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Automatic storage and retneval systems (AS/RS) are widely used in warehousing 
due to such benefits as condensed storage and fast retrieval of goods. An end-of-aisle 
type of AS/RS is one of the most &ective automatic storage and retrieval systems 
for warehousing and distribution operations. 

This thesis presents a stochastic analysis of a simplified end-of-aide AS/RS using 
a queueing model with two hk-ed queues. A simplified AS/RS with one storage 
rack, and one storage/retrieval (Sm) deviœ of unit-load is mnsidered. There are 
two queues, one of infinite capacity for the items waiting for storage and the other of 
finite capacity for the requests for item to be removed ftom storage based on the size 
of the storage rack. The S/R machine places them into storage and retrieves items 
on an altemating basis. 

Arrivals in both queues are assumed to follow a Poisson distribution, where the 
arrivals in the second queue are linked to the Brst queue. Service times of both queues 
follow an exponential distribution. 

A double-ended queueing model is developed and is studied as a Markov pro- 
ces. The resdting Markov chain is of the quasi-birth-and-death type. The Matrix- 
geometric approach is used to analyze this system and efficient algorit hmic procedures 
for the computation of the rate matrix, steady state vector and important performance 
mesures have been developed. 

Numerical examples are presented that show the behavior of the system for var- 

ious rack sizes. As the rack size inmeases, the queue length and waiting time both 
decrease and system performance împroves. However, it is shown that under certain 
condit ions increasing the rack size gains minor improvement s in system performance. 
The behavior of the system when jamming occurs is also discussed. 

The queueing model presented in this thesis is only for a basic AS/RS. It is limited 
to Poisson arrivals and exponential s e ~ c e .  Extensions of this work might be to non- 
Poisson arrivais and non-exponential service times. 
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Chapter 1 

Introduction 

Automatic storage and retrieval systerns (Mm) are widely used in warehousing and 

often found in manufacturing. An automatic storage and retrieval (AS/R) system 

has many benefits such as faster retrieval and condensed storage over mnventional 

warehousing systems and are ideal for integrating with existing automation. These 

systems have the capability to integrate storage with inventory control and material 

resource planning. As a result, ASIR systems provide savings in labor costs, i m p m d  

materid flow and inventory control These systems effectively utilize floor space since 

they are able to reduce storage requïrernents by using random storage assignment 

and minimbe the wasted space due to aisles (Allen [l], Bafm [3] and [4], Rygh [16], 

Hill [Il]). 

The basic cumponents of an automatic storage and retrieval system are storage 

racks and storage/retrieval (S/R) machines that transport the items into storage and 

retrieve them when a request for removal arises. There are several types of ASIR 

systems available: 

horizontal carousel - consists of shelving mounted on a motor driven horizontal 

track, 

vertical camuse1 - consists of shelving and a mechaaism t hat rotates the shelving 



on a vertical track, 

ver t id  lift - wnsists of rnodular d u m n  sforage units with a storage/retneval 

mechaniSm that moves vertically to the location of the desired item, 

end of aisle - consists of rows of storage units and a storage/retrieV&l mecha- 

nism(s) that moves the length of the aisles. 

The best known type of AS/RS is the end-of aisle type. An end-of-aide AS/RS 

consists of opposed racks on either side of an aisle. Each aisle contains a stacker Crane 

that is able to move the fd length of the aisle and can travel verticdy and side to 

side. There are many benefits to an end-of-aisle system. It is extremely flexible and 

only limited by the available floor space. The most effective applications are high 

volume with low to moderate activity, m a h g  it one of the most cost effective AS/R 

systems for warehousing and distribution operations (Allen [l]). 

ASIR systems are generally designed to meet the specific needs of the individual 

user. Systems wiIl dinet in many respects such as the number of storage racks, the 

height, length and depth of the storage racks, and the number and size of the storage 

spaces. They will aLFo vary in the number of S/R machines used, the number of items 

t hst cm be carried at one time by the S/R machine (unit Ioad or more), the manner 

in which the system casries out storage and retrievals of items, and whether the S/R 

machine is dedicated to one aide or hm the capability of tramferring between aisles to 

s e ~ c e  multiple storage racks. Other parameters include arrival and retrieval request 

rates, speed of service, and acceleration/deceIeration rates of the SIR machines. 

It is therefore important to have a model of an AS/RS that wiil provide informa- 

tion on the system performance. The use of a model as a tool in the design process 

of an AS/= can help to ascertain the behavior of the system with respect to the 
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Figure 1.1: Simplified Mode1 of an Automatic Storage and Retrieval System 

capacity of the storage racks, the amival and service rates and the many other param- 

eters, before the system is instded. The mode1 will aid in the decision process of an 

appropriate rack size resuiting in the design of an efncient and cost effective system. 

A very cornplex AS/RS can be decomposed into Mous simpiiûed systerns which 

can be easily modeled. A model can then be used to gain an understanding of the 

system behavior. This thesis presents a stochastic mode1 that can be used to evaluate 

the performance of an AS/RS. The anslytical model will be based on a simplified 

ASIR system as shown in Figure 1.1. 

The simpIified AS/R system is of the end-of-aisle type and wiil have one storage 

rack of capacity (size) M. There is assumed to be one stacker crane (semer) that 

is capable of only sening a single item (customer) at one time. The loads may be 



packaged goods on a pailet or a single item. A pallet of packageci goods will be 

considered to be one item and cannot be split. AU spaces available for storage in the 

rack are of the same size, and it is assumeci that any item can fit into any storage space. 

Speed of s e ~ c e ,  directional movernents of the crane, acceleration and deceleration of 

the crane, tramfer t h e  of an item in/out of the rack, etc., are aasumed to be part of 

the s e ~ c e  process and included in the service time. Additional assumptions made 

inciude that each pallet contains ody one type of item and any pde t  may be stored 

in any storage location. 

This simplifed system is modeled as a doublesnded single semr  queueing systern. 

The ficst queue, Queue 1, is considered to be the a r r i d  queue where items wait to 

be placed into storage, Queue 2 is considered to be the queue in which the requests 

for retrieval arrive. Queue 2 is dependent on the number in the rack. 

The remainder of this thesis is organizedas foUows. Chapter 2 reviews the previous 

research in the area of AS/RS and stochastic models and introduces the relevancy of 

the model presented in this thesis. Chapter 3 presents the model and corresponding 

Markov chah with the periormance measures discussed in Chapter 4. Numerical 

examples and discussion are presented in Chapter 5 with a s u m m q  of this work and 

conclusions presented in C hapter 6. 



