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AtsST'R.ACT

A numerical method is presented for the problems of transverse electric (TE)

and transverse magnetic (TM) scattered fields from homogeneous dielectric, imper-

fectly and perfectly conducting cylinders of arbitrary cross section. Furthermore,

the solutions are presented for single and multiple scatterers and for radiation by

slotted cylinders. The numerical solution uses fictitious sources to simulate the field

scattered or radiated by the cylinders" The amplitudes of the fictitious sources are

determined for subject to the regular boundary conditions or impedance boundary

conditions according to the type of material composing the cylinders. Numerical

results are given and compared with available analytical and numerical solutions.
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Introduction

Various numerical methods have been developed to solve scattering and radia-

tion of electromagnetic waves by two-dimensional objects. Recently the generalized

multiple multipole technique and its special case the multifilament current model

have became the subject of extensive studies due to their simplicity and capability

of handling various types of geometries with very high accuracy.

Canonical geometries are usually considered for purely analytic solutions, allow-

ing the use of an orthogonal coordinate system. In such a system, the field equation is

solved by the separation of variables and the boundaries coincide coordinate surfaces

in order to allow a simple enforcement of the boundary conditions. Unfortunately,

the separation of variable is successful only for a few coordinate systems. Thus the

geometries of analytically solvable problems are quite restricted. In 1900, the Ger-

man physicist G. Mie [1] calculated guided electromagnetic waves on a transmission

line with two circular wires. Since the Laplacian operator is not separable in the

bipolar coordinate system which is well suited to formulate the boundary conditions,

he applied, in addition to the bipolar coordinate, two polar coordinate systems with

origins at the center of each circular wire. From the separation of variables in the

polar coordinates, he obtained a multipole expansion for each wire and by applying

the coordinate transformation he solved the equation resulted from applying the

boundary conditions. A strong mathematical basis for Mie's multipole expansion

had been worked out in 1948 by the Russian mathematician I. N. Vekua [2] and

some years later by the Japanese scholar K. Yasuura [3]. Several authors success-



fully used multipole expansion together with the simple point matching technique to

solve for electromagnetic problems [4],[5], [6] and [7]. However, some others encoun-

tered problems and considered this method to be analytically insufficient [8], [9]. A

recent study of the problem using the multipole expansion combined with the point

matching technique (PMT) by }lafner [3] showed that these were only numerical

problems. To overcome these problems, he introduced additional, analytically un-

necessary, multipoles. The name multiple multipole was proposed as well, and may

be considered as a combination of method of moments (MoM) and point matching

technique [10].

The unknowns for the conventional Mo]\{ approach are currents flowing on the

surface where the boundary conditions are enforced [11]. The currents are presumed

to be continuous so that the solution is represented by an integral equation, which

has a kernel with singularity when it is evaluated on the same surface where the

currents flow. The integral equation is transformed into a matrix equation by the

MoM, which is described by Harrington [11] as the unifying principle for all tech-

niques for reducing functionai equations to matrix equations. On the other hand,

the generalized multiple multipole technique uses the expansion coefficients of the

analytical solution of the field equations as unknowns. The specific choice is similar

to the choice of the basis function in MoM [10]. Spherical wave multipole func-

tions, or the equivalent two-dimensional cylindrical waves are one choice [12], [13]

and [14]. Another choice is infinitesimal electric dipoles, or the equivalent two-

dimensional current filaments [15] and [16], which is a special case of the multipoles.

In principle, any set of analytic solutions of Maxwell's equations could be used [17].

By choosing a discrete set of solutions, and matching the boundary conditions at a

discrete set of points, the resulting equation is automatically a matrix equation. By

choosing solutions corresponding to sources some distance a\May from the bound-



ary, the fields form a set of smooth functions on the boundary and in particular

singularities are totally avoided. The matrix equation may be over-determined and

solved to provide a least-squares fit to the boundary condition. Since each solution

in the set is known analytically, it is not necessary to integrate currents to deter-

mine fields during any stage of the solution-filling the matrix, checking the results,

or computing near and far fields or other quantities of interest.

1"1 f,iterature Review

L.L.L Single Scatterer

The problem of scattering from a single cylinder of arbitrary cross section has been

treated by several numerical methods. Richmond [18], [19] has treated the problem

of homogeneous and inhomogeneous dielectric cylinders in terms of a polarization

current induced in the dielectric. For a homogeneous dielectric cylinder the surface

integral equation formulation can also be applied [20] in which the problem is for-

mulated in terms of equivalent electric and magnetic surface currents. Mullin eú

aI [4] used the two-dimensional multipole with a single origin for all sources to solve

for geometries where the cross section is ellipse-like with no more than a 2:1 ratio

of major and minor axes. Leviatan eú aI. 127),1221 have dealt with problems for ho-

mogeneous dielectric cylinders of arbitrary smooth cross section using multifilament

current model. In their analysis, the fields of two sets of filamentary sources are

used to simulate equivalent situations, inside and outside the cylinder. Application

of the boundary conditions results in a matrix equation for the unknown filamentary

sources, which can be solved using standard numerical techniques.



