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ABSTRACT

A numerical method is presented for the problems of transverse electric (TE)
and transverse magnetic (TM) scattered fields from homogeneous dielectric, imper-
fectly and perfectly conducting cylinders of arbitrary cross section. Furthermore,
the solutions are presented for single and multiple scatterers and for radiation by
slotted cylinders. The numerical solution uses fictitious sources to simulate the field
scattered or radiated by the cylinders. The amplitudes of the fictitious sources are
determined for subject to the regular boundary conditions or impedance boundary
conditions according to the type of material composing the cylinders. Numerical

results are given and compared with available analytical and numerical solutions.
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CHAPTER 1

Introduction

Various numerical methods have been developed to solve scattering and radia-
tion of electromagnetic waves by two-dimensional objects. Recently the generalized
multiple multipole technique and its special case the multifilament current model
have became the subject of extensive studies due to their simplicity and capability
of handling various types of geometries with very high accuracy.

Canonical geometries are usually considered for purely analytic solutions, allow-
ing the use of an orthogonal coordinate system. In such a system, the field equation is
solved by the separation of variables and the boundaries coincide coordinate surfaces
in order to allow a simple enforcement of the boundary conditions. Unfortunately,
the separation of variable is successful only for a few coordinate systems. Thus the
geometries of analytically solvable problems are quite restricted. In 1900, the Ger-
man physicist G. Mie [1] calculated guided electromagnetic waves on a transmission
line with two circular wires. Since the Laplacian operator is not separable in the
bipolar coordinate system which is well suited to formulate the boundary conditions,
he applied, in addition to the bipolar coordinate, two polar coordinate systems with
origins at the center of each circular wire. From the separation of variables in the
polar coordinates, he obtained a multipole expansion for each wire and by applying
the coordinate transformation he solved the equation resulted from applying the
boundary conditions. A strong mathematical basis for Mie’s multipole expansion
had been worked out in 1948 by the Russian mathematician I. N. Vekua [2] and

some years later by the Japanese scholar K. Yasuura [3]. Several authors success-



fully used multipole expansion together with the simple point matching technique to
solve for electromagnetic problems [4],[5], [6] and [7]. However, some others encoun-
tered problems and considered this method to be analytically insufficient [8], [9]. A
recent study of the problem using the multipole expansion combined with the point
matching technique (PMT) by Hafner [3] showed that these were only numerical
problems. To overcome these problems, he introduced additional, analytically un-
necessary, multipoles. The name multiple multipole was proposed as well, and may
be considered as a combination of method of moments (MoM) and point matching
technique [10].

The unknowns for the conventional MoM approach are currents flowing on the
surface where the boundary conditions are enforced [11]. The currents are presumed
to be continuous so that the solution is represented by an integral equation, which
has a kernel with singularity when it is evaluated on the same surface where the
currents flow. The integral equation is transformed into a matrix equation by the
MoM, which is described by Harrington [11] as the unifying principle for all tech-
niques for reducing functional equations to matrix equations. On the other hand,
the generalized multiple multipole technique uses the expansion coefficients of the
analytical solution of the field equations as unknowns. The specific choice is similar
to the choice of the basis function in MoM [10]. Spherical wave multipole func-
tions, or the equivalent two-dimensional cylindrical waves are one choice [12], [13]
and [14]. Another choice is infinitesimal electric dipoles, or the equivalent two-
dimensional current filaments [15] and [16], which is a special case of the multipoles.
In principle, any set of analytic solutions of Maxwell’s equations could be used [17].
By choosing a discrete set of solutions, and matching the boundary conditions at a
discrete set of points, the resulting equation is automatically a matrix equation. By

choosing solutions corresponding to sources some distance away from the bound-



ary, the fields form a set of smooth functions on the boundary and in particular
singularities are totally avoided. The matrix equation may be over-determined and
solved to provide a least-squares fit to the boundary condition. Since each solution
in the set is known analytically, it is not necessary to integrate currents to deter-
mine fields during any stage of the solution-filling the matrix, checking the results,

or computing near and far fields or other quantities of interest.

1.1 Literature Review

1.1.1 Single Scatterer

The problem of scattering from a single cylinder of arbitrary cross section has been
treated by several numerical methods. Richmond [18], [19] has treated the problem
of homogeneous and inhomogeneous dielectric cylinders in terms of a polarization
current induced in the dielectric. For a homogeneous dielectric cylinder the surface
integral equation formulation can also be applied [20] in which the problem is for-
mulated in terms of equivalent electric and magnetic surface currents. Mullin et
al [4] used the two-dimensional multipole with a single origin for all sources to solve
for geometries where the cross section is ellipse-like with no more than a 2:1 ratio
of major and minor axes. Leviatan et al. [21],[22] have dealt with problems for ho-
mogeneous dielectric cylinders of arbitrary smooth cross section using multifilament
current model. In their analysis, the fields of two sets of filamentary sources are
used to simulate equivalent situations, inside and outside the cylinder. Application
of the boundary conditions results in a matrix equation for the unknown filamentary

sources, which can be solved using standard numerical techniques.



1.1.2 Imperfectly Conducting Objects

For imperfectly conducting objects, when a plane electromagnetic wave impinges on
a scattering body, the simple relation between the electric and magnetic fields of
the plane wave in free space is modified due to currents induced in the surface both
interior to and exterior to the body, such that the well known boundary condition
for the tangential electric fields at the surface of the scattered body are satisfied.
In many practical cases, such as absorbed and coated bodies, the field does not
penetrate deeply into the scattering body. In such cases, the scattering problem
simplifies considerably because it is then sufficient to solve for the fields exterior to
the body only subject to the impedance boundary condition [23]. The impedance
boundary condition states that the ratio between the tangential electric and mag-
netic fields at the surface of the scattered body equals to an impedance at the surface
of the body which depends on the electrical properties of the body. The usefulness
of the IBCs in determining the scattered fields was studied by Mitzner [24] using
an integral equation formulation. Generalization of IBCs integral equations ; i.e.,
the electric and magnetic field integral equations(EFIE and MFIE), was presented
by Jones [25] who has also demonstrated the uniqueness of the solution for its com-
bined form (CFIE). Numerical results, based on the integral-equation approach, are
presented in [23] and [26] for two- dimensional scattering by impedance cylinders
of arbitrary cross section. In [27] and [28] the integral equation approach is applied
to solve the EFIE, MFIE and CFIE of three-dimensional objects with IBCs.

1.1.83 Multiple Scatterers

The scattering by parallel conducting cylinders of arbitrary cross section was in-
vestigated numerically by Andreason [29]. The problem was formulated in terms

of an integral equation for the induced surface current. The method of moments



was then used to reduce the integral equation into a matrix form which was solved
numerically for the unknown surface currents. A formulation based on the single
multipole expansion of the scattered field due to two or three parallel conducting
cylinders is presented by Howarth and Pavlasek [30], [31]. They also evaluated the
diffracted field and the induced current on the surface of the cylinders and verified
their numerical results experimentally. Olaofe [32] has investigated the problem of
scattering by two circular cylinders using a boundary value method. His solution
reduces the problem to the solution of a system of algebraic simultaneous linear equa-
tions for the multiple scattering amplitude coeflicients in terms of the known single
particle scattering amplitude coefficients. Ragheb and Hamid [33] used Twersky’s
iterative technique to solve for the scattering by N parallel cylinders. Elsherbeni
and Hamid [34] used the modified method of moments to solve for the problem of
scattering by two circular cylinders. Zitron and Karp [35] have investigated the
problem of diffraction of plane electromagnetic or acoustic waves by two arbitrary

shaped parallel cylinder.

1.1.4 Slotted Cylinders

The radiation of electromagnetic wave from an infinite axially slotted cylinder has
received great attention in the literature. Hurd [36] has studied the directional prop-
erties and the radiation patterns of dielectric coated slotted cylinders. A uniform
field distribution in the slot was assumed and results for the special case of a narrow
slot were given. Olte [37] studied the radiation by an elementary cylindrical antenna
through slotted enclosure. He reduced the problem to a Fredholm integral equation
of the first kind, and then solved for a narrow slot as a special case. Richmond
and Gilreath [38] studied a flush-mounted dielectric-loaded axial slot on circular

cylinder antenna. Their analysis was carried out using the boundary value method



and then Galerkin’s method was introduced to complete the solution. Leviatan and
Haller [39] studied the electromagnetic scattering from slotted conducting circular

cylindrical shell using the multifilament current model.

1.2 Overview

In chapter 2, the multifilament current model (MFCM) and the generalized mul-
tiple multipole technique (GMMP) are used for solving transverse electric (TE)
and transverse magnetic (I'M) scattering from lossy homogeneous dielectric and
perfectly conducting cylinders of arbitrary cross section. For both techniques, the
problem is formulated using only one set of fictitious sources placed inside the cylin-
der surface to simulate its scattered field. The fictitious sources are placed at some
distances from the boundary surface, the field they generate actually constitute a
basis of smooth field functions capable of representing a smooth field at the bound-
ary surface. Applying the IBCs at selected points on the cylinder surface results in
a matrix equation which is solved for the unknown filamentary currents in the case
of MFCM and the expansion coefficients in the case of the GMMP. These unknowns
are then used to determine the scattered field and other parameters of interest. Re-
sults for various geometries are given and compared with available analytical and
numerical solutions. Also a discussion on the location of sources and the treatment
of the singularities of the fields at sharp edges is included.

In chapter 3, the multifilament current model [21] and [22] is used to solve for
the problem of multiple scattering by parallel cylinders of arbitrary cross sections.
The problem is classified into two parts; transverse magnetic (T'M) and transverse
electric (T'E) according to the type of excitation. For each excitation type, the
formulation is carried out for the problems of homogeneous dielectric and imperfectly

conducting cylinders. For the case of homogeneous dielectric cylinders, the problem
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is formulated using two sets of fictitious filamentary sources to simulate the fields of
each cylinder. For each cylinder, one set of sources is placed inside it to simulate its
scattered field. The other set of sources is placed outside each cylinder to simulate
the fields inside the respective cylinder. Application of the boundary conditions
yields a system of linear equations which can be solved for the unknown filamentary
currents.

For imperfectly conducting cylinders with impedance boundary conditions, only
one set of filamentary sources is needed to simulate the fields of each cylinder. This
set of sources is placed inside each cylinder to simulate its scattered field. The case
of perfectly conducting cylinders can be handled as a special case of the imperfectly
conducting cylinders by setting the surface impedance to zero. Again application of
the IBCs results in a system of linear equations which can be solved for the unknown
filamentary currents. Once the strengths of the filamentary currents are computed,
the scattered field and other parameters of interest can be obtained. Results for
the normalized echo width for selected geometries of arbitrary cross section and of
different parameters are obtained and compared with the MoM solutions.

In chapter 4, the multifilament current model (MFCM) and the generalized
multiple multipole technique (GMMP) are used for solving transverse electric (T'E)
radiating from slotted perfectly conducting cylinder of arbitrary cross section. For
both techniques, the problem is formulated using one set of fictitious sources placed
inside the cylinder surface to simulate the radiated field. The fictitious sources are
placed at some distances from the boundary surface, the field they generate actually
constitutes a basis of smooth field functions capable of representing a smooth field at
the boundary surface. Applying the boundary conditions at selected points on the
cylinder surface and on the slot results in a matrix equation which is solved for the

unknown filamentary currents in the case of MFCM and the expansion coefficient



in the case of the GMMP. These unknowns are then used to determine the radiated
field and other parameters of interest. Results for slotted circular cylinders are given
and compared with analytical solutions.

Conclusion with discussion of the results are included in chapter 5.



CHAPTER 2

Scattering by Imperfectly Conducting Cylinders

2.1 Introduction

In this chapter, the multifilament current model (MFCM) and the generalized
multiple multipole technique (GMMP) are used to solve for the problem of scat-
tering by imperfectly conducting cylinders of arbitrary cross section. The problem
is classified into two parts; transverse electric (T'E) and transverse magnetic (T'M)
according to the type of excitation. For each excitation type, the formulation is
carried out for the scattering problem using MFCM and GMMP.

The solution for the problem of homogeneous dielectric cylinders using the
MFCM simulation [21], [22] will be presented for the sake of completeness and
comparison. In this case, the problem is formulated using two sets of fictitious fila-
mentary sources to simulate the fields of the cylinder. One set of sources is placed
inside the cylinder at some distance from its surface to simulate its scattered field.
The other set of sources is placed outside the cylinder at some distance from its sur-
face to simulate the field transmitted inside the cylinder. The filamentary sources
in both sets carry of yet to be determined constant complex currents. They gen-
erate smooth field functions capable of representing smooth fields on the boundary
surface. Applications of the boundary conditions yield a system of linear equations
which can be solved for the unknown filamentary currents.