Chapter 2 

Literature 

Many researchers have studied autornated warehousing systems and AS/RS. Research 

done in these areas includes simulation, the development of heuristics and anelytical 

models. However, little emphasis has been placed on analytical models. Ail three 

approaches have theïr advantages and disadvsntages, and all have dinerent circum- 

stances in which they are best applied. 

Many simulation models developed are for complex situations. As pointed out 

by many reseamhers, including Lee [12], simulation models are tirne-consuming to 

develop and ddate  even though they cm capture most aspects of an AS/R systern. 

The advantage of simulation is that it can represent any level of detail. However, 

simulation c a ~ o t  be properly used for optimization purposes. Several people have 

used simulation such as Seidmann [18], Chow [6], Schwm et al. [ l f ] ,  Lynn and 

Wysk [13], and Egbelu and Wu [7] and some have used simulation as a component of 

an optimization mode1 such as Rosenblatt et al. [l5]. 

Heuristic approaches have been used to aid in the scheduling of AS/R systems. 

However, with heuristic approaches, the p e r f o m c e  of an AS/RS is based on de- 

terministic parameters (often referred to as static models). The weakness of these 

models is that they lack the true operating aspect of AS/RS such as the stochastic 

aspect. Heuristics have been used by researchers such as Han et al. [9]. 



Detenninistic models that use network models such as traveüng salesman problem 

and vehicle routing have been used to determine optimal retrieval policies. However, 

this is not of interest in this thesis. 

It appears that most researchers have used hybrids of mwious methods such as 

simulation, optimization, heurist ics and network t heory to study ASJRS. In addit ion 

aisting queueing models have been used to study AS/RS. However, these applications 

have not been able to capture the true operating aspect of the system. As a result, 

queueing models have been used together with simulation and heuristics by people 

such as C how [6]. 

There have been very few models that capture the true stochastic aspect of AS/RS. 

This is partly due to an attempt to mode1 cornplex systerns that are difficult to model 

stochasticaily. However, even for the simple cases, the number of models is very 

limited. Analytic methods have been studied by Schwarz et aL [17], Graves et aL [S] 

and Hausman et al. [IO]. Bozer and White [5] present a stochastic analysis for a 

mini-load AS/RS. Stochastic optimization was studied by Azadivar [2]. 

Lee [12] is the fuxt to present a stochastic analysis of a unit-load AS/RS using 

an analytical method. He considers a system which has two queues. The first queue 

is for the incoming items to be placed into storage and the second queue for the 

retrieval requests. Both queues have limited capacity. The arrivals are assumed to be 

Poisson and services in both queues are exponential. Amvals into the second queue 

are independent of the storage rack and corne from an external, unlirnited source. 

The model does not capture the state of the storage rack and therefore is not able 

to capture the impact of a full rack and empty second queue on the first queue, when 

the system is j m e d .  The server is idle only when both queues are ernpty. 

The model presented in this thesis captures the state of the storage rack and 

Iinlcs the two queues. Arrivals into the second queue are dependent on the number of 



items in the rack which in tum is dependent on the k i t  queue. This type of mode1 

has not been previously studied in the literature, to the best of our know1edge. By 

keeping track of the state of the storage rack, the mode1 is able to capture jamming. 

Linking of the two queues captures the operating aspect of an AS/R system where 

items camot be removed h m  storage unless they have previously been placed into 

storage. 



Chapter 3 

Model 

3.1 Double-Ended Queueing Model 

The simpMed model as described in Chapter 1 is ww modeled as a double-ended 

queueing system in continuous tirne. A double-ended queueing system is a system 

t hat contains two queues that are linl<ed with respect to their customers. 

Consider the simplifiecl AS/RS in Figure 1.1. As previously discwed, Queue 

1 is considered to be the &val queue where items wait to be placed into dorage 

and Queue 2 is considered to be the queue in which the requests for retrieval anive. 

Retnevals sui only be made if items are avaüable in storage. As such, a request 

for retrieval can only arrive if an item is in the rack Figure 3.1 provides a simple 

illustration of the doubleendeci queueing model. 

Queue 1 has an infinite b d e r  and arrivals into Queue 1 are fiom an external 

source. Customers can only arrive into Queue 2 after they have 6rst received service 

in Queue 1. The storage rack is considered to be the source for amivals into Queue 

2 and has a fixed size, M. Amval into Queue 2 depends on the output of Queue 1. 

Items are plaœd into and retrieved h m  storage on an ongoing basis, resulting in a 

source for srrivals that is constantly in flux. Therefore, the source for axrivals into 

Queue 2 is of variable size between O and M. 



Figure 3.1: Double-Ended Single Server Queueing Mode1 

The server is assumed to only serve one customer at a time (unit-load). Service of 

both queues foilows a kt - in ,  first-out ( F m )  rule and s e ~ c e  tirnes are independent. 

Customers arrive into Queue 1 and wait for senrice. Service in this case means the 

placement of an item into the storage rack. Service of Queue 1 takes place if there is 

space available in rack. The location in the storage rack where the item is placed is 

chosen randomly kom alI open rack locations. 

Upon a s e ~ c e  completion of a customer in Queue 1, the server will serve the 

second queue. Items in the rack do not physicdy enter the second queue. Only 

a request for removal of the item arrives into Queue 2. In Figure 3.1 the items in 

the storage rack marked with an Y are the items that have requests for removal in 

Queue 2. 



If a request for removd of an item from the storage rack is waiting in Queue 2, the 

server will remove the item kom the rack, which then leaves the system. If a request 

is not waiting, Queue 2 is empty but there may be items in the rack, the server wiii 

r e t m  to Queue 1 and serve the next customer if space is available. 

The server wiU alternate between Queue 1 and 2 after each service completion. If 

either queue is empty, the serw will continue s e ~ c e  of the queue with customers 

waiting util: 

0 a customer amives in the empty queue, then the server will begin aiternate 

service at the completion of the current s e ~ c e ,  or 

a the customers in the current queue being served are exhausted, or 

a the system becomes jwnmed. 

If both Queue 1 and 2 are empty? the server is idle and wiU begin service on the 

first customer that arrives. 

Jamming of the system is defined as the state when the storage rack is fuU, there 

are customers waiting in Queue 1 for placement into storage, and Queue 2 is empty 

(there are no requests for items to be removed fimm storage). If the system becomes 

jarnmed, the server is forced to remain idle until a request for retrieval amives in 

Queue 2. If jarnming occurs, the system can becorne unstable if Queue 1 grows out 

of bounds. 