L"-1..2 Imperfectly Conductíng Objects

For imperfectly conducting objects, when a plane electromagnetic wave impinges on

a scattering body, the simple relation between the electric and magnetic fi,elds of

the plane wave in free space is modified due to currents induced in the surface both

interior to and exterior to the body, such that the well known boundary condition

for the tangential electric fields at the surface of the scattered body are satisfied.

In many practical cases, such as absorbed and coated bodies, the field does not

penetrate deeply into the scattering body" In such cases, the scattering problem

simplifies considerably because it is then sufficient to solve for the fields exterior to

the body only subject to the impedance boundary condition [23]. The impedance

boundary condition states that the ratio between the tangential electric and mag-

netic fields at the surface of the scattered body equals to an impedance at the surface

of the body which depends on the electrical properties of the body. The usefulness

of the IBCs in determining the scattered fields was studied by Mitzner [24] using

an integral equation formulation. Generalization of IBCs integral equations ; i.e.,

the electric and magnetic field integral equations(EFlE and MFIE), was presented

by Jones [25] who has also demonstrated the uniqueness of the solution for its com-

bined form (CFIE). Numerical results, based on the integral-equation approach, are

presented in [23] and [26] for two- dimensional scattering by impedance cylinders

of arbitrary cross section. h [27] and [28] the integral equation approach is applied

to solve the EFIE, MFIE and CFIE of three-dimensional objects with IBCs.

L.L.3 Multiple Scatterers

The scattering by parallel conducting cylinders of arbitrary cross section was in-

vestigated numerically by Andreason [29]. The problem was formulated in terms

of an integrai equation for the induced surface current. The method of moments



\ryas then used to reduce the integral equation into a matrix form which was solved

numerically for the unknown surface currents. A formulation based on the single

multipole expansion of the scattered field due to two or three parallel conducting

cylinders is presented by Howarth and Pavlasek [30], [31]. They also evaluated the

diffracted field and the induced current on the surface of the cylinders and verified

their numerical results experimentally. Olaofe [32] has investigated the problem of

scattering by two circular cylinders using a boundary value method. llis solution

reduces the problem to the solution of a system of algebraic simultaneous linear equa-

tions for the multiple scattering amplitude coefficients in terms of the known single

particle scattering amplitude coefficients. Ragheb and Hamid [33] used Twersky's

iterative technique to solve for the scattering by N parallel cylinders. Elsherbeni

and Hamid [34] used the modified method of moments to solve for the problem of

scattering by two circular cylinders. Zifton and Karp [35] have investigated the

problem of diffraction of plane electromagnetic or acoustic waves by two arbitrary

shaped parallel cylinder.

L.L.4 SlottedCylinders

The radiation of electromagnetic wave from an infinite axially slotted cylinder has

received great attention in the literature. Hurd [36] has studied the directional prop-

erties and the radiation patterns of dielectric coated slotted cylinders. A uniform

field distribution in the slot was assumed and results for the special case of a narro',¡/

slot were given. Olte [37] studied the radiation by an elementary cylindrical antenna

through slotted enclosure. He reduced the problem to a Fredholm integral equation

of the first kind, and then solved for a narrow slot as a special case. Richmond

and Gilreath [38] studied a flush-mounted dielectric-loaded axial slot on circular

cylinder antenna. Their analysis was carried out using the boundary value method



and then Galerkin's method was introduced to complete the solution. Leviatan and

Haller [39] studied the electromagnetic scattering from slotted conducting circular

cylindrical shell using the multifilament current model.

I"2 Overview

In chapter 2, the multifilament current model (MFCM) and the generalized mul-

tiple multipole technique (GMMP) are used for solving transverse electric (TE)

and transverse magnetic (TM) scattering from lossy homogeneous dielectric and

perfectly conducting cylinders of arbitrary cross section. For both techniques, the

problem is formulated using only one set of fictitious sources placed inside the cylin-

der surface to simulate its scattered field. The fictitious sources are piaced at some

distances from the boundary surface, the field they generate actually constitute a

basis of smooth field functions capable of representing a smooth field at the bound-

ary surface. Applying the IBCs at selected points on the cylinder surface results in

a matrix equation which is solved for the unknown filamentary currents in the case

of MFCIVI and the expansion coefficients in the case of the GMMP. These unknowns

are then used to determine the scattered field and other parameters of interest. Re-

sults for various geometries are given and compared with available analytical and

numerical soiutions. Also a discussion on the location of sources and the treatment

of the singularities of the fields at sharp edges is included.

In chapter 3, the multifilament current model [21] and [22] is used to solve for

the problem of multiple scattering by parallel cylinders of arbitrary cross sections.

The problem is classified into two parts; transverse magnetic gM) and transverse

electric Q E) according to the type of excitation. For each excitation type, the

formulation is carried out for the problems of homogeneous dielect¡ic and imperfectly

conducting cylinders. For the case of homogeneous dielectric cylinders, the problem



is formulated using two sets of fictitious filamentary sources to simulate the fields of

each cylinder. For each cylinder, one set of sources is placed inside it to simulate its

scattered field. The other set of sources is placed outside each cylinder to simulate

the fields inside the respective cylinder. Application of the boundary conditions

yields a system of linear equations which can be solved for the unknown filamentary

currents.

