaluate
the performance of an AS/RS. The analytical model will be based on a simplified
AS/R system as shown in Figure 1.1.

The simplified AS/R system is of the end-of-aisle type and will have one storage
rack of capacity (size) M. There is assumed to be one stacker crane (server) that

is capable of only serving a single item (customer) at one time. The loads may be



packaged goods on a pallet or a single item. A pallet of packaged goods will be
considered to be one item and cannot be split. All spaces available for storage in the
rack are of the same size, and it is assumed that any item can fit into any storage space.
Speed of service, directional movements of the crane, acceleration and deceleration of
the crane, transfer time of an item in/out of the rack, etc., are assumed to be part of
the service process and included in the service time. Additional assumptions made
include that each pallet contains only one type of item and any pallet may be stored
in any storage location.

This simplified system is modeled as a double-ended single server queueing system.
The first queue, Queue 1, is considered to be the arrival queue where items wait to
be placed into storage. Queue 2 is considered to be the queue in which the requests
for retrieval arrive. Queue 2 is dependent on the number in the rack.

The remainder of this thesis is organized as follows. Chapter 2 reviews the previous
research in the area of AS/RS and stochastic models and introduces the relevancy of
the model presented in this thesis. Chapter 3 presents the model and corresponding
Markov chain with the performance measures discussed in Chapter 4. Numerical
examples and discussion are presented in Chapter 5 with a summary of this work and

conclusions presented in Chapter 6.
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Chapter 2

Literature

Many researchers have studied automated warehousing systems and AS/RS. Research
done in these areas includes simulation, the development of heuristics and analytical
models. However, little emphasis has been placed on analytical models. All three
approaches have their advantages and disadvantages, and all have different circum-
stances in which they are best applied.

Many simulation models developed are for complex situations. As pointed out
by many researchers, including Lee [12], simulation models are time-consuming to
develop and validate even though they can capture most aspects of an AS/R system.
The advantage of simulation is that it can represent any level of detail. However,
simulation cannot be properly used for optimization purposes. Several people have
used simulation such as Seidmann [18], Chow [6], Schwarz et al. [17], Lynn and
Wysk [13], and Egbelu and Wu [7] and some have used simulation as a component of
an optimization model such as Rosenblatt et al. [15].

Heuristic approaches have been used to aid in the scheduling of AS/R systems.
However, with heuristic approaches, the performance of an AS/RS is based on de-
terministic parameters (often referred to as static models). The weakness of these
models is that they lack the true operating aspect of AS/RS such as the stochastic

aspect. Heuristics have been used by researchers such as Han et al. [9].
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Deterministic models that use network models such as traveling salesman problem
and vehicle routing have been used to determine optimal retrieval policies. However,
this is not of interest in this thesis.

It appears that most researchers have used hybrids of various methods such as
simulation, optimization, beuristics and network theory to study AS/RS. In addition
existing queueing models have been used to study AS/RS. However, these applications
have not been able to capture the true operating aspect of the system. As a result,
queueing models have been used together with simulation and heuristics by people
such as Chow [6].

There have been very few models that capture the true stochastic aspect of AS/RS.
This is partly due to an attempt to model complex systems that are difficult to model
stochastically. However, even for the simple cases, the number of models is very
limited. Analytic methods have been studied by Schwarz et al. [17], Graves et al. (8]
and Hausman et al. [10]. Bozer and White [5] present a stochastic analysis for a
mini-load AS/RS. Stochastic optimization was studied by Azadivar [2].

Lee [12] is the first to present a stochastic analysis of a unit-load AS/RS using
an analytical method. He considers a system which has two queues. The first queue
is for the incoming items to be placed into storage and the second queue for the
retrieval requests. Both queues have limited capacity. The arrivals are assumed to be
Poisson and services in both queues are exponential. Arrivals into the second queue
are independent of the storage rack and come from an external, unlimited source.

The model does not capture the state of the storage rack and therefore is not able
to capture the impact of a full rack and empty second queue on the first queue, when
the system is jammed. The server is idle only when both queues are empty.

The model presented in this thesis captures the state of the storage rack and

links the two queues. Arrivals into the second queue are dependent on the number of

6



items in the rack which in turn is dependent on the first queue. This type of model
has not been previously studied in the literature, to the best of our knowledge. By
keeping track of the state of the storage rack, the model is able to capture jamming.
Linking of the two queues captures the operating aspect of an AS/R system where
items cannot be removed from storage unless they have previously been placed into

storage.



Chapter 3
Model

3.1 Double-Ended Queueing Model

The simplified model as described in Chapter 1 is now modeled as a double-ended
queueing system in continuous time. A double-ended queueing system is a system
that contains two queues that are linked with respect to their customers.

Consider the simplified AS/RS in Figure 1.1. As previously discussed, Queue
1 is considered to be the arrival queue where items wait to be placed into storage
and Queue 2 is considered to be the queue in which the requests for retrieval arrive.
Retrievals can only be made if items are available in storage. As such, a request
for retrieval can only arrive if an item is in the rack. Figure 3.1 provides a simple
illustration of the double-ended queueing model.

Queue 1 has an infinite buffer and arrivals into Queue 1 are from an external
source. Customers can only arrive into Queue 2 after they have first received service
in Queue 1. The storage rack is considered to be the source for arrivals into Queue
2 and has a fixed size, M. Arrival into Queue 2 depends on the output of Queue 1.
Items are placed into and retrieved from storage on an ongoing basis, resulting in a
source for arrivals that is constantly in flux. Therefore, the source for arrivals into

Queue 2 is of variable size between 0 and M.
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Figure 3.1: Double-Ended Single Server Queueing Model

The server is assumed to only serve one customer at a time (unit-load). Service of
both queues follows a first-in, first-out (FIFO) rule and service times are independent.

Customers arrive into Queue 1 and wait for service. Service in this case means the
placement of an item into the storage rack. Service of Queue 1 takes place if there is
space available in rack. The location in the storage rack where the item is placed is
chosen randomly from all open rack locations.

Upon a service completion of a customer in Queue 1, the server will serve the
second queue. Items in the rack do not physically enter the second queue. Only
a request for removal of the item arrives into Queue 2. In Figure 3.1 the items in
the storage rack marked with an "x” are the items that have requests for removal in

Queue 2.