For imperfectly conducting cylinders, the multifilament current model simula-

tion uses only one set of filamentary sources to simulate the field scattered by the



cylinder. This set of sources is placed inside the cylinder at some distance from its
surface to simulate its scattered field. The sources carry constant complex currents,
yet to be determined. They generate smooth field functions capable of representing
smooth fields on the boundary surface. Applications of the Impedance Boundary
Conditions result in a system of linear equations which can be solved for the unknown
filamentary currents. The GMMP simulation is similar to the MFCM simulation;
however, the GMMP simulation uses a set of multipole line sources to simulate the
field scattered by the cylinder. Again, this set of multipoles is situated inside the
cylinder to simulate its scattered filed. The unknowns of the multipoles expansion
coefficients can be obtained by solving the system of linear equations resulting from
applying the IBCs at selected points on the surface of the cylinder. The case of
perfectly conducting cylinders can be handled as a special case of the imperfectly
conducting cylinders by setting the surface impedance to zero.

In the following sections, the formulation will be carried out in details for TF
case. The solution for the T'M case will be discussed briefly in a later section.
Results for selected geometries of arbitrary cross section and of various parameters

are given and compared with available analytical solutions.

2.2 Problem Specification for TFE case.

The scattering geometry considered is shown in Fig. 2.1. An infinitely long lossy
dielectric cylinder of arbitrary cross section whose axis is taken to be parallel with the
z—axis of a rectangular coordinate system. The cylinder composed of homogeneous
dielectric material of permittivity e, permeability 4 and conductivity o, and the
region surrounding the cylinder is free space of permittivity €, and permeability p,.

Let the cylinders be immersed in an incident transverse electric plane wave (TE)

characterized by

10



Region I
(u'o ' g ) / ]/'\1
fF:i
—
¢
> X
Physical Surface C
Figure 2.1: Geometry of the problem
H =14,H: (2.1)
E =,E, + 0,F, (2.2)

where the time dependent e/“! is understood. Here, 1y, 1, and 1, denote the unit

vectors in the z, y, and z directions, respectively, and

Hz' — ejko(xcos¢‘+ysin¢‘) (23)
E. = pysingieite(scost+using') (2.4)
Bl = —n,cos¢' eihe(zcoss tysing®) (2.5)

where 7, and k, are, respectively, the intrinsic impedance and the wave number in
free space, and ¢* is the angle of incidence. The problem is a two-dimensional one
and can be worked out in some z =constant plane because H* is z—directed and

independent of z and the cylinder cross section is uniform along the z direction.
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2.3 Multifilament Current Model

For homogeneous dielectric cylinders, the objective is to calculate the fields scat-
tered by the cylinder, and the fields transmitted inside the cylinder. Therefore, we
set two simulated equivalent situations to the original ones in regions I and f shown
in Fig. 2.1. In the simulated equivalence for region I, shown in Fig. 2.2, the fields
scattered by the cylinder are simulated by the fields of a set of fictitious magnetic
current filaments placed on a closed surface enclosed by C. These filaments are z
directed, infinite in extent and carry, yet undetermined, constant magnetic currents
K#,i=1,2,3..N, where N is the number of sources inside the cylinder. They are
treated as magnetic current sources radiating in free space. In Fig. 2.2, (E*, H®)
are the electromagnetic scattered fields due to all fictitious current filaments inside
the cylinder and (E¢, H?) are the fields of the incident wave as given by (2.1) and
(2.2). The total fields (E* + E‘, H® + H*) in the region I are approximations of
the fields in region I in the original situation. Similarly, in the simulated equiva-
lence for the interior regions f, shown in Fig. 2.3, the transmitted fields inside the
cylinder are simulated by the fields of a set of fictitious magnetic current filaments.
These filaments are placed on a closed surface enclosing C. Again, these filaments
are z directed, infinite in extent and carry, yet undetermined, constant currents
Kif i =1,2,3..N/, where N/ is the number of filaments surrounding the cylinder.
The set is treated as magnetic current sources radiating in a space filled with ho-
mogeneous material identical to the material composing the cylinder. The fields
(Ef, H') due to the fictitious current filaments K,-f are approximations of the field
in region f in the original situation. The relationship between the electromagnetic
fields (E°® + E¢, H® + H*) and (Ef, HY) in the simulated equivalent situation shown

in Figs. 2.2 and 2.3, respectively, is dictated by the boundary conditions at the sur-
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face of the cylinder shown in Fig. 2.1. Specifically, the continuity of the tangential

electric and magnetic field components across C.

2.3.1 Expression for F* and H*®

The scattered fields (E°, H®) at an observation point (z,y) in some z =constant
plane due to the current filaments K/,7 = 1,2,3,...N7 radiating in an unbounded

free space are given by

NI
H® =1, H (2.6)
i=1
NI NT
EP =,y B+, E (2.7)
7=1 =1

where H3;, E;; and Ej; are, respectively, the scattered magnetic and electric field

components at an observation point (z,y) in the exterior region due to a magnetic

current filament K7 situated at (zf,y/) inside C and they are given by

k K}
HS = H@) kop 2.
koK (w—vi) oy 1
By =il — 9 g® g ] 2.9
k .K ( .’l)) (2)
Es = — .
Y1 4‘7102 Hl (kopz) (2 10)
oF= (e —al)? + (y — y})* (2.11)

where ng) and Hl(z) are the second kind Hankel functions of zero order and first
order , respectively and p! is the radial distance between the source point and the

observation point under consideration.
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2.3.2 Expression for Ef and H’

The transmitted fields (E/, HY) at an observation point (z,y) in some z =constant

plane due to the current filaments Kif ,4 =1,2,3,...N7 radiating in an unbounded

homogeneous dielectric space are given by

Nt
At =4,> H (2.12)
=1
NI NS
Ef =4, EL+4,> Ef (2.13)
=1 =1

where H? E;- and EJZ are, respectively, the transmitted magnetic and electric field

219
components at an observation point (z,y) outside the cylinder due to a magnetic

current filament K7 situated at (z7,y/) outside C and are given by
1 2 2 g

kK
Hi = _4—H32>(kp;.‘) (2.14)
n
Fly —of
pf = MW %) gy (2.15)
47 p;
EK] (z — of
Ef = —¥H1(2)(kp{ ) (2.16)
41 p;
f £\2 2
pz-=\/(w—wz~) +(y—v) (2.17)

Here 1 and k are, respectively, the intrinsic impedance and the wave number in-
side the dielectric, and pf is the radial distance between the source point and the

observation point under consideration.
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2.3.3 Evaluation of the Unknown Magnetic Currents K7and K/

For a dielectric object, the tangential components of the electric and magnetic fields

must be continuous across the boundary. This leads to the operator equations on

C.

hx(E* — BY) = —hxE' (2.18)

Ax(H® — HY) = —axH* (2.19)

where 7 is a unit vector normal to the cylinder surface and pointing toward region [
as shown in Fig.2.1. Selecting N matching points on the surface of the cylinder and
enforcing the boundary conditions (2.18) and (2.19) at the matching points result

in a system of linear equations. These equations can be written in a matrix form

AK=V (2.20)
where
Afe _Afe
A= [ } (2.21)
Al AT

Ki{
K= [ } (2.22)

K;

e
V = { . } (2.23)
_Vin

Here, A (3., n141v7) is the generalized impedance matrix. The elements of AI“'( NC,NT)
are the tangential electric field intensities due to the sources inside the cylinder.
Similarly, the elements of Afe(NC,Nj) are the tangential electric field intensities due

to the filaments outside the cylinder. The elements of Alr (ve,n1y are the magnetic
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field intensities due to the filaments inside the cylinder. The elements of A/ (NC,NT)
are the magnetic field intensities due to the filaments outside the cylinder. Kz n7)
is the generalized unknown current vector. V(,yc) is the generalized voltage source
vector. The elements of Vi and V* are, respectively, the incident tangential electric
and magnetic field intensities evaluated at the matching points under consideration.

Having formulated the matrix equation (2.20), the unknown current vector K
can be solved for by inversion or elimination if the boundary conditions are enforced
at N¢ = N{ = N{ selected points on C. On the other hand, if the BCs are enforced
at N° > N{ or N° > N¥ selected points on C the least-square error solution to
(2.20) may be used [21]. This solution minimizes the standard norm of the vector

AK —V and is given by

K = (A+A)"'A*V (2.24)

where A is the transpose of A and the asterisk denotes complex conjugate.

2.4 Multifilament Current Model with IBCs

For imperfectly conducting cylinders, the surface impedance boundary condi-
tions (IBCs) simplify the formulation by eliminating the need for the inclusion of
the interior field [40]. Therefore, the multifilament current model simulation uses
only one set of filamentary sources to simulate the fields scattered by the cylinder.
This set of sources is placed inside the cylinder at some distance from its surface
to simulate its scattered fields. The sources carry of yet to be determined constant
complex currents. They generate smooth field functions capable of representing
smooth field on the boundary surface. Applications of the IBCs result in a system

of linear equations which can be solved for the unknown filamentary currents.
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Fig. 2.2 shows the simulation of the field scattered by the cylinder, where the
scattered field is simulated by the field of a set of fictitious magnetic current filaments
placed on a closed surface enclosed by C. These filaments are z directed, infinite
in extent and carry, yet to be determined, constant currents K¥,7 = 1,2,3,...NL.
They are treated as magnetic current sources radiated in free space. In Fig. 2.2,
(E*, H®) are the electromagnetic scattered fields due to the fictitious current fila-
ments and (E°, H') are the fields of the incident wave as given by (2.1) and (2.2).
The total field (E* + F¢, H* + H*) in the surrounding region in Fig. 2.2 is an ap-
proximation of the field in the surrounding region in the original situation. Note
that the location of the filaments inside C has not been specified. As far as the
formulation is concerned, their locations can be arbitrary. The question of selecting

filament locations suitable for a numerical solution will be dealt with later on. The

expression for the incident and scattered fields are given by (2.1)—(2.11).

2.4.1 Expression for the IBCs

For objects with IBCs the total electric and magnetic fields are related by [24]

E— (2 -E)h= Z(p)(h x H) (2.25)
2:(¢) = Zu(1 ~ a(s) (2:26)
with
7z, = wag% (2.27)
a(p) = 701 = D)olk(p) ~ (o) (2:23)

where % is a unit vector normal to the cylinder surface and pointing toward region

I as shown in Fig.2.1, o, is the conductivity of the material, § is the skin depth,
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Z,, is the wave impedance within the object and k,(p) and k,(p) are the principle
curvatures of C' at p. For small signal penetration, or for objects with large radii
of curvature, Z.(p) can be assumed constant and equals to Z,. The impedance

boundary condition in (2.25) can be reduced to
E,=-Z.(p)H, (2.29)

where F; is the total tangential electric field in the exterior region and H, is the

total magnetic field in that region. In the case of a circular cylinder E; = Ej.

2.4.2 Evaluation of the Unknown Magnetic Currents K}

The unknown magnetic currents may be determined by imposing the impedance
boundary conditions on the surface of the cylinder. Therefore, by enforcing the
IBCs at selected number of matching points on C, one can evaluate the unknowns
K!. Selecting N matching points on the surface of the cylinder and enforcing the

boundary condition (2.29) at the j**, j = 1,2,...N®, matching point we get

(B3 + Ety) = —Z:(ps)(Hy; + H;) (2.30)

where Ef;, Ef;, HS; and H:; are Ej, Ef, H: and H! evaluated at the j** matching
point. Enforcing equation (2.30) at all the matching points results in a set of linear
equations which can be written in a matrix form in which the various matrices are

interpreted in terms of generalized network parameters. The result is

AK

I
<

(2.31)
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where, for = 1,2,3...N' and j = 1,2,3...NC,

A%+ Ze(p2) A% 3%+ Ze(p2) Ay - Afyr + Ze(p2) Ay
A — (2.32)
_Aj\f-cl + Zc(ch)A‘Js\’)’lC]_ A}s\?@ + Zc(PNC)A;?cz Tt A;\;CNI + Zc(ch)A;\’;CNI J
F Ky
K,
K=| (2.33)
| Ky |

[ (B + Ze(p)Hy) T

—.(E‘Zz + ZC(IO2)H;2)
V= , (2.34)

with
A% = ko(ys — sz)tzp—L(m — )ty H1(2)(ko/03(,-) (2.35)
Ajt = —ﬁ":ﬂﬁ”(ko/)ﬁ) (2.36)
ot = (@ — 21 + (v — )’ (2.37)

Here, A(yc n1y is the generalized impedance matrix. K(yr1y is the generalized un-
known current vector, and Vyc) is the generalized voltage source vector. In (2.32),
Al and A} are, respectively, the tangential electric field and magnetic field in-

tensities due to a filament K} of unit magnetic current evaluated at pJI-i on C.
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In (2.34), Efj, H;:J. are, respectively, the incident tangential electric field intensity
and the incident magnetic field intensity at observation point at p; on C and pf; is
the radial distance between the :** source and the j** matching point. ¢,; and t,;
are, respectively, the z and y components of the tangential unit vector evaluated at
the 7** matching point.