For imperfectly conducting cylinders with impedance boundary conditions, only

one set of filamentary sources is needed to simulate the fields of each cylinder. This

set of sources is placed inside each cyiinder to simulate its scattered field. The case

of perfectly conducting cylinders can be handled as a special case of the imperfectly

conducting cylinders by setting the surface impedance to zero. Again application of

the lBCs results in a system of linear equations which can be solved for the unknown

filamentary currents. Once the strengths of the filamentary currents are computed,

the scattered field and other parameters of interest can be obtained. Results for

the normalized echo width for selected geometries of arbitrary cross section and of

different parameters are obtained and compared with the MoM solutions.

In chapter 4, the multifilament current model (MFCM) and the generalized

multiple multipole technique (GMMP) are used for solving transverse electric g E)

radiating from slotted perfectly conducting cylinder of arbitrary cross section. For

both techniques, the problem is formulated using one set of fictitious sources placed

inside the cylinder surface to simulate the radiated field. The fictitious sources are

placed at some distances from the boundary surface, the field they generate actually

constitutes a basis of smooth field functions capable of representing a smooth field at

the boundary surface. Applying the boundary conditions at selected points on the

cylinder surface and on the slot results in a matrix equation which is solved for the

unknown filamentary currents in the case of MFCM and the expansion coefficient



in the case of the GMMP. These unknowns are then used to determine the radiated

field and other parameters of interest. Results for slotted circular cylinders are given

and compared with analytical solutions.

Conclusion with discussion of the results are included in chapter 5.



CFTAPTER, 2

Scattering by Impenfectly Conducting Cylinders

2.L Introduction

In this chapter, the multifilament current model (MFCM) and the generalized

multiple multipole technique (GMMP) are used to solve for the problem of scat-

tering by imperfectly conducting cylinders of arbitrary cross section. The problem

is classified into two parts; transverse electric (7"E) and transverse magnetic gM)

according to the type of excitation. For each excitation type, the formulation is

carried out for the scattering problem using MFCM and GMMP.

The solution for the problem of homogeneous dielectric cylinders using the

MFCM simulation l2ll, l22l will be presented for the sake of completeness and

comparison. In this case, the problem is formulated using two sets of fictitious fila-

mentary sources to simulate the fields of the cylinder. One set of sources is placed

inside the cylinder at some distance from its surface to simulate its scattered field.

The other set of sources is placed outside the cylinder at some distance from its sur-

face to simulate the field transmitted inside the cylinder. The filamentary sources

in both sets carry of yet to be determined constant complex currents. They gen-

erate smooth freld functions capable of representing smooth fields on the boundary

surface. Applications of the boundary conditions yield a system of linear equations

which can be solved for the unknown filamentary currents.

For imperfectly conducting cylinders, the multifilament current model simula-

tion uses only one set of filamentary sources to simulate the field scattered by the



cylinder. This set of sources is placed inside the cylinder at some distance from its

surface to simulate its scattered field. The sources carry constant complex currents,

yet to be determined. They generate smooth field functions capable of representing

smooth fields on the boundary surface" Applications of the Impedance Boundary

Conditions result in a system of linear equations which can be soived for the unknown

filamentary currents. The GMMP simulation is similar to the MFCM simulation;

however, the GMMF simulation uses a set of multipole line sources to simulate the

field scattered by the cylinder. Again, this set of multipoles is situated inside the

cylinder to simulate its scattered frled. The unknowns of the multipoles expansion

coefrcients can be obtained by solving the system of linear equations resulting from

applying the IBCs at selected points on the surface of the cylinder. The case of

perfectly conducting cylinders can be handled as a special case of the imperfectly

conducting cylinders by setting the surface impedance to zero.

In the following sections, the formulation will be carried out in details for T E

case. The solution for the T M case will be discussed briefly in a later section.

Results for selected geometries of arbitrary cross section and of various parameters

are given and compared with available analytical solutions.

2.2 Froblem Specification fon TE aase.

The scattering geometry considered is shown in Fig. 2.1. An infinitely long lossy

dielectric cylinder of arbitrary cross section whose axis is taken to be parallel with the

z-axis of a rectangular coordinate system. The cylinder composed of homogeneous

dielectric materiai of permittivity e, permeability ¡l and conductivity ø" and the

region surrounding the cylinder is free space of permittivity eo and permeability ¡rr.

Let the cylinders be immersed in an incident transverse electric plane wave (TE)

characterized by

10



Region I
(Þo, eo )

Physical Surfuce C

Figure 2.1: Geometry of the problem

H" : û,rH2

=;E":ùrEr+tlsEi

where the time dependent ei't is understood. Here, tt,, ù0, ar,d tr,,

vectors in the r, y, and z directions, respectively, and

¡¡i, - .j k"(øcosg' lgsinþ' )ttz 
- 

v

fii : q osin6i 
"i 

k"(ccosói +asinó¿ )

Ei : -r¡ocosþ¿ sik"('"osói +ssinói\

(2.r)

(2.2)

denote the unit

(2.3)

(2.4)

(2.5)

where r7o and lco are, respectively, the intrinsic impedance and the wave number in

free space, and Si is the angle of incidence. The problem is a two-dimensional one

and can be worked out in some z :constant plane because H¿ is z-directed and

independent of z and the cylinder cross section is uniform along the z direction.