If a request for removal of an item from the storage rack is waiting in Queue 2, the
server will remove the item from the rack, which then leaves the system. If a request
is not waiting, Queue 2 is empty but there may be items in the rack, the server will
return to Queue 1 and serve the next customer if space is available.

The server will alternate between Queue 1 and 2 after each service completion. If
either queue is empty, the server will continue service of the queue with customers
waiting until:

e a customer arrives in the empty queue, then the server will begin alternate

service at the completion of the current service, or
e the customers in the current queue being served are exhausted, or

e the system becomes jammed.

If both Queue 1 and 2 are empty, the server is idle and will begin service on the
first customer that arrives.

Jamming of the system is defined as the state when the storage rack is full, there
are customers waiting in Queue 1 for placement into storage, and Queue 2 is empty
(there are no requests for items to be removed from storage). If the system becomes
jammed, the server is forced to remain idle until a request for retrieval arrives in
Queue 2. If jamming occurs, the system can become unstable if Queue 1 grows out
of bounds.

Arrivals in Queue 1 are external and are assumed to follow a Poisson distribution
with parameter ()\;). Service of customers in Queue 1 is essentially the transportation
of an item from the Queue 1 to a location in the storage rack and assumed to follow
an exponential distribution with parameter (4,).

Customers served from Queue 1 are put into storage and become the source from

which customers arrive into the second queue. As a result, the maximum number of
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customers that can be waiting in Queue 2 is M, the capacity of the rack. The actual
number of customers in the rack is constantly changing, from 0 to M, as items are
placed into and removed from storage. Arrivals in Queue 2 are therefore considered
to be from a bounded source and are assumed to follow a Poisson distribution with
parameter (A;). The arrival rate per item is A,. If there are N items in the rack, of
which K are waiting to be served in Queue 2, then the actual arrival rate for Queue
2 would be (N — K)A,.

Service of customers in Queue 2 is essentially the transportation of the item from
the storage location in the rack to the place of disposal. It is assumed to follow
an exponential distribution with parameter (u;). Once a customer from Queue 2 is

served it leaves the system.
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3.2 Markov Process

The system that has just been described in Section 3.1 can be studied as a Markov

Chain. Consider
Do = {(0,5,k); 0<j< M, 0<k<j}
Ay = {(150);i21, 0<j< M}
A, = {(4,1,k);i>1,1<j<(M~-1), 1<k<j}
Az = {(6,3.2,k); 121, 1<j<M, 1<k< 5}

The state space for this system can be described as A where:

A = AjUAUAUA,.

Qo represents the states of the system when there are no customers waiting in the
first queue, ¢ = 0; with j items in the rack, 0 < j < M, of which k items are waiting
in the second queue, 0 < k < j.

A, represents the states of the system when there is at least one customer in the
first queue, ¢ > 1; with j items in the rack, 0 < j < M, of which no items are waiting
for service in the second queue, k = 0.

A; represents the states of the system when there is at least one customer in the
first queue, ¢ > 1; with j items in the rack, 1 €< j £ M — 1, of which k items are
waiting in the second queue, 1 < k < j, and the server is currently serving the first
queue, [ = 1.

Aj represents the states of the system when there is at least one customer in the
first queue, © > 1; with j items in the rack, 1 < j < M, of which k items are waiting
in the second queue, 1 < k < 7, and the server is currently serving the second queue,
[=2.

The generator matrix Q is of block tridiagonal form with infinite dimension, where

the states of the Markov chain @ are arranged in lexicographic order.
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Q= 0 Az A1 Ao cee eoe ses . (3.1)

Matrix @ is a generator matrix with negative diagonals and everything else non-
negative. It can be shown that By' and A;! exist, and both are non-positive, hence
Q is irreducible. As a generator, the sum of the rows of matrix @ equal zero. Similarly
the matrix A = Ag + A1 + A2 is also a generator.

In what follows, the subblocks in Q are explained in detail. I; is defined to be
an identity matrix of dimension j. In addition, e is defined to be a column vector of
ones, e(i) a column vector of ones of size (i), and e; a column vector of zeros with

the value one at position 3.

3.2.1 Matrix B,

The matrix By is of dimension (M +1)(M +2) x (M + 1)(M +2) and describes
the transitions from boundary states in Ao to boundary states in Ay, implying no
change in the state of the first queue. Clearly By represents the transition of the
system when there are no arrivals or service completions in the first queue, however,

there could be changes in the state of the rack and Queue 2.

(B 0 0
B® B 0 0

Bo=| 0 B}t Bf 0 S (3.2)
| 0 0 ... BM BtM |

Within the matrix By there are subblocks describing the state of the rack and the

13
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second queue.

1. The subblocks B3” are of dimension (j +1) x (j+1) for j =0,...,M and
represent no change in the total number of items in the rack. The elements,
B3 (K1, k2), represent a change in the number of customers in the second queue
from k; (k; =0,...,7) to k; (k2 =0,...,7)-

a 0<k=k<j)0<j<M
Bii(kik2) =3 b 0<h<j—-lL k=k+l,1<j<M (3.3)

0 otherwise,

where e and b are given in Equations (3.4) and (3.5).

=—(A+ (F = k1)A2 + Ok, 12) (3-4)

0 k=0
6k1=

1  otherwise,
b=( — ki) (3.5)

2. The subblocks B}’ are of dimension (j+1) x j forj =1,..., M and represent
a change from j to j — 1 items in the rack. The elements of B}~ represent a
change from k to k — 1 customers in the second queue, i.e. a service completion

in Queue 2.

14



0O 0 0 ... ...
g 0 0 0 ...

B 1l=[0 pmpm 0 0 ..., (3.6)
! 0 0 ] 0

3.2.2 Matrix Cy

The matrix Cp is of dimension {(M + 1)(M +2) x (M?+ M + 1) and describes the

transitions from boundary states in Ag to states in A; U A3, implying an arrival in

Queue 1.
cC¥® 0 ... 0
0o C} ... 0
Co=] . : : : 3-7)
0 0 .. CcuM

The subblocks C3?, of dimension (j + 1) x (2j+1) forj =0,...,M ~1, and
Ca'M | of dimension (j + 1) x (j+ 1), represent no change in the number of items

in the rack and in the number of customers in the second queue.

P 5 ey, 0
hd 1€1
C _[ 1 I,-Al] (3.8)

3.2.3 Matrix Do

The matrix Dy is of dimension (M? + M +1) x 3(M + 1)(M + 2) and describes
the transitions from states in A; U A, to boundary states in Ag, implying a service

completion of the only waiting customer in Queue 1.