Having formulated the matrix equation (2.31), the unknown current vector K
can be solved for by inversion or elimination if the IBCs are enforced at N¢ = NI
selected points on C. On the other hand, if the IBCs are enforced at N¢ > N7
selected points on C the least-square error solution to (2.31) may be used [22].

This solution minimizes the standard norm of the vector AK —V as given in (2.24)

2.5 Generalized Multiple Multipole with IBCs

The generalized multiple multipole technique (GMMP) represents the scattered
fields by multiple expansions with different origins of out-ward cylindrical waves.
The multiplicity of the origins for the out-ward waves can be interpreted as equiva-
lent source locations within the boundary of the cylinder. Then, the total scattered
field is represented as a sum over the contribution from each origin. Furthermore,
the source distribution at each origin generates a field represented as a sum over
cylindrical waves, each of which is generated by a specific source component at that
origin. The sources are multipoles which includes monopoles, dipoles and higher or-
der multipole line sources. As a result, we have a distribution of equivalent sources
within the boundary which create a field on the boundary that leads to the satisfac-
tion of the boundary conditions. Applying the impedance boundary conditions in
the least square sense results in a system of linear equations which can be solved for

the unknown expansion coeflicients. The GMMP simulation for the field scattered
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by the cylinder is similar to the multifilament current model simulation. However,
the MFCM wuses a set of filamentary sources, which is a monopole line sources, to
simulate the scattered field. The procedure of the solution for the unknown expan-
sion coeflicients is exactly the same as the MFCM procedure. The simulation of the
scattered filed is shown in Fig. 2.2 where the filamentary sources are replaced by

multipoles line sources. The GMMP formulation is given in the following section.

2.5.1 Expression for E* and H°®

The scattered fields (E°, H®) at an observation point (z,y) in some z =constant
plane due to the multipoles source K7,7 = 1,2,3,...N7 radiating in an unbounded

free space are given by [3]

NI
H® =4, HS (2.38)
i=1
NT NI
Ef=t,) E+1,y E (2.39)
=1 =1

where H3;, E;; and EJ; are, respectively, the scattered magnetic and electric field

zt?
components at an observation point (z,y) in the exterior region due to a multipole

I

line source K situated at (zf,y}) inside C and are given by

NI NI
H;ij (Pfi) = Z(:) RnHéz)(koPJI'i) cos(ndj:) + Z QinHﬁz)(koni) sin(ng;;) (2.40)
n= n=1
s o1y JWi— ) ul 02) (1. I
Erii(pji) = Y > Pull; (kopjs) cos(ndji)
oF 71 n=0

N}
+ 2 QuH P (kopi)sin(nds)|  (2.41)

n=1
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— ( I) 1(2)
1](p_72) Z RNH (kopﬁ) COS(TL¢JZ)

770sz n=0

+Qun HI (koply) sin(ngs)]  (2.42)

where H3;., E3,;; and ES,. are, respectively, the scattered magnetic and electric field
components at an observation point (z;,y;) in the exterior region due to the ¢*h
source K situated at (zf,y/) inside C, N/ is the truncation number of the i‘h

source, P;, and @);, are unknown expansion coefficients and

ol = (@i — 1) + (y; — yI)’ (2.43)

¢;; = arctan ((y; — y?)/(z; — z1)) (2.44)

2.5.2 Evaluation of the Unknowns P, and @;,

In order to compute the unknown parameters, P, and ();, in the GMMP expansions,
only the boundary conditions have to be fulfilled because the field equations are
completely satisfied by the GMMP expansions. Selecting N matching points and
enforcing the boundary conditions in (2.29) at all the matching points result in a

set of linear equations which can be written in a matrix form as

AK=V (2.45)
where
[ All A12 AINI B11 BIZ B]_NI i
A.21 A22 AZNI B21 B22 BQNI
A= (2.46)
_ANCI AN02 ANCNI BN01 BN02 BNCNI _
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with

7

Pyr
Q:
Q2

L Qnr

[ —(Bh+ Zelp)Hz) ]

—(E + Zo(p2) Hy,)

|~ (Eino + Ze(pne)Hoye) |

] (Aji'o + Zc(/’j)A;fo) |

(A§§1 + Zc(Pj) ;31)

| (Alin, + Zo(p5) ASin,) |

[ ( ;f1+Zc(Pj)B;f1) ]

(Bl + Z.(p;)Bia)
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(2.48)

(2.49)

(2.50)



DN (s — gDV
i (IIJJ T; )tyJ (y; Yi )t:cj H;(z)(kopfi)cos(n%i) (2.51)

n inepk;
A%, = HP(k,pk)cos(nji) (2.52)
z; — ity — (v — yDtss 1) ,
By, = (i = @i = (Wi = ¥ ted gy g o1 i (g (2.53)
Jnopj'
Bz, = HP(k.pk;)sin(ng;:) (2.54)
[ Po ] [ Q1 ]
Py Q2
Pi — , Qi = ) (2.55)
| Py, | | @n;

Having chosen the number of multipoles and the corresponding truncation order,
the unknown expansion coefficients would be M = YN (2Nf + 1). Therefore, the
number of matching points should be N° > M , A is a matrix of order (N¢ x M),
K is a column vector of order M and V is a column vector of order N¢. Then by
formulating the matrix equation in (2.45), the unknowns expansion coefficients can

be solved for using the least-square error method given by (2.24)
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2.6 Far-Scattered Field

In the far-field region, the scattering pattern of the cylinder can be obtained by

employing the asymptotic expansion for the Hankel function and taking[18]

lim p! = p— zlcosd — ylsing (2.56)

kpi—o0
where p and ¢ are the polar coordinates of the distant observation point and p; is

the distance from the :** source inside the cylinder to the distant observation point.

Therefore, the far-scattered field is given by

s ko 2] —jkop N I jko(xlcos¢+ylsin¢)
H = —4 WC EI{Z [ * i (257)
770 OP =1

The scattering cross section per unit length, i.e., the echo width, ¢ is defined by

2

o(¢) = plir& 2mp ;I—_T’——%:—@ (2.58)
From (2.57) and (2.58), the echo width is given by
R | ’
o(9) = ~ i |20 K st (2.59)

2.7 Solution for TM case

Let the cylinder, shown in Fig.2.1, be immersed in an incident transverse mag-
netic wave (TM). The solution proceeds, similar to the T'E problem, line for line.
The sources are now electric current filaments or multipole line sources I;. Using
the Duality theorem [41], the field equations can be obtained by systematically in-
tercha,nging the symbols (H,, Ey, ¢, 4, K) by (E,,—Hg, p, €, I) in the formulations
presented for the (T'E) case.
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2.8 Selected Numerical Results and Discussion

Versatile computer programs have been developed using the formulations of the
proceeding sections for the imperfectly conducting and dielectric cylinders. Some
representative computations obtained with these programs are given in this section.
The validity of the formulations can be verified in various ways. One important
method is to compare the results obtained for the specific case of imperfectly con-
ducting and dielectric circular cylinders with exact results, which can be obtained by
an analytical method. Exact formulas for the scattering by a homogeneous dielectric
circular cylinder is given in [41]. Also, an analytical solution for a circular cylinder
with constant surface impedance is given in [23]. The solution for other geometries,
such as elliptic and rectangular cylinders, can be compared against results obtained

using method of moments solutions [18] and [19].

2.8.1 Results for Circular and Elliptic Cylinders

Figures 2.4 and 2.5 compare the results for an imperfectly conducting circular cylin-
der of k,a = 3.33, where a is the radius of the cylinder, for TE and T M problems
respectively. The cylinder of permittivity ¢, = 1 — 511.3 is excited by an incident
plane wave with ¢* = 180°. These figures compare the scattered echo width o us-
ing the MFCM with IBCs for constant and curvature dependent surface impedance
Z.(p) with the exact analytical solution [41] . For the present formulation, a set
of N = 18 filament sources is placed on a circular surface of radius r! = 0.5¢ and
the number of the matching points N¢ = N is used. The sources and the match-
ing points are evenly spaced on their respective surfaces. The agreement in Figs.
2.4 and 2.5 between results based on the exact analytic solution and the numerical

method for both TE and T'M problems is excellent, indicating the high accuracy of
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the present numerical method.

Figures 2.6 and 2.7 compare the forward scattering and backscattering echo
widths, respectively, versus the normalized penetration depth §/a using MFCM
with IBCs, with both constant and curvature dependent surface impedance Z.(p),
with the exact analytical solution [41]. The results are for an imperfectly conducting
circular cylinder with o, = 0.55/m immersed in a transverse electric T'E wave with
@ = 180°. It is seen that the error in the scattered field obtained using the MFCM-
IBCs with constant surface impedance Z, increases by increasing the normalized
penetration depth §/a. However, the curvature dependent Z.(p) solution gives very
accurate results for all considered values of §/a.

Figure 2.8 shows the normalized total magnetic field (Ei 4+ E?) evaluated at the
surface of a circular cylinder of k,a = 7 and €, = 1 — 712. The figure shows good
agreement between the exact analytical solution and the MFCM with IBC.

Figure. 2.9 compares the results for the scattering echo width of an imperfectly
conducting elliptic cylinder using the MFCM-IBCs and the method of moments
(MoM) [19]. The result is for an elliptic cylinder with ke = 3, a/b = 2, ¢, =
1 —39.63, and §/a = 8.7%, and excited by an incident plane wave of ¢* = 0°. The
result shows good agreement between the (MoM) solution and the present method
using a constant surface impedance Z,, and better agreement is obtained when the
curvature dependent Z,(p) is used. The number of sources used is N = 23 for this
method, and 90 for the MoM solution.

Figures 2.10, 2.11 and 2.12 compare the scattered field from a circular cylinder
using analytical solution based on IBCs [40] and MFCM for TE and T'M problems.
The results are for circular cylinders with k,a = 7 and constant surface impedance
Zy of 7300, —3300 and (300 + 5300)$2, respectively. The cylinders are immersed in

an incident plane wave with ¢* = 180°. The plots show that the results obtained
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using MFCM with IBCs, for different types of coating materials, are in excellent
agreement with the analytical solution.

Finally, to study the effect of resistive coatings on the scattered fields Figs. 2.13
and 2.14 are included. These figures compare the scattered field from a circular
cylinder using analytical solution based on IBCs [40] and MFCM for TE and TM
problems, respectively. The results are for circular cylinders with k,a = 7 and con-
stant real surface impedance Z,, of 300, 335 and 375%), respectively, and ¢* = 180°.
Here, we notice the reduction in the amplitude of the backscattering corresponding

to ¢ = 180° by increasing the surface impedance.
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Figure 2.4: TE plot of the echo width versus ¢ for the case of a circular cylinder of

k,a =333 ¢ =1.—311.3 and §/a = 12%
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Figure 2.5: TM plot of the echo width versus ¢ for the case of a circular cylinder

of k,a =3.33 ¢, =1. — j11.3 and é/a = 12%
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Figure 2.6: TE plot of the forward scattering versus é for the case of a circular
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Figure 2.7: TFE plot of the backscattering versus §/a for the case of a circular

cylinder of @ = 1m and o, = 0.5(5/m)
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Figure 2.8: TM plots of the total normalized tangential electric field versus ¢ for

the case of a circular cylinder of k,a =7 and ¢, = 1. — 711.3
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Figure 2.9: T'E plot of the echo width versus ¢ for the case of a lossy elliptic cylinder

of k,a=3,a/b=2¢=1-39.63 and ¢ = 0°
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Figure 2.10: Echo width versus ¢ for the case of a circular cylinder of k,a = 7 and

Zoy = 73000
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Figure 2.11: Echo width versus ¢ for the case of a circular cylinder of k,a = 7 and

Zw = —73000
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Figure 2.12: Echo width versus ¢ for the case of a circular cylinder of k,a = 7 and

Zu, = 300 + 3000
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Figure 2.13: T'E plots of the echo width versus ¢ for the case of circular cylinders

of kya = 7 and Z,, = 300 , 335 and 37782
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Figure 2.14: T M plots of the echo width versus ¢ for the case of circular cylinders

of kya = 7'and Z,, = 300, 335 and 3770
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2.8.2 Numerical Consideration for Circular and Elliptic Cylinders