11



2.3 Multifilament Current lvlodel

For homogeneous dielectric cylinders, the objective is to calculate the fields scat-

tered by the cylinder, and the fields transmitted inside the cylinder. Therefore, we

set two simulated equivalent situations to the original ones in regions 1 and / shown

in Fig. 2"1" In the simulated equivalencefor region 1, shown in Fig. 2.2,the fields

scattered by the cylinder are simulated by the fields of a set of fictitious magnetic

cur¡ent filaments placed on a closed surface enclosed by C. These filaments are z

directed, infinite in extent and carry, yet undetermined, constant magnetic currents

K{,,i :7,2,3..N1, where -lú1 is the number of sources inside the cylinder. They are

treated as magnetic current sources radiating in free space" In Fig. 2.2, (8", H")

are the electromagnetic scattered fields due to all fictitious current filaments inside

the cylinder and (Eo,H') are the fields of the incident wave as given by (2.1) and

(2.2). The total fields (8" + Ei,H" + Ho) in the region I are approximations of

the fields in region / in the original situation. Similarly, in the simulated equiva-

ience for the interior regions /, shown in Fig. 2.3,, the transmitted fields inside the

cylinder are simulated by the fields of a set of fictitious magnetic cur¡ent filaments.

These filaments are placed on a closed surface enclosing C. Again, these filaments

are z directed, infinite in extent and carry, yet undetermined, constant currents

I{,i : !,2,3..NÍ, where I// is the number of filaments surrounding the cylinder.

The set is treated as magnetic current sources radiating in a space filled with ho-

mogeneous material identical to the material composing the cylinder. The fields

(Er,Hr) due to the fictitious current filaments I{ arc approximations of the field

in region / in the original situation. The relationship between the electromagnetic

fields (8" + Ei, H" + Hn) and (EÍ ,¡¡l) in the simulated equivalent situation shown

in Figs. 2.2 and 2.3, respectively, is dictated by the boundary conditions at the sur-
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face of the cylinder shown in Fig. 2.1. Specificall¡ the continuity of the tangential

electric and magnetic field components across C.

2.3.L Expression for E" and f/"

The scattered fields (E',H") at an observation point (r,A) in some z :constant

plane due to the current filaments Kl,i : I,2,3,....1/1 radiating in an unbounded

free space are given by

Jv¡

Ht : ùrYH:,
i=L

(2.6)

¡/-¡ Nf
E" : tt,,Ð P;, + trsÐ E;i (2.7)

i=L i=7

where H'r¿, Eå¿ and Efi; are, respectively, the scattered magnetic and electric field

components at an observation point (*,A) in the exterior region due to a magnetic

current filament -I(o/ situated at (rIr,yrl) inside C and they are given by

H)¿: -Yuy)Ur,pl)4qo

8",¿:k.14(Y - a{) nÍq¡r"p!)
+J pâ

nq k.IÇ(æ{ - ù¡¡rtçc"pl)Dsi : 
-- 4j p=

p!:æ

(2.8)

(2.s)

(2.10)

(2.11)

where äJ') uod HÍ") ur" the second kind Hankel functions of zero order and first

order , respectively and pf is the radial distance between the source point and the

observation point under consideration.
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2.8.2 Expression for Ef amd HÍ

The transmitted fietds (Er , Hr) at an observation point (*,A) in some z :constant

plane due to the current fiiaments K! ,i : 1,2,3,...I// radiating in an unbounded

homogeneous dielectric space are given by

lvt JVl

EÍ:û,Ð E{"+t'oDE{o (2.13)
à-1 i=l

where HIn,, EL and, E{.; are, respectively, the transmitted magnetic and electric field

components at an observation point (*,A) outside the cylinder due to a magnetic

current filament 1l¿l situate d at (r{ ,g/) outside C and are given by

Ni
IIr : tt"Ð n!,

i=\

rr{": -ffrf)Qrp{)

"+PulÐQrP{)

(2.12)

(2.14)

(2.15)E{*:

E{, : -hK!@ ; 
.{) 

nÍÐU,p{)'s aj pl
(2.16)

t{:tf {*_*{), +@_aÐ, e.rl)

Here 7 and k are, respectivel¡ the intrinsic impedance and the wave number in-

side the dielectric, and p{ is the radial distance between the source point and the

observation point under consideration.