15



[0 D' 0 0
0 0 D2 0
Do=|: : : 3.9)
0 0 DY—M
[0 0 0 |

The subblocks D37*! are of dimension (2j+1) x (j+2)forj=1,...,M —1and
represent a change from j to j+ 1 items in the rack with no change in the number of

customers in the second queue.

DYt = [ 0}, (3.10)
DIt = [ I,;u g ] ) (3.11)

3.2.4 Matrix A,

The matrix A; is of dimension (M2 + M + 1) x (M? + M + 1) and describes the
transitions from states in A; U Az U As,7 > 2 to states in A; U Ay U Azt > 2, with
a change from 7 to ¢ — 1 customers in the first queue . This indicates that there has

been a service completion in Queue 1.

[0 A O ... 0
0 0 A2 ... o0
Ap=|: ¢ 1 : (3.12)
0 0 ... .. AMM
0 0 0

The subblocks A}*!, of dimension (25 +1) x (2j+3) forj=1,...,M -2,
AM-LM=1 of dimension (25 +1) x (j + 2), and AM ™M of dimension M x 1

16



represent a change from j to j + 1 items in the rack with no change in the number of

customers in the second queue.

A =i 00] = e, (3.13)
A = [ (Ao (AF ) ] (3.14)

0 0

where

(A =m(a1 ®¢€)), (3.15)

g 0 0

JI+ly

(43 )1—[1,1_”1 0], (3.16)

and ® is the Kronecker product. (A37*')q is of dimension (j +1) x (j +2) for
i=1,...,M—2. (A3"*), is of dimension (j + 1) x (j+1)forj=1,...,M —~1.

3.2.5 Matrix A,

The matrix A; is of dimension (M? + M +1) x (M?+ M + 1) and describes the
transitions from states in A; U A; U Aj,7 > 1 to states in A; UA; U Az, i > 1, with
no change in the first queue. Clearly A, is the transition of the system when there

are ¢ customers in the first queue and there remains ¢ customers in the first queue;

(AP 0 0 0
AP Al 0 ... 0
A=| 0 AP AP 0 (3.17)

0 0 .. AMM1 AMM |

b

17
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Within the matrix A; there are subblocks describing the state of the rack and the

second queue.

1. The subblocks A}, of dimension (2j +1) x (2j+1)for j =1,....M —1,
and AMM, of dimension (j +1) x (j + 1), represent no change in the number
of items in the rack. The elements represent and a change in the number of

customer in the second queue from k; (k; =0,...,7) to k; (k2 =0,...,7).

Agvo = ag, (3.18)

AV = [ (Aé")o (A'?’j)l ] , (3.19)
MM MM

AMM _ [ (Alo Jo gi}:‘“[;; ] i (3.20)

(A}, is of dimension (j+1) x (j+1)for j =1,...,M —1, (A}), is of
dimension j x j for 7 =1,..., M -1, (Ai”‘M)l is of dimension 1 x M, and

(AMM), is of dimension M x M, where

(AVM)o = —(A1 + M)y), (3.21)

(AMn=[Mx 0 ... ... 0], (3.22)
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(a0 i=0,0<k=k<j0<j<M~-]1,

. a i=17 1$k1=k25j,OSjSM—1,
(A17)i(kr, k2) = ¢

0 otherwise,

and

a 1<kh=k <M,
(A MYa(kr k) =4 b 0<k=k+1<M-1,

0 otherwise.

Expressions for ag, a; and b are given in Equations (3.23) to (3.25).

ao = —(M + (G — k)2 + ), (3.23)
@y = —(\ + (7 — K)o + r2), (3.24)

2. The subblocks A}’~, of dimension (2j+1) x (2j—1)forj =2,...,M~1,and
AMM=1 of dimension (M +1) x (2M — 1) represent a change from j to j —1
items in the rack. The elements represent a change in the number of customers

in the second queue from k to k — 1, i.e. a service completion in Queue 2.

AP =[00 ', (3.26)
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r 0 0
JI=1
A = [ Ioa © ] (3.27)

3.2.6 Matrix Ay

The matrix Ay is of dimension (M2 + M + 1) x (M2 + M + 1) and describes the
transitions from states in A; U Az U Az, ¢ > 1 to states in A; UA2 U A, i > 1, with
a change from ¢ to i + 1 customers in the first queue . This indicates that there has

been an arrival in Queue 1.

A 0 ... 0
11 .. 0

A= ? A” . (3.28)
0 0 . AOMM

The subblocks A7, of dimension (2 +1) x (25 +1) forj=0,...,M —1, and
AYM  of dimension (M +1) x (M + 1), represent no change in the number of items

in the rack and no change in the number of customers in the second queue.

A} =L\ (3.29)

3.3 Stationary Distribution

Our interest is to find the steady state vector @ = [@o & &2 ... ... | by solving
Q =0 and ze = 1, where 2; for i > 0 is the stationary probability vector of being
in state 7 at any particular time, i.e. of having ¢ customers in Queue 1 including the
one being served. Given the &;’s, we can easily calculate other performance measures.

The matrix Q is of the quasi-birth-and-death type. There exists a matrix R which

is the minimal nonnegative solution to the matrix-quadratic equation,
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R?A; + RA, + Ay = 0. (3.30)

If Q is positive recurrent, then we know that this matrix R has all its eigenvalues
inside the unit disk (sp(R) < 1). Throughout this thesis the term positive recurrence
and stability are used interchangeably. The stability condition will be discussed in
Section 3.5.

Given R, then

Ty =x;R, for 12> 1. (3.31)

Since we only know &;;; in terms of z;R, for i > 1, we still need to obtain the
boundary vectors & and x;. The boundary behavior can be determined from Equa-
tions (3.32) and (3.33). The vector [zy 2;] can be obtained by

0 = [=0 2| B[R], (3.32)
where
BIR] = [ g‘; A f(}uz ] : (3.33)

The resulting vector [®y ;] is normalized using Equation (3.34).

zoe+z1[l - R e = 1. (3.34)
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3.4 Matrix R

The matrix R is a very important part of getting performance measures of the system.
It is often called the rate matrix. Given that the Markov chain is in level ¢, R is the
expected number of times that level ¢ + 1 is visited before returning to level i.