The special choice of equal number of sources N7 and matching points N which was
used to obtain the preceding results was examined in other cases involving circular
and elliptic cylinders of other radii and permittivities. It was found that the rate
of convergence may be affected by the choice of the locations and the number of
sources and matching points. According to studies done by Leviatan et.al. [21], [22]
and the preceding results, the solution converges faster to a limiting value when
the sources are placed on contours concentric with the cross section of the cylinder
and of a shape similar to it. This implies that, for the circular cross section, the
sources are placed on a circular surface of radius r!. In addition, it was found that
the selection of r{ between 0.05a and 0.95a have a comparable rate of convergence.
Fig. 2.15 shows the convergence of the solution to the exact analytical solution for
the case of a circular cylinder of k,a = 7 and ¢, = 2.6 — §5. The sources are placed
at I = 0.95a. The number of sources was increased from NI = 10 to NI = 35. The
number of matching points was taken to be equal to the number of sources in each
case. Furthermore, the option of imposing the boundary condition in the least square
sense is also considered. It was found although in some cases the same accuracy can
be obtained with fewer sources, thereby gaining the advantage of solving smaller
matrices, in general this option is redundant for the case of circular cylinders. In
addition, the solution should be tested by increasing the number of sources and
matching points. The solution’s convergence to a limiting value shouldn’t be too
sensitive to the change in the location of the sources within the range mentioned
above. In any case, if the results are too sensitive to the change in the sources

locations, the number of sources and matching points should be increased.
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Figure 2.15: T'M plot of the echo width versus ¢ for the case of a circular cylinder

of k,a =7 ¢, = 2.6 — 75 for different number of sources
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2.8.3 Results for Square Cylinders

Figure. 2.16 compares the results for a perfectly conducting square cylinder obtained
using the multifilament current model, the generalized multiple multipoles technique
and the moment of method solutions. The cylinder of kI = 27, where [ is the
side length, and excited by an incident transverse magnetic TM plane wave with
¢ = —45°. For the MFCM solution, a technique developed by Eisler [42] is used
to select the locations of the filamentary sources. The scattered field has been
simulated by three sets of sources as shown in Fig. 2.18: (i) 48 filaments evenly
spaced on a concentric square surface situated at a distance d = 0.1\ from the
boundary C; (ii) 16 filaments at a distance 0.01X from the edges, 2 filaments on
each side of each edge; and (iii) 24 filaments gradually connecting the former two
sets. The number of matching point N° = N7 is used and distributed evenly on the
boundary surface. For the GMMP solution, the scattered field has been simulated
by two sets of multipoles line sources as shown in Fig. 2.19: (i) 36 multipoles of order
zero evenly spaced on a concentric square surface situated at a distance d = 0.1\
from the boundary C; (ii) a set of 4 multipoles of order one, one multipole situated
at each corner at a distance 0.01X from the boundary. In this case, the number of
unknown expansion coefficients is M = YN (2N7 + 1) = 48. The number of the
matching point N¢ = 3M is used. As shown in Fig 2.16, the agreement between
results based on the MFCM solution, the GMMP and the MoM is excellent.
Figure. 2.17 shows the results for a perfectly and imperfectly conducting square
cylinder obtained using the generalized multiple multipoles technique. The cylinders
of kl = 27, where [ is the side length, and ¢, = 10.0 — 73.0 for the imperfectly
conducting. The cylinders are excited by an incident transverse magnetic T M plane
wave with ¢* = —0°. The selection of the sources and matching points are the same

ones used to obtain Fig. 2.16.
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Figure 2.16: T'M plots of the echo width versus ¢ for the case of a square cylinder

of k.l = 2w, ¢t = —45°
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2.8.4 Numerical Consideration for Square Cylinders

As for the cylinders of smooth cross section, the rate of convergence may be affected
by the choice of the sources locations, number of unknowns and number of matching
points. Since, for the rectangular cylinders , the fields near the edges are inherently
singular, the errors are expected to be higher than the rest of the surface. Therefore
special consideration should be given to the edges. The MFCM and the GMMP
simulations differ in the method by which they treat the singularity of the fields in
the edges. Fig. 2.18 illustrates the distribution of the filamentary sources inside a
square cylinder. This choice of locations reduces the errors in the boundary condi-
tions and gives accurate results for the square cylinders. Furthermore, the accuracy
of the solution can be improved by increasing the number of sources and the number
of matching points.

Figure 2.19 illustrates the distribution of the multipoles line sources inside a
square cylinder. In this configuration, all distance of multipoles along the straight
line have constant values. Since the field near the edges is rapidly changing, one
multipole is placed very close to the boundary in each corner of the rectangular
cross section. According to Hafner [3], the fields of higher order multipoles are
much more concentrated around its origin than the fields of lower order multipoles.
Therefore, the multipoles close to the edges must be of higher order to allow the
domain of the greatest influence of the multipole to cover that part of the boundary
around the edges. The domain of the greatest influence of the multipoles is a circle
around its origin with radius R which is the minimum distance d from the boundary
multiplied by a factor of v/2. Fig. 2.20 shows the effect of changing the locations
of the first order multipoles on the convergence of the solution. It is seen that the
closer the higher order multipoles to the boundary the more accurate solution is

obtained. No other multipoles should be inside the domain of great influence of any
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multipoles in order to avoid the dependency between the multipoles, hence avoiding
an ill conditioned matrix. The numerical accuracy can be improved by controlling
the number of the multipoles, the corresponding truncation order and the number of
matching points. It was found that the over-determined system of linear equations
gives a more accurate result and the solution converges faster than the case of a
well determined system. Good results may be obtained when three times as many
equations as unknowns are used. Again, it is evident and understandable that a large
cylinder of high permittivity will require more sources and matching points than a
smaller one of lower permittivity in order to achieve the same level of accuracy.
In addition, the solution should be tested by increasing the number of sources and
matching points. The convergence of the solution to a limiting value shouldn’t be
too sensitive to the location of the sources. In any case, if the results are too sensitive
to the change in the location of sources, the number of sources and matching points

should be increased.
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CHAPTER 3

Multiple Scattering by Parallel Cylinders

3.1 Introduction

In this chapter, the multifilament current model [21], [22] is used to solve the
problem of multiple scattering by parallel cylinders of arbitrary cross sections. The
problem is classified into two parts; transverse magnetic (T'M) and transverse elec-
tric (T'F) according to the type of excitation. For each excitation type, the for-
mulation is carried out for the problems of homogeneous dielectric and imperfectly
conducting cylinders. For the case of homogeneous dielectric cylinders, the problem
is formulated using two sets of fictitious filamentary sources to simulate the fields of
each cylinder. For each cylinder, one set of sources is placed inside it to simulate its
scattered fields. The other set of sources is placed outside each cylinder to simulate
the fields inside the respective cylinder. Application of the boundary conditions
yields a system of linear equations which can be solved for the unknown filamentary
currents .

For imperfectly conducting cylinders, as stated in chapter 2, the surface
impedance boundary conditions (IBC) simplify the formulation by eliminating the
need for the inclusion of the interior field [40]. Therefore, only one set of filamen-
tary sources is needed to simulate the fields of each cylinder. This set of sources is
placed inside each cylinder to simulate its scattered field. Again, application of the
IBC results in a system of linear equations which can be solved for the unknown

filamentary currents. The case of perfectly conducting cylinders can be handled as a
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special case of the imperfectly conducting cylinders by setting the surface impedance
to zero. Once the strengths of the filamentary currents are computed, the scattered
field and other parameters of interest can be obtained. In the following sections,
the formulation will be carried out in details for homogeneous dielectric and imper-
fectly conducting cylinders, for the T'M case. The solution for the T'E case will
be discussed in a later section. Results for the normalized echo width for selected

geometries of arbitrary cross sections and of various parameters are presented.

Region O
M, )

Regionl I

Physical Surface

Figure 3.1: Geometry of the problem
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3.2 Description of the Problem for 7'M case

The scattering geometry considered is shown in Fig. 3.1. Consider M parallel
cylinders of arbitrary cross sections whose axes are taken to be parallel to the z— axis
of a rectangular coordinate system. The /** cylinder is composed of a homogeneous
dielectric material of permittivity &;, permeability y;, and conductivity o;, where
I =1,2...M. The region surrounding the cylinders is free space of permittivity ¢,
and permeability wu,.

Let the cylinders be immersed in an incident transverse magnetic plane wave

(TM) characterized by

E'=14,E (3.1)

H = a.H, + i, H, (3.2)

where the time dependent e?“¢ is understood. Here, i, 4y, and 4, denote the unit

vectors in the x, y, and z directions, respectively, and

E; — ejko(mcos¢i+ysin¢‘) (33)
7 L. i jko(zcosdt +ysing')
H. = ——sing'e’™ Y (3.4)
> 1 . . ‘ . "
H, = —cos¢’e’ ko(zcos’+ysing') (3.5)

o
where 7, and k, are, respectively, the intrinsic impedance and the wave number in
free space, and ¢' is the angle of incidence. The problem is a two-dimensional one
and can be worked out in some z =constant plane because £’ is z—directed and

independent of z and the cylinders cross section is uniform along the z direction.
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3.3 Homogeneous Dielectric Cylinders

For homogeneous dielectric cylinders, the objective is to calculate the fields
scattered by the cylinders, and the fields transmitted inside the cylinders. Therefore,
we set two simulated equivalent situation to the original ones in regions O and I
shown in Fig. 3.1. In the simulated equivalence for region O, shown in Fig. 3.2,
the field scattered by the I** cylinder is simulated by the field of a set of fictitious
electric current filaments placed on a closed surface enclosed by Cj, where C; is the

surface of the [** cylinder and [ = 1,2, 3...M. These filaments are z directed, infinite
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& * S p A
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Figure 3.2: Simulated equivalence situation for region O

in extent and carry, yet undetermined, constant currents Fy;, ¢ = 1,2,3..Nf', where
NF' is the number of sources inside the I** cylinder. They are treated as electric

current sources radiating in free space. In Fig. 3.2, (E*, H*) are the electromagnetic
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scattered fields due to all fictitious current filaments inside all the cylinders and
(Ei, H?) are the fields of the incident wave as given by (3.1)- (3.5). The total fields
(E® + Ef, H® 4+ H*) in the region O are approximations of the fields in region (O) in
the original situation. Similarly, in the simulated equivalence for the interior regions
I;, shown in Fig. 3.3, the transmitted fields inside each cylinder are simulated by
the fields of M sets of fictitious electric current filaments. The [** set of filament

is placed on a closed surface enclosing C;. Again, these filaments are z directed,
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Figure 3.3: Simulated equivalence situation for region I

infinite in extent and carry, yet undetermined, constant currents Py, = 1,2,3..Nf,
where NF is the number of filaments surrounding the I** cylinder. The I** set

is treated as electric current sources radiating in a space filled with homogeneous
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material identical to the material composing the I** cylinder. The fields (Ef, HF)
due to the fictitious current filaments Pj; are approximations of the fields in region
I in the original situation. The relationship between the electromagnetic fields
(E® + Ef, H® + H*) and (EF, HF) in the simulated equivalent situations shown in
Figs. 3.2 and 3.3, respectively, is dictated by the boundary conditions at the surface
of the [** cylinder shown in Fig. 3.1. Specifically, the continuity of the tangential

electric and magnetic field components across Cj.

3.3.1 Expressions for E* and H®

The scattered fields (E°, H®) at an observation point (z,y) in some z =constant
plane due to the current filaments Fj;,7 = 1,2,3,...Nf and [ = 1,2,3,...M radiating
in an unbounded free space are given by

M NF

=4,y E o (3.6)

=1 4=1

_ M NzF M NzF
0 =1, z H;z.' + ’&y Z Z szu (3'7)
=1 i=1 I=1 7=1

where E°

oo Ha, and Hp - are, respectively, the scattered electric and magnetic field

components at an observation point (z,y) in region O due to the i** electric current

filament Fy; of the I** cylinder, situated at (zF,y!") inside C; and are given by

s koT/oFlz
zi T 4 H(2)(ko ) (3.8)
o kFuly—9F) L2, F
H-’b‘h - 4]sz Hl (kopi ) (39)
s kO'FH(:E - -’I?f‘)
Hy, = —TPF—H@(kop, ) (3.10)
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Here H(? and H{z) are the second kind Hankel functions of zero order and first

order, respectively, and

oF = (@ — 2F) + (y — yF)? (3.11)

is the radial distance between the 3** source point located inside the I** cylinder and

the observation point under consideration.