15



2"3"3 Evaluation of the IJnknown Magnetic Currents I{{and I{

For a dielectric object, the tangential components of the electric and magnetic fields

must be continuous across the boundary. This leads to the operator equations on

C"

îx(E'-E\--î¿xE; (2.18)

îrx(FI"-Êr--ñxH¿ (2.re)

where ñ is a unit vector normal to the cylinder surface and pointing toward region /
as shown in Fig.2.1. Selecting I/c matching points on the surface of the cylinder and

enforcing the boundary conditions (2.18) and (2.19) at the matching points result

in a system of linear equations. These equations can be written in a matrix form

.A.K:V (2.20)

where

A_ (2.21)

K- (2.22)

(2.23)

Here, Alrrr,rr*Nr¡ is the generalized impedance matrix. The elements of Ar"1l,,",lrr¡

are the tangential eiectric field intensities due to the sources inside the cylinder.

Similarly, the elements of Añ1ruc,/vr) are the tangential electric field intensities due

to the filaments outside the cylinder. The elements of Arn1.¡v",Nr) are the magnetic

[ _4./" -AJ. I

l^'-A'l

rïl

v: 
l-;^]
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field intensities due to the filaments inside the cylinder. The elements of A/n1;rr",rur¡

are the magnetic field intensities due to the filaments outside the cylinder. Kllrr,lrr¡

is the generalized unknown current vector. Vlzl,rc¡ is the generalized voltage source

vector. The elements of Vi' and Vin are, respectively, the incident tangential electric

and magnetic field intensities evaluated at the matching points under consideration.

Having formulated the matrix equation (2.20), the unknorffn current vector K

can be solved for by inversion or elimination if the boundary conditions are enforced

at /úc : N/ : N{ selected. points on C. On the other hand, if the BCs are enforced

at Nc > ¡'¡/ or -ðy'd > ¡// selected points on C the least-square error solution to

(2.20) may be used [21]. This solution minimizes the standard norm of the vector

AK - V and is given by

K : (Ã*A)-tÃ.v (2.24)

where Ã ir th" transpose of A and the asterisk denotes complex conjugate.

2.4 Multifilament Current Model with trBCs

For imperfectly conducting cyiinders, the surface impedance boundary condi-

tions (IBCs) simplify the formulation by eliminating the need for the inclusion of

the interior field [a0]. Therefore, the multifilament current model simulation uses

only one set of filamentary sources to simulate the fields scattered by the cylinder.

This set of sources is placed inside the cylinder at some distance from its surface

to simulate its scattered fields. The sources carry of yet to be determined constant

complex currents. They generate smooth field functions capable of representing

smooth field on the boundary surface. Applications of the IBCs result in a system

of linear equations which can be solved for the unknown filamentary currents.
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Fig. 2.2 shows the simuiation of the field scattered by the cylinder, where the

scattered field is simulated by the field of a set of fictitious magnetic current filaments

placed on a closed surface enclosed by C. These filaments are z directed, infinite

in extent and carry, yet to be determined, constant currents K{,í : I,2,3,...Nr.

They are treated as magnetic current sources radiated in free space. In Fig. 2.2,

(8", H") are the electromagnetic scattered fields due to the fictitious current fila-

ments and (.Ði, Hi) are the fields of the incident r¡/ave as given by (2.1) and (2.2).

The total field (,E" * E¿, H" + ffi) in the surrounding region in Fig. 2.2 is an ap-

proximation of the field in the surrounding region in the original situation. Note

that the location of the filaments inside C has not been specified. As far as the

formulation is concerned, their locations can be arbitrary. The question of selecting

filament locations suitable for a numerical solution will be dealt with later on. The

expression for the incident and scattered fields are given by (2.1)-(2.11).

2,4.X- Expression fon the ItsCs

For objects with IBCs the total electric and magnetic fields are related by [2a]

with

E - (ñ,. E)ñ.: z.(p)(ñ x lr)

z"(p):z-(7-q(p))

q(p): 
å,t - i)6[k,(p) - k,(p)]

(2.25)

(2.26)

(2.27)

(2.28)

where ô is a unit vector normal to the cylinder surface and pointing toward region

1as shown in Fig.2.I, o. is the conductivity of the material, á is the skin depth,

jrtt
jae I o"
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Z- is the wave impedance within the object and k"(p) and k"(p) are the principle

curvatures of. C at p. For small signal penetration, or for objects with large radii

of curvature, Z.(p) can be assumed constant and equais to Z-. The impedance

boundary condition in (2.25) can be reduced to

&: -Z"(p)H" (2.2e)

where E¿ is the total tangential electric field in the exterior region and H" is the

total magnetic field in that region. In the case of a circular cylinder Et: Eó.

2.4.2 Evaluation of the unknown Magnetic Currents 1f

The unkno\/n magnetic cur¡ents may be determined by imposing the impedance

boundary conditions on the surface of the cylinder. Therefore, by enforcing the

IBCs at selected number of matching points on C,, one can evaluate the unknowns

/f . Selecting lúc matching points on the surface of the cylinder and enforcing the

boundary condition (2.29) at the j'0, j :1,2r...Nc, matching point we get

(Ei¡ + Ei) : -Z"(p¡)(H)¡ + H2¡) (2.30)

where Ei¡, El¡, H)¡ and H!¡ are Ei, Ei, Hj and Hl evaluated at the jth matching

point. Enforcing equation (2.30) at all the matching points results in a set of linear

equations which can be written in a matrix form in which the various matrices are

interpreted in terms of generalized network parameters. The result is

AK : V

19
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where, for i : 1,2,3...Nl and j : I,2,3...¡,/c,