An efficient method for calculating R is:

R(n+1) = —(R(n)?Az + Ao) AT, (3.35)

where R(n) is the value of matrix R at the n** iteration with R(0) =0.

The matrix R is of dimension (M? + M + 1) x (M? + M + 1) which could be
very large if M is large, and can be partitioned as in Equation (3.36). In the block
element R, ., v represents the number in the rack when the system starts from level

i, and w represents the number in the rack when the system returns to level i.

[ Reo Ror ... ... HRoum ]
Ry Ru ... ... Rom
R=| : : : : : [ (3.36)
| Rmo Rar ... ... Rmm |

However, we noticed that the matrices Ag, A; and A, are very sparse. We therefore
take advantage of the sparsity of these matrices when calculating R. Equation (3.30)

in Section 3.3 can be written in block form as

0 = 6i;A5 + Ri; AP + (1 - 6u3) Rijn AT + (1= 805) 3 RiwRo g1 A}, (3.37)
v=0

where
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1 i=j

0<j<M, 0<i<M and 5.',,'—-{0 otherwise

Equation 3.37 is now written for computational purposes as

- = - - M - - . -
Ry=-— [6i.j & + (1 —u5)Rign AT + (1 - 603) Y R-',vRv.j—lAjz—l"’] (Aap')™"
v=0
(3.38)

3.5 Stability Conditions

To determine the steady state solution to the model presented, the system must be
stable. In addition, to use Neuts’ [14] matrix geometric method to solve the model,

the system must be stable. Based on Neuts, the stability condition can be stated as

mwAje < wAze, (3.39)

where = is the invariant vector of matrix A, ie. #4A =0 and we = 1.

First, let us consider the stability condition for a rack size of 1, M = 1. For this

case
A 0 0
Ao=]0 X o0, (3.40)
0 0 XA
—(p1 + A1) 0 0
A= 0 -(/\2 + 1\1) A2 , (3.41)
B2 0 —~(p2 + A1)



0 17151 0
A,=|0 0 0], (3.42)
0 0O

and

7 =m0, M0, Tia2] (3-43)

After routine algebraic operations, the condition of Equation (3.39) for M =1

results in the necessary and sufficient condition for stability:
—_—>—+4+—+4 = (3.44)

The condition in Equation (3.44) implies that the mean interarrival time into the
first queue, -, must be greater than the sum of mean service time in Queue 1, the
mean interarrival time in Queue 2 and the mean service time in Queue 2 for this
system to be stable for M = 1.

Following this same procedure for M = 2, and applying Equation (3.39) the

necessary and sufficient condition for stability in the first queue is given as

1 1 1 1 m fiz ]
—_—> —t—+ . 3.45
At o e 2X [Ill + f\z] [ﬂz + A2 (3-45)

However, for M = 3, this procedure becomes very cumbersome, as such all we can
obtain is the sufficient condition for stability. It is clear from the development that
the stability condition for the general case is

1 1 1 1

—>—+—+—0 y lea 3.46
MNom o MM (3-46)
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with ) = 1 and 6, = [-24-] [2-]. If we set 6y = 1 for all M in Equation (3.46),
a sufficient condition for stability (but a conservative one) is;
1 1 1 1
—> -4 —=—4=— M21. 3.47
Ao p2 M) (3-47)
Based on the patterns observed in Equation (3.44) and (3.45) it is ”conjectured”
that the expression @) of the general model for stability can be represented as

P Mt 1 )‘ﬁl( U2 3.48
M-,:-[_-_Io(Ih*'.’i/\z =0 ﬂ2+i/\2)' (3-48)

3.6 Special Case of M =1

A special case arises when the storage rack size is one, M = 1. Since there is space
in the rack for only one item, only one item can be placed into the rack before the
system becomes jammed. Jamming of the system forces the server to remain idle until
a request for retrieval arrives in the second queue and then the server can remove the
item from storage. Upon removal of the item the server can then place another item
into storage.

After a closer examination of the system when M = 1, we discover that the server
must serve only one customer from entry into the first queue until that customer
leaves the system. Only after that customer leaves the system can the server serve -
another customer.

If we consider phase service, where service is provided to a customer in several
phases, the double-ended queueing system, where M = 1, can be redefined into a
single queue system which behaves like an M/PH/1 queue except at the boundary.
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This enables the R matrix to be determined explicitly and to interpret the stability
conditions.
The A; matrices (¢ =0, 1,2) for M = 1 are as stated in Equations (3.40) to (3.42).

The arrival rate is A; and the service time is (3, S), where:

g=[010], (3.49)
—pi1 0 0

S=| 0 =2 X |. (3.50)
p2 0 —p

The first phase of service is placement of the item into storage, the second phase of
service is that a retrieval request enters the second queue, and the third phase of
service is retrieving the item from storage.

The A; matrices (i =0,1,2) for M =1 simplify to give the following expressions:

Ao =M1, (3.51)
A =8-MI, (3.52)
A, = S°8. (3.53)

The R matrix of this system can be obtained analytically as

R= Al(/\ll - /\1(65) - S)-l, (3.54)
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M
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1
r1_rt.1
L o K2
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Chapter 4

Performance Measures

Obtaining performance measures is essential in order to utilize the queueing model
described in Chapter 3 as a tool in the design of an AS/R system. These performance
measures allow us to determine how the system is behaving for a specific size of storage
rack given the arrival and service rates. Comparison on these performance measures
for various storage rack sizes will provide insight into what size of an AS/R system
would be most appropriate for the give n conditions. The model can also be used to
determine the behavior of the system and ultimately help decide the best operating
conditions of an AS/RS (arrival and service rates) for a given storage rack size.