3.3.2 Expressions for Ef and H”

The electromagnetic fields (Ef, HF) at an observation point (z,y) in region I; due to
the current filaments Pj;,7 = 1,2,3,...Nf radiating in an unbounded homogeneous

dielectric space is given by

M NzP
EP =1,y Y El (3.12)
I=11i=1
M NIP M NzP
EP:{LJ’ZEHE.' +ayZEH£.‘ (3'13)
I=1 =1 I=1 =1

where EF | HE and HP are, respectively, the electric and magnetic field components
2l T Y

at an observation point (z,y) in region I; due to an electric current filament P

situated at (zf,yf) outside C; and are given by

)

kyn Py;
Eg, = ———"Z = HP (kipf) (3.14)
kiPuly —yf)
o, = —Wﬂl (kipi) (3.15)
ki Py(z — =f
7, = B Z) B ) 5.16)

Here n; and k; are, respectively, the intrinsic impedance and the wave number of the

It* cylinder, and

oF = V(e ~ 2PV +(y —of)’ (3.17)
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is the radial distance between the t* source point located outside the [** cylinder

and the observation point under consideration.

3.3.3 Ewvaluation of the Unknown Currents Fj; and Py

For a dielectric object, the tangential components of the electric and magnetic fields

must be continuous across the boundary. This leads to the operator equations on

C,1=1,2,3,...M.

fx(E® — EF) = —hxE" (3.18)

fx(H® — HY) = —nxH? (3.19)

where 71 is a unit vector normal to the cylinder surface and pointing toward region O
as shown in Fig. 3.1. Selecting N matching points on the surface of each cylinder
and enforcing the boundary condition (3.18) and (3.19) at the matching points result

in a system of linear equations. These equations can be written in a matrix form

Al =V (3.20)
where
Se Se Se Pe P, P, -
[ Af§ 13 - W —AY AL L —Agy
sp sp Sp Py Py Py
An AW o AN A A L A
s s s P, P, P,
i A% .. e A —AR L —AG
sp, sp Sp Py P, Py,
Ay A o Ay —Ar —Ay L —Acy
A= (3.21)
s s s P, P, P.
A Al - ANy —Adh —Axh . —Aly
Sh Sh Sh Ph Ph Ph
LAy Al o ANy —Adh —AN, o —ARhy
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—- Fli -
Ve ]
Fy;
—Vf
~Ve
Fu
I= V=|-Vk (3.22)
Py
P,;
~Ve,
| Vi
L Py

Here, A (a,a,) is the generalized impedance matrix, where M; = 25 M NFE and
M, = Y (NF + NF). Aj: is an (NPxNF) matrix whose elements are the electric
field intensity E:,-; due to the 7t* filament of unit current inside the ¢**, ¢ = 1,2...M,
cylinder evaluated at the j* matching point on C;. Similarly, Af* is an (N°xNF)
matrix whose elements are the electric field intensity Ei;', due to the i** filament of
unit current outside the ¢** cylinder evaluated at the j** matching point on Ci. Iy
is an (NZxN[) matrix whose elements are the tangential magnetic field intensity

H3  due to the i** filament of unit current inside the ¢** cylinder evaluated at

7%

the j** matching point on C. AZ” is an (NPxNF) matrix whose elements are the

tangential magnetic field intensity H Z‘. due to the ¢** filament of unit current outside
th . -th . . .

the ¢** cylinder evaluated at the j** matching point on Cj. I(Z{\il (NF+NF)) 15 the

generalized unknown current vector. V(2 M NE) is the generalized voltage source
=1""1

and V*

I(ve)are column vectors whose elements are, respectively, the
13

vector. Vle( NE)
incident electric field and the incident tangential magnetic field intensities evaluated
at the matching point under consideration.

Having formulated the matrix equation (3.20), the unknown current vector I can

be solved for by inversion or elimination if the boundary conditions are enforced at

NP = Nf = NF selected points on C}. On the other hand, if the BCs are enforced
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at NF > Nf or NF selected points on C; the least-square error solution to (3.20)
may be used [21]. This solution minimizes the standard norm of the vector AI-V

and is known to be
I=(A*A)7'A*V (3.23)

where A is the transpose of A and the asterisk denotes complex conjugate.

3.4 Imperfectly Conducting Cylinders

Consider M lossy dielectric cylinders of arbitrary cross section whose axes are
taken to be parallel with the z—axis of a rectangular coordinate system, see Fig. 3.1.
The material of each imperfectly conducting cylinder can be represented by a sur-
face impedance Z.(p). For imperfectly conducting cylinders, the surface impedance
boundary conditions (IBC) eliminate the need for the inclusion of the interior
field [40]). Therefore, only one set of filamentary sources is needed to simulate the
fields of each cylinder. In the simulated equivalence for region O, shown in Fig. 3.2,
the fields scattered by the I** cylinder are simulated by the fields of a set of fictitious
electric current filaments placed on a closed surface enclosed in C;, where C; is the
surface of the [** cylinder and [ = 1,2, 3...M. These filaments are z directed, infinite
in extent and carry, yet undetermined, constant currents Fi;, = 1,2,3..NF, where
NF' is the number of sources inside the I** cylinder. They are treated as electric
current sources radiating in free space. In Fig. 3.2, (E*, H®) are the electromagnetic
scattered fields due to all fictitious current filaments inside all the cylinders and
(E¢, H') are the fields of the incident wave as given by (3.1)-(3.5). The total fields
(E*+ E*, H*+ H*) in the region O are approximations of the field in region O in the
original situation. Selecting N matching points on the surface of each cylinder and

enforcing the IBC at all the matching points result in a system of linear equations
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which can be solved for the unknown filamentary currents. The expressions for the
incident and the scattered fields are given by (3.1)-(3.11).
3.4.1 Expression for the IBC

For objects with IBC the total electric and magnetic fields, on the surface C, are

related by [40]

E—(7-E)d = Z,(p)(n x H) (3.24)
Z.(p) = Zu(1 + 4(p)) (3.25)
with
/=2 for a lossy dielectric region

Zy={ Vvt & (3.26)

0.0 for a perfectly conducting region

1 .

9(p) = 7(1 = 7)8ku(p) — Fu(p) (3.27)

where o, is the conductivity of the material, é is the skin depth, Z, is the wave
impedance within the object and k,(p) and k,(p) are the principle curvatures of C
at p. For small signal penetration, or for objects with large radii of curvature, Z;(p)
can be assumed constant and equals to Z,.

The impedance boundary condition in (3.12) can be reduced to
E, = Zp)H; (3.28)

where E, is the total tangential electric field component in the exterior region and,

H; is the total tangential magnetic field component in that region.
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3.4.2 Evaluation of the Unknown Electric Currents Fj;

Selecting N matching points on the surface of each cylinder and enforcing the
boundary condition in (3.28) at the j**, j = 1,2,...NF, matching point on the [**

cylinder, we get

(Bs; + E,;) = Ze(py)(H, + Hy (3.29)

Z[j

where E;. and H;, are, respectively, the scattered tangential electric and magnetic
field components evaluated at the j** matching point of the I** cylinder. Eilj, Hflj
are the incident tangential electric and magnetic field components evaluated at the
same point, and Z.(pi;) is the curvature dependent surface impedance evaluated at
the j** matching point of the I** cylinder. Enforcing (3.29) at all matching points
results in a set of linear equations which can be written in a matrix form in which
the various matrices are interpreted in terms of generalized network parameters.

The result is

AF =V (3.30)
where
AN Z()AL AB+Z(p)ASB . Adse+ Ze(p) Ay ]
A3+ Zo(p2)AS: Ass + Zo(p2) Ay ... ASsr + Ze(p2) Ay
A = (3.31)
LA + Ze(pm)Adn Adpe + Ze(pan) ARy - Adiar + Ze(pmr) A
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D

F=| (3.32)

[ (=E + Z(p)H}) ]

(—E;:‘z + Zc(pz)H;ng)
Ve (3.33)

(= E%,, + Ze(pm) Hj, ) |
Here, A(n a1, is the generalized impedance matrix, where M; = M NF and
My =02 NE. (Aje + Zo(par)Ajl) is an (NPxNF) matrix, where Ajs and Apt are,
respectively, the electric field and the tangential magnetic field intensities due to
the ¢** filament inside the ¢** cylinder of unit current evaluated at the j** matching
point on C). I(Zi\/:fl NF) is the generalized unknown current vector. V(Zﬁl NE) is the
generalized voltage source vector.

Having formulated the matrix equation (3.20), the unknown current vector F
can be solved for by inversion or elimination if the IBC are enforced at NF = Nf

selected points on each C;. On the other hand, if the IBC are enforced at NF > Nf

selected points on C) the least-square error solution given by (3.23)may be used
3.5 Far-Scattered Field

In the far-field region, the multiple scattering pattern of the cylinders can be
obtained by employing the asymptotic expansion for the Hankel function and tak-

ing [18]
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pii = p — Ti;cosP — yi;sing (3.34)

where p and ¢ are the polar coordinates of the distant observation point and py; is
the distance from the i** source of the [** cylinder to the distant observation point.

Therefore, the far-scattered field is given by

koo | 25—k %g ko(ticos-+uiising) (3.35)
E; N T g—Ikop F‘HGJ o{z1icosd+yy; sin 3.35
4 Y mhop 1=1 i=1

The scattering cross section per unit length, i.e., the echo width, o is defined by

E:(f% ¢) ’ (3.36)

Ez

z

a(¢) = lim 27p

From (3.34) and (3.35), the echo width is given by

2

kon? | N iko(z1i cosd+us; sing)
_ 0 o Fz' JkolZiicosp+tyisin 3.37
o) = gy [ 2 Fie (3:37)

3.6 Solution for TE Problem

Let the M cylinders, shown in Fig. 3.1., be immersed in an incident transverse
electric wave T'E, the solution proceeds, similar to the TM problem, line for line.
The sources are now magnetic current filaments, Fj; and Pj;. Using the Duality
theorem [41], the field equations can be obtained by systematically interchanging
the symbols (E,, —Hy, €, u) by (H., Eg, 1, €) in equations (3.1) through (3.37). As for
the T'M problem, the boundary conditions should be enforced at selected matching
points at all the cylinders surfaces which result in a system of matrix equation similar
to (3.19). By solving this system of matrix equation, the values for the unknowns

Fj; and P; can be obtained.
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3.7 Selected Numerical Results.

The validity of the multifilament current model (MFCM) solution for multiple
scattering problems has been verified by comparison against results obtained for
different geometries using the method of moments (MoM) solutions. A program
based on Richmond’s formulation for a single scatterer [18] has been modified to
solve for the multiple scattering by parallel cylinders. The agreement between results
based on the MoM solution and the forgoing method is excellent, indicating the
high accuracy of the present numerical method. The convergence of the MFCM was
confirmed by increasing the number of sources and matching points, changing the
location of the sources and by interchanging the direction of the incidence and the
observation points. The square root of the normalized scattered echo width \/@
is obtained for all cases considered in this section. The results are presented for
multiple scattering by only two cylinders although the analysis is carried out and
similar results can be generated for arbitrary number of cylinders.

Figure 3.4 illustrates the results for two identical dielectric circular cylinders of
radius k,a = 7 placed along the Y-axis and their axes are separated by a distance
k.d = 67. The cylinders of permittivity ¢, = 2.6 are excited by an incident transverse
magnetic TM plane wave with ¢! = 0°. For the MFCM, a set NY = NI = 25
filament sources is placed on a circular surface of radius r¥ = 0.75a inside each
cylinder and another set Nf = Nf = 25 filament sources is placed on a circular
surface of radius r = 1.5a outside each cylinder. The number of the matching
points N = NS = NI is used. The sources and the matching points are evenly
spaced on their respective surfaces. For the MoM solution, the matrix size is (200
x 200).

Figures 3.5 and 3.6 compare the normalized forward scattering and backscatter-
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ing echo width \/@ , respectively, versus the angle of incidence ¢* using the MFCM
solution against the MoM solution. The results are for the two cylinders considered
in Fig. 4 with the same locations and number of sources and matching points.

Figure 3.7 compare the results for two identical perfectly conducting elliptic
cylinders (Z,, = 0.0), each of a semi-major axis k,a. = 27 along the Y-axis and
an axial ratio of 4.0. The cylinders are located along the Y-axis and their centers
are separated by k,d = 8w. The cylinders are excited by an incident transverse
magnetic TM plane wave with ¢* = 0°. For the MFCM, a set of NF = 32 filament
sources is placed inside each cylinder on an elliptical surface of major axis 0.975a,
and an axial ratio of 4.0 . The number of matching points N¥ = NY = N¥ is used.
The sources and the matching points are again evenly spaced on their respective
surfaces.