Aii + z"(p')Aii

Aii+ Z"(pr)Ai\

A:rZ + Z"(pt)Aî\

A:21+ Z"(pr)Ai,

Ai¡ + Z"(p1)Atj,¡,

Ai¡ + z"(p2)Aiiy,
A-

with

(2.32)

K:

Tfi

I{z

Kw,

(2.33)

V-

(-Ei, * Z"(p1)Hir)

-(Ei, + Z"(pz)H|,)

(-Ei*. * Z"(p¡¡")H:*")

(2.34)

A2ç -"3x

Aji : -hry,rk.p,¡o)

n'ro:fu

(2.35)

(2.36)

(2.37)

Here, A1lr",rt¡ is the generalized impedance matrix. K1rur; is the generalized un-

known current vectot, and V1¡r"¡ is the generalized voltage source vector. In (2.32),

A!¡X and All are, respectively the tangential electric field and magnetic field in-

tensities due to a filament K{ of. unit magnetic current evaluate d aI pj¿ on C .
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In (2.34), Ei,, H'", are, respectively, the incident tangential electric field intensity

and the incident magnetic field intensity at observation point at p¡ on C ar'd pJo is

the radial distance between the ith source and the j¿å matching point. t,¡ and tr¡

are, respectively, the z and y components of the tangential unit vector evaluated at

the jth matching point.

Having formulated the matrix equation (2.31), the unknolvn current vector K

can be solved for by inversion or elimination if the IBCs are enforced at l/c : .|y'I

selected points on C. On the other hand, if the IBCs are enforced at Nc ¡ ¡¿r

selected points on C the least-square error solution to (2.31) may be used 1221.

This solution minimizes the standard norm of the vector AK -V as given in (2.2a)

2.5 Generalized Multiple Multipole with trBCs

The generalized multiple multipole technique (GMMP) represents the scattered

fields by multiple expansions with different origins of out-ward cylindrical waves.

The multiplicity of the origins for the out-ward rü¡aves can be interpreted as equiva-

lent source locations within the boundary of the cylinder. Then, the total scattered

field is represented as a sum over the contribution from each origin. Furthermore,

the source distribution at each origin generates a field represented as a sum over

cylindrical waves, each of which is generated by a specifi.c source component at that

origin. The sources are multipoles which includes monopoles, dipoles and higher or-

der multipole line sources. As a result, we have a distribution of equivalent sources

within the boundary which create a field on the boundary that leads to the satisfac-

tion of the boundary conditions. Applying the impedance boundary conditions in

the least square sense results in a system of linear equations which can be solved for

the unkno\¡/n expansion coefficients. The GMMP simulation for the field scattered

21



by the cylinder is similar to the multifilament current modei simulation. However,

the MFCM uses a set of filamentary sources, which is a monopole line sources, to

simulate the scattered field. The procedure of the solution for the unknown expan-

sion coefficients is exactly the same as the MFCM procedure. The simulation of the

scattered filed is shown in Fig" 2.2 wherc the filamentary sources are replaced by

multipoles line sources. The GMMP formulation is given in the following section.

2.5.L Expression for -E' and f/"

The scattered fields (8",H") at an observation point (*,A) in some z :constant

plane due to the multipoles source I{{,i : 7,2,3,.../ú/ radiating in an unbounded

free space are given bV [3]

(2.38)

¡/¡ Nr
E" : tr,Y n;o + tryÐ E;i (2.3e)

i=7. i=L

where H)0, Eio and El; are, respectively the scattered magnetic and electric field

components at an observation point (",y) in the exterior region due to a muitipole

line source .IÇ situate d at (xI¿,yf) inside C and are given by

NI lr,I
Hì,kl) : t pi^HY) (k"ej) cos(nþj¿) + I en^nf) &.el) sin(nóiù e.40)

n=O n=\

¡r¡r

rr' : ù"Ð Í{:o
i=I

Eåonþtoo) - i(Y¡ --al)
T"pjt

l-N"¡

lÐ po" u'lÐ (n 
" 

p'¡ ) cos(n þ ¡ )
fn=0

- 
Ë, 

Q o,n !2) çtc. p;¡ "i'1r60¡f (2.41)



Eå,¡(pl):
j(r¡ - rt)
--n"4:

(2.42)

where HÊ¿¡,Ei¿¡ and El;¡ are, respectively, the scattered magnetic and electricfield

components at an observation point (*¡,A¡) in the exterior region due to the ith

source 1f situated at (xl¿,yf) inside C, Nf is the truncation number of. the i.th

source, P¿n arrd Q¿n are unknown expansion coefficients and

lNl
lÐ p," u'l') (lt 

" 
p'¡ ) cos(n þ ¡ ;)

ln=0

+ Q o^ H'l') (k. pl u) sin ( z/¿ ) ]

o'ro:M

þ¡¿: arcta"((y¡ - yÐl@j - *:))

2.5.2 Evaluation of the lJnknowns P¿n and Q¿n

(2.43)