The stationary distribution is given as
z =[®o, Z1, T2, -.--.. ]- (4.1)
Each term of Equation (4.1) can be written as
T; = [Tig, Tig, Tigy --on-- , Zip] for 120, (4.2)

where
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To; = [Toj0, Tojls ------ » Zojk] for j=0,....M; k=0,...,7, (43)

and

&i; = [Tijo, Tija for i>1; j=0,...,.M. (4.4)

The term &; j; of Equation (4.4) can be written as

Tij1 = [Tijas Tigals (4.5)
where
ZTij1 = [Zig11, Tiga,2s -oe-- , Tijak] for k=1,...,5, (4.6)
and
Tij2 = [Tijan, Zij22 -ooee- , Tijax] for k=1,...,5. (4.7)

Using the probabilities obtained in the stationary distribution we are then able
to obtain performance measures such as queue length, average waiting time, idleness
and jamming probability for the system. These performance measures enable us to

analyze the behavior of the system.
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4.1 Queue Length

4.1.1 Mean Number in the System

Queue 1

The mean number of customers in the system for the Queue 1 (ur,,) is given as

M M-12 J M
ke, = E Z T 50 + Z Z Z Z Z; 54k + Z Z 8T M2,k (4.8)
i1 j=0 21 j=1 l=1 k=1 21 k=1

This indicates the number of customers waiting for service in the first queue
including the customer being served. The mean number in the system for Queue 1 is
important since this queue can grow out of bounds if the system is unstable, either
from a violation of the stability conditions or from the storage rack becoming full and

the system jammed.
If we reorganize the terms in Equation (4.8) according to stationary distribution
for z; shown in Equation (4.2) we obtain the following expression:
nr,, = (1:!71 + 22433 +434 + .. .)e. (4.9)
Since ®;41 = ;R Equation (4.9) becomes:
br, = (131 +22,. R+ 33132 + 42, R +.. .)e. (4.10)

Equation (4.10) can be reduced to the following:

Lr,, =zlz%(I+R+Rz+R3+R“+...)e. (4.11)
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Equation (4.11) can be rewritten using #; and R as

pr,, =21(I — R)2%e. (4.12)

Queue 2

The mean number of customers in the system for the Queue 2 (ur,,) is given as

M j M-12 J M
Brow =) O kToja+d D D 3 kTojue+3. D kTinmzs (4.13)
j=lk=1 21 j=1 =1 k=1 21 k=1

This indicates the number of customers waiting for service in the second queue,
including the customer currently being served. Expressing Equation (4.13) in terms

of 2, and R gives us the following expression.

By, = Zoby + 21 (I — R)"be, (4.14)
where
bh=lwec ...... ¢l for i=0,... M, (4.15)
c=[01...... i] for i =0,... M,
and
bo=[dod -..... dj’ for i=0,... M, (4.16)
do = [0],
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d,=[d.0 dil] for i=1,...M,

do=[012...... i, da=[12...... i for i=1,... M.

4.1.2 Mean Number in the Queue

Queue 1

The mean number of customers in the queue for the Queue 1 (pr, ) can also be

written using @, and R and is given as

M-1 M-1 j M
BL;, = Z Z (i - 1)5'—':’,,1',0 + Z Z Z(l - 1)1-':',7’,1.& + Z Z Z 'i.’l?.-.j,z,k + E iT; M-
i>1 j=0 i21 j=1 k=1 i>1 j=1k=1 1
(4.17)
Equation (4.17) can be rewritten as:
M-1 M=1 j
Blig =HBL, =Y D Zijo—3_ 3. Y Tijik (4.18)
i1 j=0 21 j=1 k=1
Equation (4.18) can be written in terms of ; and R as
I‘L;q =puL,, — zl(I - R)—1b3r (4' 19)
where
b3=[f0 fl ...... f;]’ for i=0,... M, (420)

fo=11],
fi=[fo0] for i=1,... M —1,
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fo=e(@+1).

fu =[0].

fiisofsize2i+1fori=1,...,M —1 and fu is of size 7 + 1. This indicates the
number of customers waiting for service in the first queue not including the customer

currently being served.

Queue 2

The mean number of customers in the queue for the Queue 2 (pr,,) is given as

M M-1 j M J
BLyy = z Z(k - I)Ioj,k + Z Z 2 kzi,j,l,k + z Z Z(k - 1).'17.',_,"2'&. (4.21)
j=lk=1 21 j=1 k=1 i>1 j=1 k=1

Equation (4.21) can be rewritten as:

M J M
Bia = HLa = 3 3 Tojk =3 3 Y Tijak: (4.22)

i=lk=1 21 j=1 k=1
Expressing Equation (4.22) in terms of &, and R gives
BLy, = BLy, — xob.; - 31([ - R)-1b5, (4.23)

where

b4 = [go g -ec-.. g,-]' for ¢ =0,... M, (4.24)



g=[0ga] for i=1,... M,

ga = e(i),
and
bs=[hohy -..... k] for i=0,... M, (4.25)
ho = [0],

hi=[0hy] for i=1,... M,

hia = e(i)'.

giisofsizei+1fori=1,...,M, h;isof size 2i+1fori=1,...,M —1 and hy
is of size i + 1.
This indicates the number of customers waiting for service in the second queue

not including the customer currently being served.

4.2 Probability of Server Being Idle

The probability that the server is idle, yo, is given as

M
Yo = Zl'o,j.o + in,M.o' (4.26)

7=0 i>1
Equation (4.26) can be expressed in terms of &, and R as

% = Zobs + z:({ — R)—lbf, (4.27)
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where

for i=0,... M, (4.28)

no = [0],
n;=Mnp0) for i=1,... M,

nio = [1],

and

b:=pop ...... p) for i=0,... M, (4.29)

pi=[0] for i=1,... M —1,

Py = [Pmo O]

pmo = (1)

n;isofsizei+1fori=1,....M,p;isofsize 2i+1fori=1,...,M -1 and py
is of size © + 1.

The probability that the server is idle indicates that the server is not serving any
customers. Server idleness can arise from two different states. Either there are no
customers waiting for service in both Queue 1 and 2 or the system is jammed and

the server must wait for a customer to arrive in Queue 2 before service can resume.



4.3 Mean Number of Items in the Rack

The mean number of items in the rack py, is given as

M i M M-1 2 j M
BN =33 Toik+ Y. 3, ITijo+ Y 22 Y T+ Y Mrimae- (4.30)
j=lk=1 =1 =1 21 j=1 I=1 k=1 >1 k=1

Expressing Equation (4.30) in terms of &, and R gives

pine = Zobs + 21 (I — R)™'by, (4.31)
where
bs=[s081 ...... s for i=0,... M, (4.32)
so = [0},
si=e(i+1)i for i=1,... M,
and

b = [to 13 TR t.']’ for :=0,... M, (4.33)

to = [0],

ti=e(2i+1)i for i=1,... M.