To check the accuracy of the impedance boundary conditions, the results based
on the MFCM combined with IBC are compared with those of the MoM with exact
boundary conditions. Fig. 3.8 compares the results for a perfectly conducting
circular cylinder of radius k,a = 7 and a lossy dielectric circular cylinder of radius
koa = m and complex permittivity ¢, = 4 — 75. The center of the dielectric cylinder
is located along the positive X-axis at a distance k,d = 67 from the center of the
perfectly conducting cylinder. The cylinders are excited by an incident transverse
magnetic TM plane wave with ¢* = 180°. For the MFCM, a set Nf = 25 filament
sources is placed inside each cylinder on a circular surface of radius ¥ = 0.75a. The
number of matching points N = NY = N¥ is used. The sources and matching
points are evenly spaced on their respective surfaces.

Figure 3.9 compares the results for a perfectly conducting elliptic cylinder with
semi-major axis k,a. = 7 along the Y-axis and an axial ratio of 2.0 and a dielectric

circular cylinder of radius k,a = 7 and permittivity ¢, = 2.6 — j2. The center of the
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circular cylinder is located along the positive direction of the X-axis at a distance
k,d = 67 from the center of the elliptic cylinder. The cylinders are excited by an
incident transverse magnetic TM plane wave with ¢* = 90°. For MFCM, a set
of Nf = 32 filament sources is placed inside the elliptic cylinder on an elliptical
surface of major axis 0.975a. and an axial ratio of 2.0. Another set of NI = 25
filament sources is placed inside the circular cylinder on a circular surface of radius
rf = 0.75a. The numbers of the matching points NF = Nf" and N = N{ are
used. The sources and the matching points are evenly spaced on their respective
surfaces. The impedance boundary condition with constant surface impedance is
enforced at the matching points for the MFCM.

Figure 3.10 compares the results for two identical perfectly conducting square
cylinders of side length k,a; = . The axes of the cylinders are located on the X-
axis and separated by a distance k,d = 67r. The cylinders are excited by an incident
transverse magnetic TM plane wave with ¢ = 0°. For rectangular cylinders, a
technique developed by Eisler and Leviatan [42] is used to select the locations of the
filamentary sources. The scattered field has been simulated by three sets of sources:
(i) 28 filaments evenly spaced on a concentric square surface situated at a distance
d = 0.1\ from the boundary C%; (ii) 16 filaments at a distance 0.01) from the edges,
2 filaments on each side of each edge; and (iii) 12 filaments gradually connecting the
former two sets. The number of the matching points N& = N = NF is used and
distributed evenly on the boundary surface. As shown in Fig 3.10, the agreement
between results based on the MoM solution and the forgoing method is excellent.

Finally, figure 3.11 illustrates the results for two dielectric circular cylinders of
radii a; = 0.1}, and ay = 0.2),, respectively. The axes of the cylinders are separated
by a distance 0.4\ and placed along the X-axis. The cylinders of permittivity ¢, =

€, = 2 and are excited by an incident transverse electric TF or T'M plane wave
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with ¢* = 0°. Two sets Nf = 17 and N¥ = 30 of filamentary sources are placed
on a circular surface of radius ¥ = 0.5a; and v = 0.5a,, respectively, inside the
cylinders. Another two sets Nf = 17 and NI = 30 of filamentary sources are
placed on a circular surface of radius rf = 1.05a¢; and rF = 1.05a, outside the
cylinders. The numbers of the matching points N = N{ and NY = NI are used.

The sources and the matching points are evenly spaced on their respective surfaces.

The accuracy of the results is confirmed by comparing the far scattered fields with

results obtained by Elsherbeni and Kishk [43].
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Figure 3.4: The normalized echo-width pattern for two circular cylinders.
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Figure 3.5: The normalized forward scattering echo width versus ¢ for two circular

cylinders.
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Figure 3.6: The normalized backscattering echo width versus ¢* for two circular

cylinders.
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Figure 3.7: The normalized echo-width pattern for two perfectly conducting elliptic

cylinders.
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Figure 3.8: The normalized echo-width pattern for perfectly conducting and homo-

geneous dielectric circular cylinders.
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Figure 3.9: The normalized echo-width pattern for a perfectly conducting elliptic

cylinder and a dielectric circular cylinder, (T'M case.)
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Figure 3.10: The normalized echo-width pattern for two perfectly conducting square

cylinders.
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Figure 3.11: The normalized echo-width pattern for two circular cylinders, (T'E and

TM cases).
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To study the behavior of the echo width backscattering versus the separation
distance between two parallel cylinders, results for cylinders, located on the x-axis,
of various parameters and cross sections for TM plane wave with ¢* = 0° (endfire)
and ¢* = 90° (broadside) are included.

Figure 3.12 shows the broadside backscattlering versus the separation distance
k,d for two identical homogeneous dielectric circular cylinders of k,a = 0.5 and
permittivity e, = 2.25. A set N¥ = 15 filament sources is placed on a circular
surface of radius r¥ = 0.75a inside each cylinder and another set N¥ = 15 filament
sources is placed on a circular surface of radius ¥’ = 2a outside each cylinder. The
number of the matching points N¢ = N¥ is used. The sources and the matching
points are evenly spaced on their respective surfaces. As shown in the figure, the
oscillations decay with increasing the separation distance between the cylinders and
the mean value is 0.395 which is about four times the value of the independent
scattering from the single cylinder (0.0987). The wavelength of the oscillation is 27.
These results agree well with results obtained analytically by Olaofe [32].

Figure 3.13 shows the endfire backscattering versus the separation distance k.d
for two identical homogeneous dielectric circular cylinders of k,a = 0.5 and permit-
tivity €, = 2.25. The number and location of sources and the number of matching
point are the same as for Fig. 3.12. As shown for all values of k,d, the endfire
backscattering is below four times the corresponding value for the single cylinder
(0.174). The wavelength of the oscillations is 7. The amplitude of the oscillations
of each is almost constant, non-negligible, and almost completely independent of
separation. Again, these results agree well with results obtained analytically by
Olaofe [32].

Figure 3.14 shows the broadside backscattering versus the separation distance

k.d for three sets of two identical imperfectly conducting circular cylinders of k,a =

7



1.0. The cylinders have a constant surface impedance of Z, = 20092, Z. = 3009
and Z, = 370Q. A set Nf(= Nf) = 20 filament sources is placed on a circular
surface of radius r¥ = 0.75a inside each cylinder. The number of the matching
point N = Nf is used to obtain the results of each curve. The sources and the
matching points are evenly spaced on their respective surfaces. As shown in the
figure, for the three curves, the oscillations decay with increasing the separation
distance between the cylinders; they have mean value corresponding to four times
the value of the independent scattering from the single cylinder. The wavelength of
the oscillation is 27. Also, the mean value of the oscillation decreases by increasing

the value of the surface impedance which agrees with the results shown in Fig. 2.14.
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Figure 3.12: The normalized echo-width pattern versus the separation distance for

two circular cylinders, ¢* = 90°
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Figure 3.13: The normalized echo-width pattern versus the separation distance for

two circular cylinders, ¢* = 0°
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CHAPTER 4

Radiation From Axially-Slotted Cylinders

In this chapter, the multifilament current model and the generalized multiple
multipole technique are used to solve the problems of electomagnetic radiation from
axially-slotted cylinders of arbitrary cross sections. The exciting source is assumed
to be either a prescribed aperture field distribution E; on the slot or an electric
line source placed inside the shell. In the following section, the formulation will be
given for electomagnetic radiation from axially-slotted cylinders excited by E; on the
slot. The formulation is carried out using the multifilament current model (MFCM)
and the generalized multiple multipole technique (GMMP). The formulation for the
electomagnetic radiation from dielectric-loaded axially-slotted cylinders excited by
an electric line source placed inside the shell will be given in a later section using
the GMMP technique only. Results for circular cylinders of various parameters are

given and compared with available analytical and numerical solutions.

4.1 Formulation for Known Aperture Field Distribution

4.1.1 Problem Specification

Figure. 4.1 shows an infinitely long slot-perforated cylindrical shell whose axis is
taken to be parallel with the z—axis of a rectangular coordinate system. It is
assumed that the shell is infinitesimally thin and made of perfect conductor. The
shell is situated in free space of permittivity &, and permeability p,. The theory is

given for TE axial slots.
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Figure 4.1: Geometry of the problem
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Figure 4.2: Simulated equivalence situation for region I
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4.,1.2 Multifilament Current Model

The multifilament current model simulation uses one set of filamentary sources to
simulate the fields radiated by the cylinder. This set of sources is placed inside
the cylinder at some distance from its surface to simulate its radiated fields. The
sources carry, yet to be determined, constant complex currents. They generate
smooth field functions capable of representing smooth fields in the boundary surface.
The singular behavior of the fields near the edges of the slot can be approximated
by locating some of the filamentary sources in the vicinity of the slot edge [39].
Application of the boundary conditions results in a system of linear equations which
can be solved for the unknown filamentary currents. Fig. 4.2 shows the simulation of
the field radiated by the cylinder, where the radiated field is simulated by the fields
of a set of fictitious magnetic current filaments placed on a closed surface enclosed by
C. These filaments are z directed, infinite in extent and carry, yet to be determined,
constant currents K/, = 1,2,3,...NI. They are treated as magnetic current sources
radiating in free space. In Fig. 4.2, (E", H") are the electromagnetic radiated fields
due to all the fictitious current filaments and (E;) is the field across the slot. The
field (E™) in the surrounding region in Fig. 4.2 is an approximation of the field
in the surrounding region in the original situation. Note that the locations of the
filaments inside C' has not been specified. As far as the formulation is concerned,
their locations can be arbitrary. The question of selecting filament locations suitable

for a numerical solution will be dealt with later on.

4.1.2.1 Expression for E7

The radiated field (E7) at an observation point (z,y) in some z =constant plane due
to the current filaments K/,: = 1,2,3,...N! radiating in an unbounded free space

is given by
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NT N7
E =1,y El+1,y E (4.1)
i=1 i=1

where E7; and EJ; are the radiated electric field components at an observation
point (z,y) in the exterior region due to a magnetic current filament K situated at

(z!,y]) inside C and are given by

. kK y—yl) ), 1

Bz = THl (kop;) (4.2)
. kKl (z] —=2) @) I

E,; = THl (kop;) (4.3)
of= (@ —al) + (y— i)’ (4.4)

where H(Sz) and Hl(z) are the second kind Hankel functions of zero order and first
order, respectively and p! is the radial distance between the source point and the

observation point under consideration.

4.1.2.2 Evaluation of the Unknown Currents K/

In order to compute the unknown magnetic currents, only the boundary condi-
tions have to be fulfilled. Therefore, by enforcing the BC at a selected number of
matching points we can evaluate K7. The tangential electric field must vanish over
the perfectly conducting surface and match the prescribed aperture field distribution

in the slot, i.e,

AxE" = E, on C, (4.5)

AxET =0 on Cp, (4.6)
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where 7 is a unit vector normal to the cylinder surface and pointing outward as
shown in Fig.4.1. Selecting N matching points on the metallic surface of the
cylinder and NS matching points on the slot and enforcing the boundary condition

(4.5) and (4.6) at the j**, j = 1,2,...(NY + NY), matching point we get

Ej, = E, on C, (4.7)

Ej; =0 on Cp, (4.8)

where E; is E7 evaluated at the j%* matching point. Enforcing equation (4.7) at all
the matching points on the metallic surface of the cylinder and enforcing equation
(4.8) at all the matching points on the slot result in a set of linear equations which
can be written in a matrix form in which the various matrices are interpreted in

terms of generalized network parameters. The result is

AK =V (4.9)
where
[ Al 12 Alnr T
il T T
21 22 Al
T T A’r
N©1 N2 NONI
A= (4.10)
A A7, Alnr
T T T
Asy A, oNI
T T A
- Anct NS2 NCNI -
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C K, T

K
K=| (4.11)

| K1 |
- E31 -

E82

Est
V = (4.12)

with

. ko(z; — Dty — (y; — yDty;
iy = )L"pz.( =80 o, (4.13)
Jt

o= — D)’ + (y; — i)’ (4.14)

Here, A(ncing, N1y is the generalized impedance matrix. Kyr) is the generalized
unknown current vector, and Vyc) is the generalized voltage source vector. In (4.9),
A7, is the tangential electric field intensity due to a filament K} of unit magnetic
current evaluated at pi; on C. In (4.11), E; is the electric field prescribed on the
slot at the j** matching point and p]Iiz- is the radial distance between the :** source
and the j** matching point. t,; and t,; are, respectively, the z and y components

of the tangential unit vector evaluated at the j** matching points.
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Having formulated the matrix equation (4.9), the unknown current vector K can
be solved for by inversion or elimination if the BCs are enforced at N¢ + NS = Nt
selected points on C. On the other hand, if the BCs are enforced at N + NS > NI
selected points on C' the least-square error solution to (4.9) may be used [22]. This

solution minimizes the standard norm of the vector AK — V and is given by
K = (A+A)1A*V (4.15)

where A is the transpose of A and the asterisk denotes a complex conjugate.