(2.44)

In order to compute the unknown parameters, P¿n andQ¿*in the GMMP expansions,

only the boundary conditions have to be fulfilled because the field equations are

completely satisfied by the GMMP expansions. Selecting lüc matching points and

enforcing the boundary conditions in (2.29) at all the matching points result in a

set of linear equations which can be written in a matrix form as

A.K:V (2.45)

where

Arr

.Azr

Err

Ezr

Er¡¡t

Bz¡¡t

Elrz

FJzz

Arru¡

Az¡¡¡

Atz

Azz

A¡¡tr Ã¡rr"z A;yc;yr Bivtr Bw"z B¡¡c.¡yr

A-
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V_

K_

F1

P2

F¡¡t

Qt

Q,

Q¡vt

(2.47)

(2.48)

(2.4e)

with

ATo:

ETo:

-(Eí, + z"(p1)H2r)

-(Ei, + Z"(p2)Hir)

:

-(Eí*. * Z"(p¡ç.)H2*.)

(Alio + z"(p¡)Allo)

(Ali, + z.(p¡)Ajír)

(AliN, -t z"(p¡)Aji*,)

(B;il + z.(p¡)Bíi)

@ì:, + z.(P¡)Bìh)

(Bji¡u, + Z"(p¡)Bìíw,)

24
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A]'¿":

B;:,:

Ajl* : nP Qt. p'¡ r) co s (n þ ¡;)

B ìí* : n l,') (lr. pt¡ ) sin(n S ¡ ;)

(2.5r)

(2.52)

(2.53)

(2.54)

(2.55)Pi:

Po

P1

Pw,

Q¿:

Q,

Q,

Q*,

Having chosen the number of multipoles and the corresponding truncation order,

the unkno,rvn expansion coeffi.cients wouldbe M : DXQN{* 1). Therefore, the

number of matching points should be I/c ) M , A is a matrix of order (Nc x M),

K is a column vector of order M and V is a column vector of order 1/c. Then by

formulating the matrix equation in (2.45), the unknowns expansion coefficients can

be solved for using the least-square error method given by (2.2a)
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2.6 Far-ScatteredField

In the far-field region, the scattering pattern of the cylinder can be obtained by

employing the asymptotic expansion for the Hankel function and taking[18]

, lim pI¿ : p - æI¿cos$ - ylsin$
Kp;+@

(2.56)

where p and S arc the polar coordinates of the distant observation point and p¿ is

the distance from the ith source inside the cyiinder to the distant observation point.

Therefore, the far-scattered field is given by

(2.57)

The scattering cross section per unit iength, i, . e ., lhe echo width, ø is defi.ned by

rïs lco Tu ¡v¡r

H" : - *l;Ë""-ik"o \, X! etn"fcl'cossts! sin$)

o(Ó):)Ær*ol-#tr

From (2.57) and (2.5S), the echo width is given by

o (ó) : - ffili- * t "' r "(' ; c' 
" 

ó +u ; "t*ø)l

2.7 Solution for TM case

(2.58)

(2.5e)

Let the cylinder, shown in Fig.2.1, be immersed in an incident transverse mag-

netic wave (TM). The solution proceeds, similar to the ?E problem, line for line.

The sources are now electric current filaments or multipole line sources /¿. Using

the Duality theorem [41], the field equations can be obtained by systematically in-

terchanging the symbols (H,,8ør€,þ,K) by (8,,-Hó,þ,É,1) in the formulations

presented for the (TE) case"
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2.8 Selected Numerical Results and Ðiscussion

Versatile computer programs have been developed using the formulations of the

proceeding sections for the imperfectly conducting and dielectric cylinders. Some

representative computations obtained with these programs are given in this section.

The validity of the formulations can be verified in various 'ü¡ays. One important

method is to compare the results obtained for the specific case of imperfectly con-

ducting and dielectric circular cylinders with exact results, which can be obtained by

an analytical method. Exact formulas for the scattering by a homogeneous dielectric

circular cylinder is given in [a1]. Also, an analytical solution for a circular cylinder

with constant surface impedance is given in [23]. The solution for other geometries,

such as elliptic and rectangular cylinders, can be compared against results obtained

using method of moments solutions [18] and [19].

2.8.1 Results for Circular and Elliptic Cylinders

Figures 2.4 and 2.5 compare the results for an imperfectly conducting circular cylin-

der of lcoa : 3.33, where ø is the radius of the cylinder, for T E and T M problems

respectively. The cylinder of permittivity e, - 1- j11.3 is excited by an incident

plane wave with Ó¿ : I80" " These figures compare the scattered echo width o us-

ing the MFCM with IBCs for constant and curvature dependent surface impedance

Z"(p) with the exact analytical solution [41] . For the present formulation, a set

of ly' : 18 filament sources is placed on a circular surface of radius rr : 0.5¿ and

the number of the matching points .ðú" : 1ú is used. The sources and the match-

ing points are evenly spaced on their respective surfaces. The agreement in Figs.