The mean number in the rack indicates the average number of items stored in the
rack at any given time. Utilization of the rack is given as £%=. This performance mea-

sure is important for design purposes as it is an indication of storage rack utilization.
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A small value indicates low utilization. If utilization is low, the AS/R system may
not require such a large rack and for cost reasons a smaller rack size may be more
suitable. A high utilization value does not necessarily mean the rack is too small
but rather that the system is getting good performance from the particular rack size,
unless the jamming probability is high. A high jamming probability would mean that
the rack is filling up too quickly and items are not leaving fast enough.

An AS/R system with a high utilization value and a high jamming probability
may require a larger rack size if the waiting time and queue length are becoming too
large. An efficient AS/R system should have a short waiting time or small queue
length, yet be completely utilized.

4.4 Probability of Rack Being Full

The probability that the rack is full, yz, is given as

M M
Yr = 3_Tomk+ ) TiMpo+ D, I TiM2s- (4.34)
k=0 =1 >1 k=1

Expressing Equation (4.34) in terms of &, and R gives
yr = Tobro + 1( — R) by, (4.35)
where
bo=[ov ...... v for i=0,... M, (4.36)
v; =[0] for ¢=0,... M -1,
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vy =e(M +1),
and
bu=[w w ...... w;) for 1=0,... M, (4.37)

w; =[0] for ¢ =0,... M -1,

wy =e(M +1).

v;isofsizei+1fori=1,..., M, w; isofsize 2i+1fori=1,...,M —1 and wy

is of size ¢ + 1.

4.5 Jamming Probability
The jamming probability, y,, is the probability that the rack is full with no customers

waiting for service in the second queue.

Y= Timpo. (4.38)

i>1

Expressing Equation (4.38) in terms of &, and R gives
ys =21(I — R)'erz1. (4.39)

Jamming occurs when the storage rack is full, there are no requests for retrieval
waiting in Queue 2 and there are items waiting in Queue 1 to be placed into storage.

The server is forced to be idle until a request for retrieval arrives into Queue 2 and
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the server can then resume service. Once an item has been removed from the storage
rack the system is no longer jammed and the server can serve Queue 1.

A high jamming value indicates that the rack is frequently filled to its maximum
capacity and items are not being removed from storage fast enough to service items
arriving to be placed into storage. This suggests that a larger rack size would give

better system performance.

4.6 Waiting Time

It is known by Little’s law that
L =)\W, (4.40)

where L is the mean number in the system, \ is the arrival rate into the queue, and
W is the mean waiting time in the system. Using Little’s law, we can derive the
equations for the mean waiting time in the system and in the queue for Queue 1.

It is also known from Little’s law that the mean number in the system, where the

arrival source is finite, is defined as
L =W, (4.41)

where X is the effective arrival rate into the queue. Using Little's law for a finite
source, we can derive the equations for the mean waiting time in the system and in

the queue for Queue 2.
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4.6.1 Mean Waiting Time in the System

Queue 1

For Queue 1, the mean waiting time in the system, W), is as follows:

Wls e 3 &. (4_42)
A

The mean waiting time in the system for Queue 1 indicates the average length of
time a customer must wait for service to start from the time the customer arrives in

Queue 1.

Queue 2

The effective arrival rate A is given as

_ J
A2 = Z z ijA20 ~k), (4.43)
j=1k=0
ik = szijlk, (444)
i j

where z;; is the probability that j items are waiting in the rack, of which k are waiting
to be served in Queue 2. Since Queue 2 has a bounded source, the expression A; for
the effective arrival rate is now used in place of X in Equation (4.41). As a result, the

mean waiting time in the system for Queue 2, Wa,, is as follows.

Wa, = Blex (4.45)
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The mean waiting time in the system for Queue 2 indicates the average length of
time a customer must wait for service to start from the time the customer arrives in

Queue 2.

4.6.2 Mean Waiting Time in the Queue

Queue 1

From Equation (4.40), the mean waiting time in the queue for Queue 1, Wy, can be

obtained as

Wi, = “:—f (4.46)

The mean waiting time in the queue for Queue 1 indicates the average time a
customer will wait in Queue 1 before receiving service, not including the time it takes

to serve the current customer.

Queue 2

From Equations (4.41) and (4.43), the mean waiting time in the queue for Queue 2,

Way, is given as

Wo, = -‘-‘5\2:.1 (4.47)

The mean waiting time in the queue for Queue 2 indicates the average time a
customer will wait in Queue 2 before receiving service, not including the time it takes

to serve the current customer.
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4.7 Effective Arrival Rate into Queue 2

As stated previously, items are placed into and retrieved from storage on an ongoing

basis, resulting in a source for arrivals into Queue 2 that is variable of size between 0

and M. The expression for the effective arrival rate ),, for a finite source, is given in

Equation (4.43). Rewriting Equation (4.43) in detail gives the effective arrival rate,

Xz, as

M ]
Y Y Togkde (k) (4.48)
=0 k=0

M
+Z Z Tiio A2 j

i1 j=0
M-1 2 j

+202 XY Tijukda (- k)

2l j=1 =1 k=1

+Z f: Ti M2k Az (M—-k)

21 k=1

The expression in Equation (4.48) can be reduced to

A2 = do(pnvr — Hira,)- (4.49)

From numerical computation, it was observed that for a stable system the effective

arrival rate, Az, was equivalent to the arrival rate into QI.

Xz = A1. (450)

For a general system, whether the system is stable or unstable, it is conjectured

that the effective arrival rate, A2, would not necessarily be equivalent, hence
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d £ M. (4.51)

Evidently an item must arrive in Queue 1 before it can arrive in Queue 2. There-
fore, the arrival rate into Queue 2 cannot be larger than the arrival rate into Queue
1 for a general system. In the case of a stable system, the arrival rate into Queue 1
equals the effective arrival rate into Queue 2.
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Chapter 5

Numerical Examples

This chapter presents numerical examples for hypothetical situations that will be
used to assess the behavior of the system. Different rack sizes of 1, 4, 7 and 10 are
considered and the arrival and service rates are varied. The numerical examples will

provide answers to such questions as:

e What is the performance of the system for various rack sizes?

e What impact on the performance of the system does varying the arrival and

service rates have?

e Is it more efficient to increase the rack size versus increasing the service rate of

the S/R machine?

e At what point does increasing the size of the rack have very little benefit on

system performance?
Several experiments have been conducted to determine the behavior of the model

and will be discussed in this chapter. However, before the numerical examples are

presented it is important to discuss the validation of the model.
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5.1 Validation of Model

Based on the equations presented in Chapter 3, models were developed for rack sizes
of 1, 4, 7 and 10 units. For each of the rack sizes the model was validated in the
following manner.
The first method for validation of the model is to increase Az and p2. As A and 2
are increased towards infinity the limiting behavior of the system can be determined.
For an M/M/1 queueing system the following equations hold:

p _

L= T—p = Humry, (5.1)
L

W=7, (5.2)

where L is the mean number of customers in the system, W is the mean waiting time
in the system, A is the arrival rate in the queue, u is the service rate and p = ;’}

For the double-ended queueing system, as both A, and p, tend towards infinity,
A2 =00 and p, — 00,
the behavior of the double-ended queue tends towards the behavior of an M/M/1
system.
HL(DE) — KL(M/M/)>
where pr(pg) is the mean number of customers in the system for the double-ended

queue and prom/ay is the mean number of customers in the system for an M/M/1

queue.