Amvals in Queue 1 are external and are assumed to foilow a Poisson distribution 

with parameter (A1). Senrice of customers in Queue 1 is essentially the transportation 

of an item from the Queue 1 to a location in the storage rack and assumed to follow 

an exponential distribution with parameter (pi). 

Customers served from Queue 1 are put into storage and becorne the source from 

which customers arrive into the  second queue. As a result, the maximum number of 



customers that can be waiting in Queue 2 is M, the capacity of the rack. The actual 

number of customers in the rack is constantly changing, ikom O to M, as items are 

placed into and removed hom storage. Arrivah in Queue 2 are therefore considered 

to be from a bounded source and are assumed to follow a Poisson distribution with 

parameter (A2). The d v a l  rate per item is Az. If there axe N items in the rack, of 

which K are waiting to be served in Queue 2, then the actual arrivai rate for Queue 

2 would be (N - K)&. 
Service of customers in Queue 2 is essentially the transportation of the item nom 

the storage location in the rack to the place of disposal. It is assumed to follow 

an exponential distribution with parameter (h). Once a customer h m  Queue 2 is 

served it leaves the system. 



3.2 Markov Process 

The system that has just b e n  described in Section 3.1 can be studied as a Markov 

Chain. Consider 

The state space for this sptem c m  be described as A where: 

4 represents the states of the system when there are no customers waiting in the 

first queue, i = O; with j items in the rack, O 5 j 5 M, of which k items are waiting 

in the second queue, O < k < j. 
Al represents the states of the system when there is at les t  one customer in the 

h t  queue, i 2 1; with j items in the rack, O j 5 M, of which no items are waiting 

for s e ~ c e  in the second queue, k = 0. 

A2 represents the States of the system when there is at least one customer in the 

k t  queue, i 2 1; with j items in the rack, 1 5 j 5 M - 1, of which k items are 

waiting in the second queue, 1 5 k 5 j ,  and the server is currently s e ~ n g  the first 

queue, 1 = 1. 

A3 repiesents the states of the system when there is at least one customer in the 

first queue, i 2 1; with j items in the rack, 1 5 j 5 M, of which k items are waiting 

in the second queue, 1 k < j, and the server is currently serving the second queue, 

t = 2. 

The generator mstrix Q is of block tridiagonal fom with infinite dimension, where 

the states of the Markov chah Q are arrangecl in lexicographie order. 



Matrix Q is a generator matrix with negative diagonals and everything eise non- 

negative. It can be shown that &-' and A;' &, and both are non-positive, hence 

Q is irreducible. As a generator, the s u m  of the rows of matrix Q equd zero. Similady 

the matrix A = A. + Ai + A2 is BLso a generator. 

In what follows, the subblocks in Q are explaineci in detail I j  is defined to be 

an identity matrix of dimension j. In addition, e is defmed to be a column vector of 

ones, e(z) a column vector of ones of size (i), and a column vector of zeros with 

the value one at position 2. 

3.2.1 Matrix Bo 

The rnatrix Bo is of dimension f (M + 1)(M + 2) x f ( M  + 1) ( M  + 2) and describes 

the transitions fkom boundary states in A. to boundary states in AO7 implying no 

change in the state of the k t  queue. Cleariy Bo represents the transition of the 

system when there are no &vals or service completions in the first queue, however, 

there could be changes in the state of the rack and Queue 2. 

Within the m a t h  Bo there are subblocks describing the state of the rack and the 



second queue. 

1. The subblocks BF are of dimension (j + 1) x O' + 1) for j = O, .  . . , M and 

represent no change in the total niimhet of items in the rack. The elements, 

~ P ( k 1 ,  b), represent a change in the number of customers in the second queue 

£kom kl (kl = O , .  . . , j )  to k2 (b = 0,. . . , j). 

where a and b are given in Equations (3.4) and (3.5). 

2. The subblocks 13i3-' are of dimension (j+l) x j for j = 1, . . . , M and represent 

a change from j to j - 1 items in the rack. The elements of BP-' represent a 

change kom k to k - 1 customers in the second queue, Le. a service completion 

in Queue 2. 



The m a t h  Co is of dimension $(M + 1)(M + 2) x (w + M + 1) and describes the 

transitions fkom boundary states in Q to states in Al U As, implying an amival in 

Queue 1. 

Co = 

The subblocks CF, of dimension (j + 1) x (2j + 1) for j = O, . . . , M - 1, and 

cFM, of dimension (j + 1 )  x (j + l), represent no change in the number of items 

in the rack and in the number of customers in the second queue. 

The matrix Do is of dimension (W + M + 1) x f ( M  + l ) ( M  + 2) and describes 

the transitions from states in Al u A2 to boundary states in Q, implying a service 

completion of the only waiting custumer in Queue 1. 



The subblocks L#j+' are ofdimension ( 2 j f l )  x (j+2) for j = l , . .  ., M-1 and 

represent a change from j to j+ 1 items in the rack with no change in the number of 

customers in the second queue. 

D:' = k O], 

The matrbc Az is of dimension (p + M + 1) x (A@ + M + 1) and describes the 

transitions from states in Al U A2 U A3,i 2 2 to states in Al U A2 U A3,i 2 2, with 

a change from i to i - 1 customers in the first queue . This indicates thst there has 

been a service completion in Queue 1. 

O A;' O ... O 
O O AF ... O 
. O . . 

M-I,M O O ... ... A2 
O O * . .  ... O 

The subblocks AP+', of àimension (23' + 1) x (2 j  + 3) for j = 1,. . . , M - 2, 

AF'*~-' , of dimension (2j  + 1) x 0' + 2), and ~ 2 M - l . ~  of dimension M x 1 



represent a change fiom j to j + 1 items in the rack with no change in the number of 

customers in the second queue. 

where 

and 8 is the Kronecker product. (AF+')~ is of dimension (j + 1) x (j + 2) for 
jd+I j = l , . . . ,  M - 2 .  (Az ) l i s o f d M e n s i o n ~ + l )  x U + l ) f o r j = l , . . . ,  M - 1 .  

The matrix Al is of dimension (@ + M + 1) x (W + M + 1) and describes the 

transitions fkom states in Al U A2 U A3, i 2 1 to States in Al u A2 U A3, i 2 1, with 

no change in the first queue. Clearly Al is the transition of the system when there 

are i customers in the first queue and there remains i customers in the fmt queue; 



Within the matrix Al there are subblocks describing the state of the rack and the 

second queue. 