4.1.3 Generalized Multiple Multipole Technique

The generalized multiple multipole technique (GMMP) represents the radiated fields
by multiple expansions with different origins of outward cylindrical waves. The
multiplicity of the origins for the outward waves can be interpreted as equivalent
source locations within the boundary of the cylinder. Then, the total radiated
fields are represented as a sum over the contribution from each origin. Furthermore,
the source distribution at each origin generates a field represented as a sum over
cylindrical waves, each of which is generated by a specific source component at that
origin. The sources are multipoles which include monopoles, dipoles and higher
order multipoles. As a result, we have a distribution of equivalent sources within
the boundary which creates a field on the boundary that leads to the satisfaction
of the boundary conditions. Applying the boundary conditions in the least square
sense results in a system of linear equations which can be solved for the unknown
expansion coefficients. The GMMP simulation for the fields radiated by the cylinder
is similar to the multifilament current model simulation. However, the GMMP
simulation uses a set of multipole line sources to simulate the fields radiated by the
cylinder. Again, this set of multipoles is situated inside the cylinder to simulate its

radiated fields. In this case, the singular behavior of the fields near the edges of the
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slot can be approximated by locating some of the multipole line sources with higher
truncation order in the vicinity of the slot edge. The procedure of the solution for
the unknown expansion coefficients is exactly the same as the MFCM procedure.
The simulation of the radiated fields is shown in Fig. 4.2 where the filamentary
sources are replaced by multipoles line sources. The GMMP formulation is given in

the following section.

4.1.3.1 Expression for E”

The radiated field E™ at an observation point (z,y) in some z =constant plane due
to the multipole source K7, = 1,2,3,...N radiating in an unbounded free space is

given by [3]

NI NI
Er=d,y EL+1,y Ej (4.16)
i=1 1=1

where EJ; and E]; are the radiated electric field components at observation
point (z,y) in the exterior region due to a multipole line source K7 situated at

(zf,y}) inside C and are given by

)

N
3" PuH (kopl) cos(ng;i)

n=0

. 7y — i)
B (py) = =2—=2
7 Nopk;

NI

+ 3 QuuH (kopl) Sin(n@)} (4.17)

n=1

(s — o]y [
E;Jz(ﬂglz) = —l’(—J—) [Z PinHﬁ(z)(koPﬁ) cos(nd;:)

Uopgi n=0
N
+ 3 QunHP) (kopl;) sin(nqb,-)} (4.18)
n=0

where E7; and E7; are the radiated electric field components at an observation point

(z;,y;) in the exterior region due to the i** source K7 situated at (z7,y}) inside C,
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NY is the truncation order of the i** source, P, and Q;, are the unknown expansion

coefficients and

ok = (s —2]) + (y; — v (4.19)

¢;; = arctan ((y; — v{)/(z; — z)) (4.20)

4.1.3.2 Evaluation of the Unknown Expansion Coefficients

In order to compute the unknown parameters, P;, and Q;, in the GMMP expansions,
only the boundary conditions have to be fulfilled because the field equations are
completely satisfied by the GMMP expansions. Selecting NS matching points on
the metallic surface and N¢ matching points on the slot and enforcing the boundary
conditions in (4.7) and (4.8) at all the matching points result in a set of linear

equations which can be written in a matrix form as

AK=V (4.21)
where
[ All A12 AINI Bll B12 BlNI )
A21 A22 A2NI le B22 BzNI
ANSC]_ ANE‘Z “es ANSCNI BNSC’]_ BNSCZ e BNSCNI
A= (4.22)
A11 A12 AINI Bll B12 BlNI
A21 A22 s AZNI B21 BZZ oo BZNI
-AN,ﬁl AN,‘;:Z ces ANgNI BNgl BNr(r;;z cee BN%NI .
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Having chosen the number of multipoles and the corresponding truncation order,

the unknown expansion coefficients would be M = SN (2NF + 1). Therefore, the

number of matching points is N + N¢ > M. Thus, the order of the matrix A

is (NY + NS x M) and that of column vectors K and V are, respectively, M and

NC¢ + NY. The unknown expansion coefficients can then be solved for using the

least-square error method given by (4.15).
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4.2 Formulation for an Electric Line Source

Figure 4.3 shows an infinitely long slot-perforate cylindrical shell whose axis
is taken to be parallel with the z—axis of a rectangular coordinate system. It is
assumed that the shell is made of perfect conductor and the slot is loaded with a
homogeneous dielectric material of permittivity &,, permeability p,. The shell is
situated in free space of permittivity ¢, and permeability u,. The excitation, in this
case, is due to a line source (TM excitation) situated inside or outside the shell.
In some cases, this geometry can provide a useful model to study electromagnetic
coupling/interference/radiation from/into two dimensional structure.

The incident fields due to the electric line source, located at (z,,y,), are given

by
Ei = LH,(p;) (4.28)
i Io(y — yo) .
H:v =—J (710,0_7') Hl(pJ) (429)
i L(z —z,) ]
Hy= By (4.30

where I, is the strength of the line source.

We set three simulated equivalent situations to the original ones in regions 1,
2 and 3 shown in Fig. 4.3. In the simulated equivalence for region 1, shown in
Fig. 4.4, the fields in region 1 are simulated by the fields of a set of fictitious
multipole sources placed on a closed surface enclosed by the shell. These sources
are z directed, infinite in extent and carry, yet undetermined, constant currents.
They are treated as electric current sources radiating in free space. Similarly, in
the simulated equivalence for region 2, shown in Fig. 4.5, the fields in region 2 are

simulated by the fields of a set of fictitious multipole sources placed on a closed
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Figure 4.4: Simulated equivalence situation for region 1
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Figure 4.5: Simulated equivalence situation for region 2 (*) and 3 (o).

surface enclosing the shell. Again, these sources are z directed, infinite in extent
and carry, yet undetermined, constant currents. They are treated as electric current
sources radiating in a free space. Similarly, in the simulated equivalence for region 3,
shown in Fig. 4.5, the fields in region 3 are simulated by the fields of a set of fictitious
multipole sources placed on a closed surface enclosing the loading material. Again,
these sources are z directed, infinite in extent and carry, yet undetermined, constant
currents. They are treated as electric current sources radiating in a space filled with
homogeneous material identical to the material filling the slot. The relationships
between the electromagnetic fields (E* + E*, H' + H*), (E?, H?) and (E®, H®) in the
simulated equivalent situation shown in Figs. 4.4 and 4.4, respectively, are dictated

by the boundary conditions in the original problem shown in Fig. 4.3.
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4.2.1 Expression for E' and H?

The scattered fields (E?, H!) at an observation point (z;,y;) in some z =constant
plane due to the current sources F;,i = 1,2,3,...N?! radiating in an unbounded free

space are given by [3]

= 4, E ” (4.31)

i=1
N
=03 B3 (432)

=1 =1

where E,, H}, and H}, are, respectively, the scattered electric and magnetic field
components at an observation point (z;,y;) in region 1 due to the i** electric current

source F; situated at (z;,y;) inside C' and are given by

sz Z (2) Opjz) COS n¢gz) + Z Ql H(Z) opji) sin(ngﬁji) (433)

n=0

HL. (Pfﬁ) _ J(ya

Tj Z P1 HI(Z) Op:']{‘i) COS(TI/¢J'Z')
770/732

n=0

n=1

N?
+ 3 QL H® (kopl) sm(n@)} (4.34)

_d(i— i)

Z L HO) (ko pl;) cos(ng;q)
nop;n

n=0

Iy
Hyljz(pjz') -

n=0

N
+ 3 QLHP (kop}) Sin(nsbi)] (4.35)

where E}, E!. and E}, are, respectively, the scattered electric and magnetic fields
components at an observation point (z;,y;) in region 1 due to the i** source situated
at (z},y}) inside region 2, N} is the truncation number of the :** source, P} and

!} are unknown coefficients and

pis = V(25 — ab)? + (y; — y2)? (4.36)

¢ji = arctan ((y; — y;)/(z; — z})) (4.37)
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4.2.2 Expressions for E? and H?

The electromagnetic fields (E?, H?) at an observation point (z;,y;) in region 2 due
to the multipole sources I?,7 = 1,2,3,...N? situated at (z?,y?) in region 2 and
radiating in an unbounded homogeneous free space are given by equations (4.31)

through (4.35) with the replacement of the superscript 1 by 2.

4.2.3 Expressions for E® and H?®

The electromagnetic fields (E3, H3) at an observation point (z;,y;) in region 3 due
to the multipole sources I3, = 1,2,3,...V3 situated at (23, y?) outside region 3 and

radiating in an unbounded homogeneous dielectric space is given by

N3
i=1
N3 N3
=,y Hi+9,) H (4.39)
3=1 1=1

where EZ,, H2 and Hi_ are, respectively, the electric and magnetic fields components
at an observation point (z,y) in region 3 due to a multipole line source situated
at (z3,y3) outside the loading material and are given by equations (4.33), (4.34)
and (4.35) with (k,, ,, PL,Q%,) replaced by (ki, m, P3,,Q3,), respectively.

4.2.4 Evaluation of the Unknown Expansion Coefficients.

In order to solve for the unknown expansion coefficients, only the boundary condi-
tions has to be fulfilled because the field equations are completely satisfied by the
GMMP expansions. The boundary conditions, for a line source located inside the

boundary surface, are given by

Aax(E' — E®) = 0.0 on C, (4.40)
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on C, (4.41)

on Cr (4.42)
on Cy (4.43)
on Cp, (4.44)
on Gy, (4.45)

Selecting N¢ matching points on boundaries and enforcing the boundary conditions

at all the matching points result in a system of linear equations. These equations

can be written in a matrix form as

where

AU=V
TAL 0.0 —A3]
Al 0.0 —A3
0.0 A2 —A3
0.0 A? —A3
Al 00 0.0
0.0 A2 0.0 |

V =

97

(4.46)
(4.47)
]
—Hj
0.0
(4.48)
0.0
_E;
0.0 |




where the quantities Al, A2 A3 Al A2 and A? of each element of the matrix A
may be deduced using (4.33) through (4.39).

Having chosen the number of multipoles and the corresponding truncation order,
the unknown expansion coeflicients would be
M =N 2N} +1) + N (2N? +1) + N (2N? + 1). Therefore, the number of
matching points 2(NY + Nf + NE) > M. Thus, the order of the matrix A is a
(2(NS + N¢ + NZ) x M) and that of the column vectors K and V are, respectively,
M and 2(NC + N€ + NC). The unknowns expansion coefficients can then be solved

for using the least-square error method given by (4.15).
4.3 Selected Numerical Results and Discussion

Versatile computer programs have been developed using the formulations of the
proceeding sections for the axially slotted cylinders. Some representative computa-
tions obtained using these programs for slotted circular cylinders are given in this
section. For all the results given in this section, the slot is centered at ¢ = 0° and
has half angular width of ¢;. Thus, in terms of the cylindrical coordinates (p, ¢),
(p = a,¢s < ¢ < 27 — ¢,) define the conducting part of the cylinder C,, while
(p=a,0<¢ <) U (p=a,2r — ¢, < ¢ < 2m) define the slot region Ci.

The treatment of the singular behavior of the fields near the edges of the slot
differs between the two numerical solutions, the generalized multiple technique and
the multifilament current model. In the GMMP simulation, we place multipole
sources of higher order in the vicinity of the slot. Since the fields of higher order
multipoles are much more concentrated around its origin than the fields of lower
order multipoles, the singular behavior of field near the edges will be better approx-
imated by the field of these sources. For the MFCM, additional sources are placed

near the slot edges and some sources are gradually placed farther from Chs U Cs.
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Source locations that obey this desired form for the circular cylinder under study
are introduced by Leviatan and Haller [39].

In the simulation of the radiated fields using the MFCM, we assume a total of
NT sources comprising N sources in front of Cp, and N/ sources in front of C;.