Let pr(pgy(M) be the mean number of customers in the system for Queue 1 for
a rack size of M. Also, let Wpg(M) be the waiting time for the double-ended queue
for rack size M and W1 the waiting time for an M/M/1 queue.

Using arrival and service rates of A\; = 0.2, g = 1.0, p; = 0.2 and ); = 2.0, the
mean number of customers in the system for the double-ended queue was calculated.
Tables 5.1 and 5.2 give the queue length and the waiting time for the double-ended
system as the service rate in Queue 2 is increased. It is evident that the limiting
behavior of the double-ended queueing system is that of an M/M/1 queueing system.
For a rack size of one, the values of A\; and u, must be considerably high before the
system behaves as an M/M/1 queue.

The second method for validation of the model is to verify that the Lemma for the
effective arrival rate, Xy, discussed in Chapter 4 holds. For all models, the effective

arrival rate A; does equal ;.

46



M/M/1

proe)(l)

Double-Ended 0.4159 0.4079 0.4016 0.4008
Queue 512 0.2506 0.2501 0.2501
0.2506 0.2501 0.2500

0.2506 02501 | 02500 |

2: 800 | 20 : 8000 | 200 : 8000
0.4004

0.2633

2000 : 8000

5000 : 8000

0.2513

0.2502

0.2501

Table 5.1: Queue Length Validation of Model

A]_ = 02, = 1.0
Az © iy
Queue Length 2:667] 2:20 | 2:40 [ 2:200 | 2:400
M/M/1 | Wamp 1.2
Double-Ended 2.0797 [ 2.0396 20079 [ 2.0039
Queue 1.2560 1.2528 1.2505 1.2503 |
1.2560 | 1.2528 1.2505 1.2502 |
1.2560 | 12528 | 1.2505 1.2502 |
Az : ft2

Wpe(1)

: 800 | 20 : 8000 | 200 : 8000 | 2000 : 8000 | 5000 : 8000 |
2.0020 | 1.3166 1.2567 | 1.2508 1.2504 ||

Table 5.2: Waiting Time Validation of Model
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5.2 Experiments

The first set of experiments determines the behavior of the system as a function of the
arrival rate in Queue 1 where A, and u, were varied. Since the behavior for each rack
size modeled is similar, only the behavior for a rack size of M = 4 will be discussed.
The second set of experiments fixes the arrival and service rates and determines
the behavior of the system as the rack size increases.
For both sets of experiments the performance measures discussed in Chapter 4
were obtained including the mean number of customers in the system, the waiting

time, and the jamming probability.

5.2.1 Varying Arrival and Service Rates

This section presents the results for the experiments in which both A; and pu; have
been varied. The service rate for Queue 1 and the arrival rate into Queue 2 have been

fixed at y; = 1.1 and A, = 2.0.

Queue Length

The mean queue length in the system for Queue 1 is shown in Figure 5.1. The mean
queue length in the system for Queue 1 is as expected. The graph shows that as
traffic into Queue 1 increases, the queue length in Queue 1 increases exponentially.
As the arrival rate increases in Queue 1, the queue length grows quickly. Notice that
the asymptote of the curve shifts to the left, indicating that the system will become
unstable faster, as the service rate decreases in Queue 2.

The mean queue length in the system for Queue 2 is shown in Figure 5.2. The
graph shows that as traffic into Queue 1 increases, the queue length in Queue 2

increases exponentially. The same type of behavior that was observed for Queue 1 is
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Mean Number of Customers
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Figure 5.1: Mean Queue Length in Queue 1 - M =4 (u; < p2)
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also observed for Queue 2. The key difference is that in the case of Queue 2 the slope
of the curve is much gentler and approaches infinity slower.

Waiting Time
The mean waiting time in the system for Queue 1 is shown in Figure 5.3. The graph
shows that as traffic into Queue 1 increases, the waiting time in Queue 1 increases
exponentially. The behavior of this graph is similar to that of the queue length in
both Queue 1 and 2 since the asymptote of this curve also shifts to the left, indicating
that the system will become unstable faster, as the service rate decreases in Queue 2.
The mean waiting time in the system for Queue 2 is shown in Figure 5.4. The
graph shows that as traffic into Queue 1 increases, the waiting time in Queue 2
increases exponentially. The behavior of this graph is of the same type since the
asymptote of this curve shifts to the left, indicating that the system will become

unstable faster, as the service rate decreases in Queue 2.

Mean Number of Items in the Rack

The mean number of items in the rack is shown in Figure 5.5. The graph shows that
as traffic into Queue 1 increases, the mean number of items in the rack increases.
Notice that for a rack size of M = 4, the mean number of customers in the rack does
not reach capacity.

Utilization of the rack as previously discussed is given as £&=. Low utilization
would indicate that there is room for increasing the use of the storage facility, or that
a smaller rack would be more cost efficient. A high utilization would indicate that
the system is being used efficiently, however, there is little room for increasing the

utilization. If the system requires extra capacity for future expansion, a larger rack
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Waiting Time
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size might be better.

Probability of Server Being Idle

The probability that the server is idle is shown in Figure 5.6. The graph shows that
as traffic into Queue 1 increases, the probability that the server is idle decreases. The
probability that the server is idle decreases in a straight line. We also observe that as
the service rate in Queue 2 increases, the probability that the server is idle increases.

In the case of M/M/1 , the probability that the server is idle is given as
A
l-p=1—~—. 5.3
P p (5.3)

As ) changes, the curve will actually be a straight line. However, even with jamming
included, the probability that the server is idle is still a straight line. Although it is

not evident from Figure 5.3, the probability that the server is idle never reaches zero.