1. The subblocks A ; ~ ,  of dimension (2 j + 1) x (2 j + 1) for j = 1,. . . , M - 1, 

and A", of dimension (j + 1) x (j + 1), represent no change in the number 

of items in the rack. The elements represent and a change in the number of 

customer in the second queue h m  kl (kl = O, . . . , j )  to k2 (k2 = O, . . . , j ) .  

( A ? ) ~  is of dimension O+ 1) x (j+ 1) for j = 1, ..., M - 1, ( A F ) ~  is of 

dimension j x j for j = 1,. . . , M - 1, )1 is of dimension 1 x M, and 

(A"), is of dimension M x M ,  where 

M M  ( A l î  )1= [ MX2 O ... ... O ] ,  



and 

al i 5 kl = k2 5 M, 

M M  (A1  * )2(kl9k2) = b O < k 2 = k l + 1  5 M - 1, 

O otherwise. 

Expressions for a, ai and b are given in Equations (3.23) to (3.25). 

2. The subbIocks AP-", of dimension (2 j + 1) x ( 2 j  - 1) for j = 2, . . . , M - 1, and 

A & ~ - ' ,  1 of dimension (M + 1) x (2M - 1) represent a change from j to j - 1 

items in the rack. The elements represent a change in the number of customers 

in the second queue from k to k - 1, i.e. a service completion in Queue 2. 

A:*O = [O O pz]', 
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The mat* A. is of dimension (Ad2 + M + 1) x (W + M + 1) and describes the 

transitions [rom states in Al U A2 U A3, i 2 1 to states in Ai U A2 U Q, i 2 1, with 

a change from i to i + 1 customers in the first queue . This indicates that there has 

been an arrivai in Queue 1. 

&= 

The subblocks @, of dimension (2j  + 1) x (2 j  + 1) for j = O,. . . , M - 1, and 

&M*M, of dimension (M + 1) x (M + l), represent no change in the number of items 

in the rack and no change in the number of customers in the second queue. 

3.3 Stationary Distribution 

Our interest is to find the steady state vector x = [zo xi x2 . . . . . .] by solving 

ZQ = O and ze = 1, where zi for i 2 O is the stationary probability vector of being 

in state i at any particular time, i.e. of having i customers in Queue 1 including the 

one being served. Given the xi's, we c m  easily calculate ot her performance measures. 

The matrix Q is of the quasi-birth-and-death type. There exists a matrix R which 

is the minimal nonnegative solution to the matrixguadratic equation, 
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If Q is positive recurrent , t hen we know t hat t his matrix R has all its eigenvalues 

inside the unit disk (sp(R) < 1). Throughout this thesis the term positive recurrence 

and stabili~ are used interchaageably. The stabiiiw condition wül be discussed in 

Section 3.5. 

Given R, then 

Xi+l = xiR, for i > 1- (3.31) 

Since we only know zi+l in t m  of ziR, for i 2 1, we stiU need to obtain the 

bouodary vectors xo and X I .  The boundary behavior can be determined from Equa- 

tions (3.32) and (3.33). The vector [G zi] can be obtained by 

where 

The resulting vector [xo xl]  is normalized using Equation (3.34). 



3.4 Matrix R 

The matrix R is a very important part of getting performance measures of the system. 

It is often called the rate matrix. Given that the Markov chah is in level i, R is the 

expected niimbet of times that level i + 1 is visited before returning to level i. 

An efficient method for calculating R is: 

where R(n) is the value of matrix R at the nh iteration with R(0) = 0. 

The mat* R is of dimension (MZ + M + 1) x (W + M + 1) which could be 

very large if M is large, and can be partitioned as in Equation (3.36). In the block 

element v represents the number in the rack when the system starts from level 

2 ,  and w represents the number in the rack when the system returns to level 2. 

However, we noticed that the matrices A*, Al and A2 are very sparse. We therefore 

take advantage of the sparsity of these matrices when calcuiating R. Equation (3.30) 

in Section 3.3 can be written in block form as 

w here 



Equation 3.37 is now written for computationd purposes as 

3.5 Stability Conditions 

To determine the steady date solution to the model presented, the system must be 

stable. In addition, to use Neuts' [14] matrix geometric method to solve the model, 

the system must be stable. Based on Neuts, the stability candition can be stated as 

where n is the invariant vector of mat* A, ie. RA = O and ne = 1. 

First, let us consider the stability condition for a rack size of 1, M = 1. For this 

case 



and 

After routine algebraic operations, the condition of Equation (3.39) for M = 1 

results in the necessary and d c i e n t  condition for stabiiity: 

The condition in Equation (3.44) implies that the mean interarrival time into the 

first queue, *, must be greater than the sum of mean service time in Queue 1, the 

mean interamival time in Queue 2 and the mean s e ~ c e  time in Queue 2 for this 

system to be stable for M = 1. 

Following this same procedure for M = 2, and applying Equation (3.39) the 

necessary and sufEicient condition for stability in the first queue is given as 

However, for M = 3, this procedure becomes very cumbersome, as such ail we c m  

obtain is the sufncient condition for stability. It is clear from the development that 

the stabiiity condition for the general case is 



with O1 = 1 and Oz = [a] [*]. If we set OM = 1 for d M in Equation (3.46), 

a sufncient condition for stability (but a consemative one) is; 

Based on the patterns observed in Equation (3.44) and (3.45) it is "conjectured" 

t hat the expression of the general mode1 for stabiliw can be represented as 

3.6 Special Case of M = 1 

A special case arises when the storage rack size is one, M = 1. Since there is space 

in the rack for only one item, only one item can be placed into the rack before the 

system becornes jammed. Jamming of the system forces the server to remain i d e  until 

a request for retrieval arrives in the second queue and then the server can remove the 

item fiom storage. Upon removal of the item the server can then place another item 

into storage. 

After a closer examination of the system when M = 1, we discover that the semer 

must serve only one customer from entry into the first queue until that customer 

leaves the systern. Ody after that customer leaves the system can the server serve * 

another customer. 

If we consider phase service, where service is provided to a customer in several 

phases, the double-ended queueing system, where M = 1, can be redefined into a 

single queue system which behaves like an MIPHI1 queue except at the boundary. 



This enables the R mat& to be detenained explicitly and to interpret the stability 

condit ions. 

The Ai matrices (Z = 0,1,2) for M = 1 are as  stated in Equations (3.40) to (3.42). 

The arriva1 rate is Al and the s e ~ c e  time is (P, S), where: 

The first phase of service is placement of the item into storage, the second phase of 

service is that a retrieval request enters the second queue, and the third phase of 

s e ~ c e  is retrieving the item Erom storage. 

The Ai matrices (z = 0,1,2) for M = 1 simplify to give the following expressions: 

A2 = SOP. 