The it* source in front of C,, is centered at (pL (2), #L,(2)), where [39]

Pr(2) = prres — (ppe= — pf;"‘")sin(?\gi' 11)), 1<i<NL  (4.49)
(e —1)

¢L(3) =7 — (7 — po — Ay, )cos( ), 1<i< NL (4.50)

NI —1
where, pImez and plmin denote, respectively, the largest and the smallest radial dis-
tances among the radial distances to the sources in front of C,,. Ag¢! denotes a
suitable selected angular shift in the azimuthal direction relative to the position of
the slot edges. The specific choice of the parameters plme=, pImin and Agl clearly
affects the layout of the sources, but they follow the above mentioned rule. The
other sources are specified in a similar manner. The :** source in front of Cj is

centered at (pl(2), #1(z)), where

(e —1)

pi(i) = pime= — (pgme= — pymin)sin( N1 ), 1<i< N (451)
and
(do — Agl)cos(FY), 1<i<
ol =1 Jeoser=r) , ’ (4.52)
27 + (g0 — Agl)cos(FL), Mo <i< NI

where, pims= and pImi» denote, respectively, the largest and the smallest radial dis-
tances among the radial distances to the sources in front of C;. A@! denotes a
suitable selected angular shift in the azimuthal direction.

Figure 4.6 shows results obtained using the exact analytical solution [36], the

MFCM and the GMMP. The results are for slotted circular cylinder of kga = 2 and
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¢s = 1.5°. We assumed a uniform field £, = E, with a unit amplitude on the slot.
For the MFCM, we used for the number of sources and matching points: NI = 60,
NI =10, N¢ = 3NL and N¢ = 3N!I. And for the location of sources we set:
plnaz = plmas = (0.99q, plmin = plmin = 0.750 and A¢l, = A¢l = 0.03°. For the
GMMP, we set N! = 4 with first order truncation located at 0.99a, N, = 24 with
zero order truncation located at 0.8a¢, N = 30 and NY = 100. Also, the matching
points are more dense near the edges of the slot in C,,. As shown in the figure, both
numerical methods are in good agreement with the analytical solution, however,
better agreement is obtained using the GMMP.

Figure 4.7 shows results obtained using the exact analytical solution [36], the
MFCM and the GMMP. The results are for slotted circular cylinder of kpa = 7 and
¢s = 2.5°. We assumed a field of cosine distribution Es = E,cosm¢/¢s with a unit
amplitude exists on the slot. For the MFCM, we used for the number of sources
and matching points NI = 75, N} = 15, NS = 3N}, and N¢ = 3NI. And for
the location of sources we set plmaz = plmes = (.99q, plmin = plmin = (.75a and
A¢l = A¢l = 0.065°. For the GMMP, we set N! = 6 with truncation of order one
located at 0.99a, NI = 35 with truncation of order zero located at 0.8a, N& = 35
and NS = 130. Also, the matching points are more dense near the edges of the slot
in Cy,. As shown in the figure, both numerical methods are in good agreement with
the analytical solution, however, better agreement is obtained using the GMMP.

Figure 4.8 shows results obtained using the exact analytical solution [36] and the
GMMP. The results are for slotted circular cylinder of kga = 4 and ¢s; = 2.5°. Two
cases are shown for different field distributions with E, = 1V/m. For the GMMP, we
set NI = 6 with truncation of order one located at 0.99a, N, = 40 with truncation
of order zero located at 0.8a, N¢ = 35 and NS = 150. Also, the matching points

are more dense near the edges of the slot in C,. As shown in the figure, good

100



agreement with the analytical solutions are obtained. The corresponding surface
field distribution, computed using the GMMP, are shown in Fig. 4.9. As shown in
the figure, the results are in reasonable agreement with the prescribed fields on the
slot.

The effect of different dielectric filling a slot in a thick circular cylindrical shell
on the radiated field is shown in Fig. 4.10. The inner and outer diameters of the
shell are a = 0.707), and b = 0.807),, respectively. The angular width of the slot
is 60°. The excitation source is an electric line source placed at the center of the
shell. The results are obtained for dielectrics of permittivities ¢, = 3.0,4.0,5.0 and
6.0. Three sets of sources are used to simulate the fields of the shell: The first
set of N1 = 25 with zero order truncation is located at 0.7a, the second set of
N? = 25 with zero order truncation is located at 2b and the third set of N3 = 10
with first order truncation is placed around the slot at a distance 0.01)\, from the
boundary surface. The total number of matching points is 140. The results are in
good agreement with results obtained by Arvas and Sarkar [44] using the MoM.

Figure 4.11 shows the effect of the unloaded and loaded slots opening on the far
field. The inner and outer diameters of the shell are ¢ = 0.707), and b = 0.807),,
respectively. The angular widths of the slots are 30°,60° and 90°. The excitation
source is an electric line source placed at the center of the shell. The loaded dielectric
material is of permittivity €, = 3.0. Three sets of sources are used to simulate the
fields of the shell: The first set of N1 = 25 with zero order truncation is located
at 0.7a, the second set of N? = 25 with zero order truncation is located at 2b and
the third set of N® = 12 with first order truncation is placed around the slot at a
distance 0.01), from the boundary surface. The total number of matching points is
150. These results agree well with those obtained by Arvas and Sarkar [44].

Figure 4.12 shows the aperture field amplitude versus ¢ in circular cylindrical
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shell. The diameter of the shell is a = 0.398),. The angular width of the slot is 60°.
The excitation source is a TM plane wave incident at ¢* = 0.0. The aperture is
covered internally by lossless dielectrics of permittivities €, = 1.0,3.0 and 5.0. The
angular width of the dielectric strip is 78°. The thickness of the dielectric is 0.039A,.
Three sets of sources are used to simulate the fields of the shell: A set of N =15
with zero order truncation is located at 0.7a, the second set of N? = 15 with zero
order truncation is located at 2a and the third set of N3 = 10 with first order
truncation is placed around the slot at a distance 0.01A, from the boundary surface.
The total number of matching points is 120. The results are in good agreement with

results obtained by Arvas and Sarkar [44].
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Exact analytic
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Figure 4.6: Radiated power versus ¢ for a slotted cylinder, k,a = 2 and ¢, = 1.5°

due to a uniform field F, = E,
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Figure 4.7: Radiated power versus ¢ for a slotted cylinder, k,a = 7 and ¢, = 2.5°

due to a field E; = E,cosw¢/ ¢
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Figure 4.8: Radiated power versus ¢ for slotted cylinder k,a = 4 and ¢, = 2.5°.
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Figure 4.9: Radiated near field versus ¢ for a slotted cylinder, k,a = 4 and ¢, = 2.5°

due to prescriped fields E; = E,cosm¢/¢s and E; = E, on the slot
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Figure 4.10: Far field amplitude for different dielectric filling a slot in a circular shell
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Figure 4.11: The effect of the slot opening on the transmitted far-field amplitude.
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Figure 4.12: Aperture field amplitude versus ¢
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CHAPTER 5

Conclusions

The problems of electromagnetic wave scattering and radiation from homoge-
neous dielectric and perfectly conducting cylinders of arbitrary cross section have
been solved by simple numerical solutions: the multifilament current model and the
generalized multiple multipole technique. Both numerical methods are used to solve
for a single and multiple scatterers excited by T E and T'M polarized electromagnetic
waves. |

In chapter 2, the multifilament current model and the generalized multiple mul-
tipole technique are used to solve for the problem of TE and T'M scattering by
imperfectly conducting cylinders of arbitrary cross section. Each solution uses a
single set of fictitious current sources situated inside the cylinder to simulate its
scattered field. The impedance boundary condition is then imposed at selected
points on the surface of the cylinder. The result is a system of linear equation for
the unknown expansion coefficients which can be solved numerically. The case of
perfectly conducting cylinders may be handled as a special case of the imperfectly
conducting cylinders by setting the surface impedance to zero. Numerical results,
based on these two methods, are examined and found to be in good agreement with
the exact analytical solution for circular cylinders and with a MoM solution for el-
liptic and square cylinders. It is found that the solutions converge faster when the
sources are placed on a contour concentric with and similar to the cross section of
the cylinder. Furthermore, for the MFCM, it is found that changing r! any where

between 0.057 and 0.95r has insignificant effect on the convergence of the solution
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for circular cylinders. However, in the case of elliptic and square cylinders, the re-
sults depend more on the locations of sources. In addition, special consideration
should be given to the edges in the rectangular cylinder cases. The MFCM and the
GMMP simulations differ in the method by which they treat the singularity of the
fields at the edges. In the MFCM simulation, special distribution of the sources is
used to simulate the scattered fields; however, sources with higher truncation order
are used in the GMMP simulation of the scattered fields.

In chapter 3, the MFCM has been used to solve for the problem of multiple elec-
tromagnetic wave scattering from homogeneous dielectric and perfectly conducting
cylinders of arbitrary cross section excited by TM or T'E polarized electromagnetic
waves. In the case of two dielectric cylinders, the solution uses two sets of cur-
rent filaments for each cylinder. One set is placed inside each cylinder to simulate
the fields scattered by the cylinder, the other set is placed outside each cylinder
to simulate the fields transmitted inside the cylinder. The boundary conditions
are imposed at selected points at the surface of each cylinder. For the problem of
perfectly conducting and lossy dielectric cylinders the solution uses a single set of
current filaments for each cylinder. The filaments are situated inside each cylinder
to simulate its scattered fields. The impedance boundary condition is imposed at
selected points at the surface of each cylinder. Numerical results, based on this
method, are examined and found to be in good agreement with the MoM solutions.
Again, it is found that the solution converges faster when the sources are placed on a
contour concentric with and similar to the shape of the cross section. Furthermore,
it is found that for a circular cross section a choice of sources location inside each
cylinder any where between 0.7a and 0.95a, and for the outer sources any where
between 1.3a¢ and 1.75a has insignificant effects on the convergence of the solution.

However, in the case of elliptic cylinders, the location of the sources should be closer
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to the boundary. For the square cylinders, the special treatment given to the edges
of a single scatterer is applicable to two scatterers.

In chapter 4, the MFCM and the GMMP have been used to solve for the prob-
lem of electromagnetic radiation from axially-slotted circular cylinders excited by a
prescribed field on the slot or a line source located inside/outside the cylinder. Both
solutions use a single set of fictitious current sources situated inside the cylinder to
simulate its radiated field. By using a special sources distribution inside the cylin-
der and using the least-square error, an accurate MFCM solution is obtained and
compared with the exact analytical solution. For the GMMP, sources of one and
zero truncation order are used to simulate the radiated field. Using the least-square
error an accurate solution is obtained and compared with the analytical solution. In
addition, the GMMP is used to solve for the radiation from loaded-slotted circular
cylinders. The excitation source is asummed to be either an incident TM plane
wave or a line source located inside the cylinder. Three sets of sources are used to
simulate the fields of the cylinder. The boundary conditions are then imposed at se-
lected points on the boundary surface of the cylinder. The result is a system of linear
equation for the unknown expansion coefficients which can be solved numerically.

In general, for the numerical solutions presented in the thesis, there is no general
rule of thumb to the choice of the number of sources and matching points because of
the large number of parameters involved. However, the convergence can be examined
by increasing the number of sources and matching points. In addition, the solution’s
convergence to a limiting value shouldn’t be too sensitive to the change in the
location of the sources within reasonable range. In any case, if the results are
too sensitive to the change in the sources locations, the number of sources and
matching points should be increased. It is understandable that a large cylinder of

high permittivity will require more sources and matching points than a smaller one
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of lower permittivity in order to achieve the same level of accuracy.

An advantage of using the impedance boundary conditions on both methods
over the regular boundary conditions lies in the reduction of the number of sources
to one half since only the outer region needs to be simulated. Consequently, only
a matrix of (NI, N') elements is needed. The advantage of using the GMMP over
the MFCM lies in the simplicity of selecting the sources distributions to simulate
complex geometries or objects with sharp edges such as rectangular and slotted
cylinders. Furthermore, both methods reduce the computation time significantly in
comparison with the MoM solution with the point matching technique. For example,
for the elliptic cylinder presented in Fig.2.9, a matrix of order (23, 23) is used in the
MFCM with IBCs solution and the CPU time is 0.1 second on a Sun 4 workstation;
while, a matrix of (90,90) is used for the MoM solution and the CPU time is 0.5
second. Also, for obtaining the results shown in Fig. 3.4 a matrix of (100,100) is
used in the MFCM solution and the CPU computation time is 16.49s in the Sun 4
workstation while, for the MoM solution, the matrix size is (200,200) and the CPU
computation time is 29.28s.

Finally, the generalized multiple multipole technique and its special case the
multifilament current model can be applied to more complex geometries and they

are applicable to three-dimensional problems.

Research based on this thesis has been published in [45], [46], [47], [48] and [49].
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