Probability of Jamming

The probability that the system becomes jammed has been studied and several graphs
are presented to show the behavior of the system for different parameters.

Figure 5.7 shows the probability of jamming for a rack size of one, M = 1, which
behaves as expected. It is observed that as the arrival rate into Queue 1 increases,
the probability that the system becomes jammed increases. As the service rate in
Queue 2 increases, the probability that the system becomes jammed decreases. This
graph is for the case where p; < u;. However, for the cases where uy = p; and
i1 > pp the behavior is similar. For rack sizes of M = 4,7 and 10, this is also

true in some instances and then the curves cross over each other. Once this occurs,
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Mean Number of Items in the Storage Rack
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Figure 5.5: Mean Number of Items in the Storage Rack - M =4 (u; < p2)
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the jamming probability increases as the service rate in Queue 2 increases. This is
counter-intuitive. It is also noted that the cross over points shift further to the right
as the rack size increases.

Figures 5.8, 5.9 and 5.10 show the probability of jamming for rack sizesof M = 4,7
and 10 when yu; < y,. Figures 5.11, 5.12 and 5.13 show the probability of jamming
when y; > up. Figures 5.14, 5.15 and 5.16 show the probability of jamming when
p1 = p2. These graphs show cross over points in the curves that change as the rack
size increases.

It is also observed that in some instances before the system becomes unstable, the
jamming probability decreases as A, increases. This decrease is also counter-intuitive.
As pointed out, the increase in jamming probability as u, increases and the reduction
in the jamming probability as A; increases are counter-intuitive. The best explanation
that can be offered at the present has to do with the relation to p.. po, defined as
A2/ 2, is the level of traffic intensity of Queue 2 and is a representation of how traffic
is leaving the rack compared to the service rate. When p, is low, there are few items
waiting to be removed from storage. A low p; will cause the jamming probability to
increase in some instances. Alternately, when po is high, there are many customers
waiting to be removed from the rack, and the jamming probability is low. The amount
of customers in the storage rack is dependent on A; and p;. When A, is small there
is not necessarily a high probability of jamming as there are fewer items being placed
into the rack. However, when A; is large there is a high probability that there is
jamming. Note that a decrease in jamming probability does not necessarily mean a
better system as the queue length and waiting time are now large. This is only one
possible explanation.

There are several factors that affect the jamming probability of a double-ended

queueing system. Further study is required to fully understand how the system be-
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haves.

5.2.2 Varying Size of Storage Rack (M)

This section presents results for experiments where y;, A2 and u, have been fixed at
p = 1.1, A2 = 2.0 and p; =2.2 and A, has been varied for different rack sizes.

Figure 5.17 shows that for storage sizes of 4, 7 and 10 the difference in the behavior
of the system is negligible. Under certain operating parameters the performance of
rack sizes M = 4,7 and 10 will be the same. However, under different operating
parameters, there will be a difference in the performance of the system for the various
rack sizes. Figure 5.18 shows a difference in the behavior of the system for rack sizes
of 7 and 10. The performance measures obtained for these experiments behave in the
same manner as discussed previously.

In regards to Figure 5.18, even though the system may have an improvement in
performance with the increased storage rack size, the benefits of the additional size
may not outweigh the additional investment required for the increased capacity.

Figure 5.19 shows the mean number of customers in the system for rack sizes of
M = 4,7 and 10. Notice that the queue length in Queue 1 decreases and eventu-
ally levels off indicating that further increases in rack size will not bring additional

performance improvements.
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Probability System is Jammed
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Probability System is Jammed
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Probability System is Jammed (e-11)
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Figure 5.10: Probability the System is Jammed - M = 10 (u1 < p2)
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Probability System is Jammed (e-07)
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5.3 How to Use The Results for Design Purposes

In most AS/R systems the arrival rates into the first and second queue will be fixed
and not usually controllable. Also, in most cases the service rate for both Queue 1
and 2 will be the same, x; = 2 = 4, but unknown. The designer will have to select
the appropriate values of g; and u;. The interest is to find the service rate which
best suits the rack size of M, and the rack size of M which is most appropriate given
specific service requirements.

Let C,(-) be the cost associated with delay of an item to be placed into and
removed from storage, Cy(-) be the cost associated with a specific rack size M, and
C,(-) be the cost of an S/R machine that provides service at a rate of u.

Given a certain waiting time in Queue 1, W;,(u, M), for a specific rack size M

and service rate u, the minimum total cost of an AS/R system can be determined by

Minimize Z = Cu(Wi,(, M)) + Cyy(M) + C,. (1) (5.4)
Subject to: >0 (5.5)
M>1 (5.6)

f(s)>0 (5.7)

where
f(s) =mAze — mApe. (5.8)



Stability is conjectured to be

-~ (2)-(3)- G T () T (2)- o9

and can be determined numerically.
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Chapter 6

Summary and Conclusions

The contribution of this thesis is the development of a queueing model for an auto-
matic storage and retrieval system that can be used for analysis of system performance
and behavior. This model can be used as a tool, in the design of these systems, for
determining rack size, arrival and service rates for best performance.

In most cases the model generally behaves as expected. However, some results for
the jamming probability do not behave as expected. Also, depending on the system
parameters utilized, the rack size may or may not be a factor in the manner in which
the system behaves.

The model is of a simplified AS/RS. Its use is therefore limited and can only model
a basic AS/RS. For a more complex system one may have to resort to simulation,
whose limitations are also well known. However, the current model can still be used
as a component of a larger and more complex system. In addition, it can also be used
to approximate most AS/RS.

The current model assumes Poisson arrivals and exponential service, but we know
that most arrivals in industry are hardly of Poisson type and service is also hardly
exponential. The arrival process of an internal system such as this one is often
correlated and it is well known that the Markovian Arrival Process (MAP) is a good

representation of correlated arrivals.
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It is known that because our service is a combination of travel time and placement
or removal from the rack, a more general service time, which probably consists of a
fixed travel time and a random variable for placement or removal, would be more
appropriated. It is also well known that most general services can be represented
(very well approximated) by phase type service. Future work should attempt to
extend this model to MAP arrivals and phase services.

This model is also limited to a single server of unit-load. Future work in this area
might be to extend the model to group services and include other popular service

policies.
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