The R matrix of this system cm be obtained analytically as 

R = A1(XJ - Xi(e/3) - s)-', 



and 



Chapter 4 

Performance Measures 

Obtaining performance memures is essential in order to utilize the queueing model 

described in Chapter 3 as a tool in the design of an AS/R system. These performance 

measures allow us to determine how the system is behaving for a specific size of storage 

rack given the arriva1 and s e ~ c e  rates. Cornparison on these performance measures 

for various storage rack sizes wi l I  provide insight into what size of an AS/R system 

would be most appropriate for the give n conditions. The model can also be used to 

determine the behavior of the system and ultimately help decide the best operating 

conditions of an AS/RS (arriva1 and service rata) for a given storage rack size. 

The stationary distribution is given as 

Each term of Equation (4.1) can be written as 

where 



zii=[zupl ~ ~ ~ $ 1  for 221; j = O ,  ..., M .  

The term zu,l of Equation (4.4) can be written as 

where 

and 

Using the probabilities obtained in the stationary distribution we are then able 

to obtain performance measures such as queue length, average waiting the ,  idleness 

and jamming probability for the system. These performance measures enable us to 

analyze the behavior of the system. 



4.1 Queue Length 

4.1.1 Mean Number in the System 

Queue 1 

The mean number of customers in the systern for the Queue 1 (pL,) is given as 

This indicates the number of customers waiting for s e ~ c e  in the fmt queue 

including the customer being served. The mean nurnber in the system for Queue 1 is 

important since this queue can p w  out of bounds if the system is unstable, either 

from a violation of the stability conditions or from the storage rack becoming N1 and 

the system jammed. 

If we reorganize the terms in Equation (4.8) acoording to stationary distribution 

for X i  shown in Equation (4.2) we obtain the following expression: 

Since xi+1 = zi Ri Equation (4.9) becomes: 

Equation (4.10) cm be reduced to the following: 



Equation (4.1 1) can be rewritten using si and R as 

pbiI = x l ( l  - ~) - *e .  

Queue 2 

The mean number of customers in the system for the Queue 2 (ph) is given as 

This indicates the nurnber of cusinmers waiting for service in the second queue, 

including the customer currently being se&. Expressing Equation (4.13) in terrns 

of X I  and R gives us the fo110wing expression. 

where 

b, =[a cl = . = - . -  cl' for i = O ,  ... M, 

s=[o1 ...... il for i = o  ,... M, 

and 



4. = [da Q] for i = 1, ... M, 

...... ...... ... &=[O12 il, Q = [ 1 2  i] for i = l ,  M. 

4.1.2 Mean Number in the Queue 

Queue 1 

The mean number of customers in the queue for the Queue 1  (pcl,) can also be 

written using xi and R and is given as 

Equation (4.17) cm be rewritten as: 

Equation (4.18) can be written in terms of X I  and R as 

w here 

/O = pl> 

f i = [ f i o O ]  for i = l ,  ... M-1, 
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fi is of size 2i + 1 for i = 1, .. . , M - 1 and fM is of size i + 1. This indicates the 

number of customers waiting for sentice in the fht queue not inciuding the customer 

cmnt ly  king served. 

Queue 2 

The mean number of customers in the queue for the Queue 2 (pbq) is @en as 

muation (4.21) can be rewritten as: 

Expressing Equation (4.22) in terms of xi and R gives 

where 

b4 = bo 91 . . . . . . gi]' for i = O,. . . M, 

90 = [O1 9 
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gi=[Oga] for i = 1 ,  ... Ml 

gil = e@)', 

and 

b 5 = [ b  hi . ..... hi]' for i = ~  ,... M, 

ho = [O], 

k=[Oh] for z=l , . . .  M, 

hii = e(i)'. 

gi i so f s i ze i+ l  for i=  1 ,..., M, hi isofsizeZi+l fori-  1 ,..., M-1 and hM 

is of size i + 1. 

This indicates the number of customers waiting for service in the second queue 

not including the customer currently king semd. 

4.2 Probability of Server Being Idle 

The probabilïty that the server is idle, m, is giwn as 

Equation (4.26) can be expressed in terms of xi  and R as 



where 

b6 = [no ni ...... -1' for z=O, . .  . M, 

and 

... pi=[O] for i = l ,  M-1,  

.... is ofsize i f 1  fori= 1, . . . , M , p i  isofsize 2i+1 fori = 1, M - 1  andpM 

is of size i + 1. 

The probability that the server is idle indicates that the server is not seMng any 

customers. Server idleness can arise from two different states. Either there are no 

customers waiting for service in both Queue 1 and 2 or the system is jammed and 

the server must wait for a customer to arrive in Queue 2 before service can resume. 



4.3 Mean Number of Items in the Rack 

The mean number of items in the rack p~~ is given as 

Expressing Equation (4-30) in terms of x1 and R gives 

4 = [a SI . . . . - . si]' for i = O, . . . M, 

sa = [O], 

si=e(i+ 1)'i for i = 1, ... M, 

and 

bs = [to tl ...... ti]' for i = O  ,... M, 

to = [O], 

ti =e(2i+ 1)'i for i = 1,.  . . M. 

The mean number in the rack indicates the average number of items stored in the 

rack at any given time. Utilization of the rack is given as M. This performance mea- 

sure is important for design purposes as it is an indication of storage rack utilization. 



A s m d  value indicates low utilization. If utiUzstion is low, the ASIR system may 

not require such a large rack and for cost muons a d e r  rack size may be more 

suitable. A high utilization value does not necessarily mean the rack is too small 

but rather that the system is getting good performance h m  the particular rack size, 

udess the jamming probability is high. A high jamming probability wouid mean that 

the rack is filhg up too quickly and item are not leaving fast enough. 

An AS/R system with a high utilization value and a high jamming probabiiity 

may require a larger rack size if the uaiting time and queue length are becoming too 

large. An efficient ASIR system should have a short waiting time or small queue 

lengt h, yet be completely utilized. 

4.4 Probability of Rack Being Full 

The probability that the rack is full, y ~ ,  is given as 

Ekpressing Equation (4.34) in terms of xi and R gives 

where 

ho = [v* VI . . . . . . vil' for i = O,. . . M, 

vi= [O] for i=O, ... M- 1, 



bii = [m wi . . . . . . tui]' for i = O, .  -. M, 

vi is of size i+ 1 for i = 1 ,..., M ,  wi is of sïze 2if1 for i = l , . .  . , M -  1 and wM 

is of size i + 1. 

4.5 Jarnrning Probability 

The jwnrning probability, y ~ ,  is the probability that the rack is full with no customers 

waiting for s e ~ c e  in the second queue. 

Expressing Equation (4.38) in tems of x i  and R gives 

Jamming occurs when the storage rack is iùll, there are no requests for retrieval 

wsiting in Queue 2 and there are items waiting in Queue 1 to be placed into storage. 

The server is forced to be idle until a request for retrieval arrives into Queue 2 and 



the server can then resume s e ~ c e .  Once an item has b e n  removed nom the storage 

rack the system is no longer jammed and the server can serve Queue 1. 

A high jamming value indicates that the rack is hquently Wed to its maximum 

capacity and items are not behg removed h m  storage fast enough to service item 

arriving to be placed into storage. This sug~ests that a lasger rack size would give 

better system performance. 

4.6 Waiting Time 

It is known by Little's Law that 

L = AW, (4.40) 

where L is the mean number in the system, X is the arriva1 rate into the queue, and 

W is the mean waiting time in the system. Using Little's law, we can derive the 

equations for the mean waiting time in the system and in the queue for Queue 1. 

It is also known from Little's law that the mean number in the system, where the 

amival source is finite, is dehed as 

L = XW, (4.41) 

where is the effective arriva1 rate into the queue. Using Little's law for a finite 

source, we can derive the equations for the mean waiting t h e  in the systern and in 

the queue for Queue 2. 



4.6.1 Mean Waiting Time in the System 

Queue 1 

For Queue 1, the mean waiting thne in the system, Wi, is as fobws: 

The mean waiting time in the system for Queue 1 indicates the average length of 

t h e  a customer must wait for service to start fiom the time the custorner arrives in 

Queue 1. 

Queue 2 

The effective arriva1 rate X2 is given as 

where Zjk is the probability that j items are waiting in the rack, of which k are waiting 

to be serveci in Queue 2. Since Queue 2 has a bounded source, the expression )r2 for 

the dective arriva1 rate is now used in place of X in Equation (4.41). As a result, the 

mean waiting time in the system for Queue 2, Wa, is as follows. 



The mean waiting tirne in the system for Queue 2 indicates the average length of 

t h e  a customer mut  wait for service to star t  h m  the time the customer arrives in 

Queue 2. 

4.6.2 Mean Waiting Time in the Queue 

Queue 1 

From Equation (4.40), the mean waftlng time in the queue for Queue 1, Wl,, can be 

obtained as 

The mean waiting time in the queue for Queue 1 indicates the average t h e  a 

customer wiU wait in Queue 1 before receiving service, not including the time it takes 

to serve the current customer. 

Queue 2 

From Equations (4.41) and (4.43), the mean waiting time in the queue for Queue 2, 

Wa, is given as 

The mean waiting time in the queue for Queue 2 indicates the average time a 

customer will wait in Queue 2 before receiving service, wt including the tirne it takes 

to serve the cment customer. 



4.7 Effective Arrival Rate into Queue 2 

As stated previously, items are placed into and retrieved nom storage on an ongoing 

basis, resulting in a source for tirrivals into Queue 2 that is variable of size between O 

and M. The srpression for the effective ~~ rate &, for a finite source, is given in 

Equation (4.43). Rewriting EQuation (4.43) in detail gives the effixtive amival rate, 

X*, as 

The expression in EQuation (4.48) can be reduced to 

Rom numerical computation, it was observed that for a stable system the effective 

h v a l  rate, &, was equivalent to the mvaI rate into Q 1. 

For a general system, whether the system is stable or unstable, it is conjectured 

that the effective arriva1 rate, &, would not necessarily be equivalent, hence 



Evidently an item must amive in Queue 1 before it c m  arrive in Queue 2. There- 

fore, the arriva1 rate into Queue 2 cannot be larger than the amival rate into Queue 

1 for a general system. In the case of a stable system, the amival rate into Queue 1 

equals the eEective arrival rate into Queue 2. 



Chapter 5 

Numerical Examples 

This chapter presents numerical examples for hypotheticd situations that will be 

used to assess the behavior of the system. DEerent rack sizes of 1, 4, 7 and 10 are 

considered and the arrid and service rates are variecl. The numerical examples wiU 

provide anmers to such questions as: 

What is the performame of the system for various rack sizes? 

What impact on the performance of the system does varyin4 the arriva1 and 

service rates have? 

0 1s it more efficient to increase the rack size versus increasing the service rate of 

the S/R machine? 

At what point does increasing the size of the rack have very little benefit on 

system perlormance? 

Several experiments have been conductecl to determine the behavior of the model 

and will be discussed in this chapter. However, before the numerical examples are 

presented it is important to discuss the vslidation of the model. 



5.1 Validation of Mode1 

Based on the equations presented in Chapter 3, models were developed for rack sizes 

of 1, 4, 7 and 10 units. For each of the rack sizes the model was validated in the 

foilowing mamer- 

The fh t  method for validation of the model is to increase Xz and pz. As Xz and pz 

are increased towards infinit- the limiting behavior of the system can be determined. 

For an M/M/l queueing system the following equations hold: 

where L is the mean number of customers in the system, W is the mean waiting time 

in the system, X is the amival rate in the queue, p is the service rate and p = p. 
For the double-ended queueing system, as both A2, and tend towards infmity, 

the behavior of the doubleended queue tends towards the behavior of an M/M/I 

system. 

where ~ L ( D < D E )  is the mean number of customers in the system for the double-ended 

queue and P L ( M / M / I )  is the mean number of custorners in the system for an M / M / l  

queue. 



Let pL(DE)(IK) be the meaa number of custorners in the system for Queue 1 for 

a rack size of M. Also, let WDE(IM) be the waiting time for the double-ended queue 

for rack size M and WM,M,I the waiting the for an M/M/1 queue. 

Using arriva1 and service rates of Ai = 0.2, pl = 1.0, = 0.2 and A2 = 2.0, the 

mean number of customers in the systern for the double-ended queue was calculated. 

Tables 5.1 and 5.2 give the queue lengt h and the waiting the  for the double-ended 

system as the service rate in Queue 2 is increased. It is evident that the lirniting 

behavior of the double-ended queueing system is that of an M/M/ 1 queueing system. 

For a rack size of one, the values of Az and must be considerably high before the 

system behaves as an M / M / l  queue. 

The second method for validation of the model is to ver@ that the L e m  for the 

effective arrival rate, &, discussed in Chapter 4 holds. For d models, the effective 

ar r id  rate & does equal XI. 



Table 5.1: Queue Length Validation of Model 

1 
I 

I 

- 

' 

b 

Table 5.2: Waiting Time Validation of Model 

I 

1 

I 

d 

' 

, 

Queue Length 

' 
M/M/1 

Double-Ended 
Queue 

~c(M/M/I) 

~ ~ ( ~ ~ ( 1 )  
(4) 

pL(Dn (7) 
~ ( ~ ( ~ ~ ) ( 1 0 )  

Queue Length 
M/M/l 1 WM/M/I 

A2 : Clz 
2:6.671 2:20 1 2:40 1 2:200 1 Z A O 0  

0.25 

Double-Ended 
Queue 

A2 : P2 
2 : 6.67 1 2 : 20 1 2 : 40 1 2 : 200 1 2 : 400 

1 .25 
' WDE(l) 

wDE(4) 
WDE(?) 

WDE(lO) 

0.4008 
0.2501 
0.2500 
0.2500 

2.0039 
1.2503 
1.2502 
1.2502 

0.4016 
0.2501 
0.2501 
0.2501 

2.0079 
1.2505 
1.2505 
1.2505 

2.2461 
1.2725 
1.2724 
1.2725 

0.40m 
0.25û6 
0.2506 
0.2506 

0.4492 
0.2545 
0.2545 
0.2545 

0.4159 
0.2512 
0.2512 
0.2512 

2.0797 
1.2560 
1.2560 
1.2560 

2.0396 
1.2528 
1.2528 
1.2528 



The first set of srperiments determines the behavior of the system as a function of the 

arriva1 rate in Queue 1 where Xi and were varied. Since the behavior for each rack 

size modeled is similar, only the behavior for a rack size of M = 4 will be discussed. 

The second set of experiments fixes the amival and seNice rates and determines 

the behavior of the system as the rack size inmeases. 

For both sets of experiments the performance mesures discussed in Chapter 4 

were obtained including the mean number of customers in the system, the waiting 

tirne, and the jamming probability.. 

5.2.1 Varying Arriva1 and Service Rates 

This section presents the results for the experiments in which both XI and ~ < 2  have 

been varied. The service rate for Queue 1 and the arriva1 rate into Queue 2 have been 

fixeci at pi = 1.1 and A2 = 2.0. 

Queue Length 

The mean queue length in the system for Queue 1 is shown in Figure 5.1. The mean 

queue length in the system for Queue 1 is as expected. The graph shows that as 

t r a c  into Queue 1 increases, the queue length in Queue 1 increases exponentidy. 

As the a m h l  rate increases in Queue 1, the queue length grows quickly. Notice that 

the asymptote of the curve shifts to the left , indicating that the system will become 

unstable faster, as the s e ~ c e  rate decreases in Queue 2. 

The mean queue length in the system for Queue 2 is shown in Figure 5.2. The 

graph shows that as t r a c  into Queue 1 increases, the queue length in Queue 2 

increases exponentially. The same type of behavior that was observed for Queue 1 is 
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in Queue 2 - 2.86 ---- 
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Figure 5.1: Mean Queue Length in Queue 1 - M = 4 (p l  < h) 



also observed for Queue 2. The key dinerenœ is that in the case of Queue 2 the siope 

of the c m  is much gentler and approaches infinity slowec 

Waiting Time 

The mean waiting tirne in the system for Queue 1 is shown in Figure 5.3. The graph 

shows that as t r a c  into Queue 1 increases, the waiting tirne in Queue 1 increases 

exponentially. The behavior of this graph is similar to that of the queue length in 

both Queue 1 and 2 since the asymptote of this C U .  also shifts to the left, indicating 

that the system will become unstable faster, as the se& rate decreases in Queue 2. 

The mean waiting time in the system for Queue 2 is shown in Figure 5.4. The 

graph shows that as trafic into Queue 1 inmeases, the waiting time in Queue 2 

increases exponentidy. The behavior of this graph is of the same type since the 

asymptote of this curve shiRs to the left, indicating that the system will become 

unstable faster, as the s e ~ c e  rate demeases in Queue 2. 

Mean Number of Items in the Rack 

The mean number of items in the rack is shown in Figure 5.5. The graph shows that 

as trafic into Queue 1 increases, the mean number of items in the rack increases. 

Notice that for a rack size of M = 4, the mean number of customers in the rack does 

not reach capacity. 

Utilization of the rack as previously discussed is given as M. Low utihation 

would indicate that there is room for increasing the use of the storage facüity, or that 

a smaller rack would be more cost efficient. A high utilization would indicate that 

the system is being used efficiently, however, there is little room for increasing the 

utilization. If the system requires extra capacity for future expansion, a larger rack 
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Figure 5.2: Mean Queue Length in Queue 2 - M = 4 (pi < pz) 
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Figure 5.3: Mean Waiting Time in Queue 1 - M = 4 (pl < b) 
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Figure 5.4: Mean Waiting T h e  in Queue 2 - M = 4 (pl < M) 



size might be bet te  

Probability of Semer Being Ide 

The probabiiïty that the server is idle is shown in Figure 5.6. The graph shows that 

as t r a c  into Queue 1 increases, the pmbability that the server is idle decreases. The 

probability that the server is idle decreases in a straight lhe. We also observe that as 

the seNice rate in Queue 2 increases, the probability that the semer is idle increases. 

In the case of M/M/ l  , the probability that the server is idle is giwn as 

As X changes, the curve wil l  actudy be a straight line. However, even with jamming 

included, the probability that the semer is idle is still a straight line. Although it is 

not evident hm Figure 5.3, the probability that the server is idle never reaches zero. 

Probability of Jamming 

The probability that the system becomes jammed has been studied and several graphs 

are presented to show the behavior of the systern for difierent parameters. 

Figure 5.7 shows the probability of j-ng for a rack size of one, M = 1, which 

behaves as expected. It is observed that as the arriva1 rate into Queue 1 increases, 

the probability that the systern becomes j m e d  increases. As the service rate in 

Queue 2 increases, the probability that the system becomes jammed decreases. This 

graph is for the case where pi < b. However, for the cases where pl = pz and 

pi > p* the behavior is similar. For rack sizes of M = 4 , f  and 10, this is also 

true in some instances and then the curves cross over each other. Once this occurs, 
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Figure 5.5: Mean Number of Items in the Storage Rack - M = 4 (pl c p2) 
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Figure 5.6: Probability the Server is Ide - M = 4 (pi < b) 



the jamming probability increases as the sewice rate in Queue 2 increases. This is 

counter-intuitive. It is also noted that the cross over points shift further to the right 

as the rack size increases. 

Figures 5.8,S.g and 5.10 show the probability of jamming for rack sizes of M = 4,7 

and 10 when pi < h. Figures 5.11, 5.12 and 5.13 show the probability of jamming 

when pl pz. Figures 5.14, 5.15 and 5.16 show the probability of jamming when 

pi = pz. These graphs show cross over points in the curves that change as the rack 

size increases, 

It is also observed that in some instances before the system becomes unstable, the 

jamming probability decreases as AL increases. This decrease is also counter-intuitive. 

As pointed out, the increase in jamming probabüity as increases and the reduction 

in the jamming probability as Xi inmases are counter-intuitive. The best explanation 

that cm be offered at the present has to do with the relation to pz. pl, defined as 

A 2 / ~ ,  is the level of traffic intensity of Queue 2 and is a representation of how t r a c  

is leaving the rack compared to the s e ~ c e  rate. When p2 is Iow, there are few items 

waiting to be removed nom storage. A low will cause the jamming probability to 

increase in some instances. Alternately, when f i  is high, there are many customers 

waiting to be removed from the rack, and the jsmming probability is low. The amount 

of custorners in the storage rack is dependent on Xi and pl. When Al is srnall there 

is not necessarily a high probability of jamdng as there are fewer items being placed 

into the rack. However, when XI is large there is a high probability that there is 

jamming. Note that a decrease in jamming probability does not necessarïly mean a 

better system es the queue length and waiting tirne are now large. This is only one 

possible explanation. 

There are several factors that d e c t  the jamming probability of a double-ended 

queueing system. Further study is required to f d y  understand how the system be- 



haves. 

5.2.2 Varying Size of Storage Rack ( M )  

This section presents results for experiments where pl, Xz and pz have been &ed at 

pi = 1.1, Xz = 2.0 and pz = 2.2 and Xi has been vasjed for different rack sizes. 

Figure 5.17 shows that for stotage sizes of 4,T and 10 the dinerence in the behavior 

of the system is negligible. Under certain operating parameters the performance of 

rack sizes M = 4,7 and 10 will be the same. However, under different operating 

parameters, there wiiI be a Merence in the performance of the system for the various 

rack sizes. Figure 5.18 shows a difference in the behavior of the system for rack sizes 

of 7 and 10. The performance measures obtained for these experiments behave in the 

same mamer as discussed previously. 

In regards to Figure 5.18, even though the system may have an improvement in 

performance with the increased storage rack size, the benefits of the additional size 

may not outweigh the additional investment required for the increased capacity. 

Figure 5.19 shows the mean number of customers in the system for rack sizes of 

M = 4,7 and 10. Notice that the queue length in Queue 1 decreases and eventu- 

ally Ievels off indicating that hvther increases in rack size will not bring additional 

performance improvements. 
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Figure 5.7: Probabili~ the System is Jammed - M = 1 (pl < 112) 
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Figure 5.8: Probability the System is Jammed - M = 4 (pi < pz) 
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Figure 5.9: Probability the System is Jammed - M = 7 (pi < ~ < 2 )  
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Figure 5.1 1: Probability the System is Jammed - M = 4 (pl > pz) 
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Figure 5.12: Probabüity the System is Jnmmed - M = 7 (pi > pz) 
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Figure 5.13: Probability the System is Jarnmed - M = 10 (pi > p2) 
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Figure 5.14: Probabüity the System is Jammed - M = 4 (p l  = b) 
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Figure 5.15: Probability the System is Jammed - M = 7 (hl = b) 
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Figure 5.16: Probability the System is Jammed - M = 10 (pi = pz) 
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Figure 5-17: Mean Queue Length in Queue 1 - M = 4,7,10 (pi and pz low) 
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Figure 5.18: Mean Queue Length in Queue 1- M = 4,7,10 (pi and high) 
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Figure 5.19: Mean Queue Length in Queue 1 for Size of Rack 



5.3 How to Use The Results for Design Purposes 

In most AS/R systems the amivat rates into the fmt and s e d  queue will be fixed 

and not usudy controllable. Also, in most aises the s e ~ c e  rate for both Queue 1 

and 2 wiIl be the same, pl = 112 = p, but iinknown. The designer will have to select 

the appropriate values of pl and pz. The intetest is to find the service rate which 

best suits the rack size of M, and the rack size of M which is most appropriate given 

specific s e ~ œ  requirements. 

Let C,(-) be the mst associated with delay of an item to be placed into and 

removed from storage, CM(-) be the cost associated with a specific rack size M, and 

CF(-) be the oost of an S@ machine that provides seMœ at a rate of p. 

Given a certain waiting time in Queue 1, W&, M), for a specific rack size M 

and service rate p, the minimum total cost of an AS/R systern can be determined by 

where 

Minimize Z = C,(Wi.O<, M ) )  + CM(M) + CM@) 

f (s) = nAze - ~ & e .  



Stability is conjectured to be 

and can be determined nwneridy. 



Chapter 6 

Summary and Conclusions 

The contribution of this thesis is the development of a queueing model for an aute 

matic Gorage and retrieval system that c m  be used for analysis of system performance 

and behavior. This model c m  be used as a tool, in the design of these systems, for 

deterrnining rack size, amval and service rates for best performance. 

In most cases the model generally behaves as expected. However, some results for 

the jamming probabüjty do not behave as expected. Also, depending on the system 

parameters utiked, the rack size may or may not be a factor in the mamer in which 

the system behaves. 

The mode1 is of a simplified AS/RS. Its use is therefore limited and c m  only model 

a basic AS/RS. For a more cornplex system one may have to resort to simulation, 

whose limitations are also weiI known. However, the current model can still be used 

as a component of a larger and more cornplex system. In addition, it can also be used 

to approximate most AS/RS. 

The current model assumes Poisson &vals and exponential service, but we know 

that most arrivals in industry are hardly of Poisson type and s e ~ c e  is slso hardly 

exponential. The arrival process of an intemal system such as this one is often 

correlated and it is well known that the Markovian Arrivai Process (MAP) is a good 

representation of correlated arrivals. 



It is known that because ou. service is a combination of travel time and phcement 

or removal h m  the rack, a more generd service thne, which probably consists of a 

fixed travel time and a random variable for placement or removal, would be more 

appropriated. It is a h  weii knom thst most general seMces cm be represented 

(very well approximated) by phase type service. F'uture work should attempt to 

extend this model to MAP a,rrivals and phase services. 

This model is a h  limited to a single semer of unit-load. Fùture work in this area 

rnight be to extend the model to group services and include other popular service 

policies. 
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