2.4 and 2.5 between results based on the exact analytic solution and the numerical

method for both T E and TM problems is excellent, indicating the high accuracy of
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the present numerical method.

Figures 2.6 and 2.7 compare the forward scattering and backscattering echo

widths, respectively, versus the normalized penetration depth ó/ø using MFCM

with IBCs, with both constant and curvature dependent surface impedance Z"(p),

with the exact analytical solution [41]. The results are for an imperfectly conducting

circular cylinder with o" : 0.55lm immersed in a transverse electric T E wave with

di : 180'. It is seen that the error in the scattered field obtained using the MFCM-

IBCs with constant surface impedance Z" increases by increasing the normalized

penetration depth 6f a. However, the curvature dependent Z.(p) solution gives very

accurate results for all considered values of 6la.

Figure 2.8 shows the normalized total magnetic freld (E'" + EÐ evaluated at the

surface of a circular cylinder of lcoa: zr and €r : I - jLz. The figure shows good

agreement between the exact analytical solution and the MFCM with IBC.

Figure. 2.9 compares the results for the scattering echo width of an imperfectly

conducting elliptic cylinder using the MFCM-IBCs and the method of moments

(MoM) [19]. The result is for an elliptic cylinder with koa : 3, alb : 2, e, :

1 - j9.63, anå 6 f a - 8.7%, and excited by an incident plane wave of di : 0o. The

result shows good agreement between the (MoM) solution and the present method

using a constant surface impedance Z- and better agreement is obtained when the

curvature dependent Z"(p) is used. The number of sources used is ly' : 23 for this

method, and 90 for the MoM solution.

Figures 2.70,2.11 and 2.1.2 compare the scattered field from a circular cylinder

using analytical solution based on IBCs [40] and MFCM for TE and TM problems.

The results are for circular cylinders with ,boø : zr and constant surface impedance

Z- of. j300, -j300 and (300 + j300X-¿, respectively. The cylinders are immersed in

an incident plane wave with ói : 780o " The plots show that the resuits obtained
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using MFCM with IBCs, for different types of coating materials, are in excellent

agreement with the analytical solution"

Finally, to study the effect of resistive coatings on the scattered fields Figs. 2.13

atd 2.74 are included. These figures compare the scattered field from a circular

cylinder using analytical solution based on IBCs [40] and MFCM for TE and TM

problems, respectively. The results are for circular cylinders with koa: n and con-

stant real surface impedance Z- of 300, 335 and375Q, respectivelg and ö¿:180o.

Here, we notice the reduction in the amplitude of the backscattering corresponding

to þ:180' by increasing the surface impedance.
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Figure 2.4: T E plot of the echo width versus / for the case of a circular cylinder of

koa : 3.33 e, : l. - jIL.3 al¡.d 6fa : 72%
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Figure 2.5: T M plot of the echo width versus / for the case of a circular cylinder

of koø: 3.33 €r : I. - j77.3 and 6 f a : 12%
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Figure 2.6: T E plot of the forward scattering versus ó for the case of a circular

cylinder of a : Im and o": 0.5(S lm)
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Figure 2.7: TE plot of the backscattering versus 6f a for the case of a circular

cylinder of. a : Im and o.: 0.5(S f rn)
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Figure 2.11: Echo width versus / for the case of a circular cylinder of lcoø:7r and

z- - -j300f¿

Ëro

100

37



14

12

10

I

6

4

2

0

lBC. Ana.lytic
--û-. lBC. Muhifilarnent

160 18040 60 80 I00
00

Figure 2.72: Echo ü'idth versus / for the case of a circular cylinder of. lcoa: ?r and

z--300+j3000

38



lBC. analvlic
--&-' tBc. Muftlfitament

00

Figure 2.13: T E plots of the echo width versus / for the case of circular cylind.ers
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Figure 2.74: TM plots of the echo width versus / for the case of circular cylinders

of koa: n and Z- - 300, 335 and 377f-)
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2.8.2 Numerical Consideratïon for Circular and Elliptic Cylinders

The special choice of equal number of sources ffI and matching points I/c which was

used to obtain the preceding results was examined in other cases involving circular

and elliptic cylinders of other radii and permittivities. It was found that the rate

of convergence may be affected by the choice of the locations and the number of

sources and matching points. According to studies done by Leviatan et.al.l2ll,122)

and the preceding results, the solution converges faster to a limiting value when

the sources are placed on contours concentric with the cross section of the cylinder

and of a shape similar to it. This implies that, for the circular cross section, the

sources are placed on a circular surface of radius rr. In addition, it was found that

the selection of rr between 0.05¿ and 0.95ø have a comparable rate of convergence.

Fig. 2.15 shows the convergence of the solution to the exact analytical solution for

the case of a circular cylinder of. koa: zr and €, : 2.6 - j5. The sources are placed

at rI :0.95ø. The number of sources was increased from ly'I : 10 to NI :35. The

number of matching points was taken to be equal to the number of sources in each

case. Furthermore, the option of imposing the boundary condition in the least square

sense is also considered. It was found although in some cases the same accuracy can

be obtained with fewer sources, thereby gaining the advantage of solving smaller

matrices, in general this option is redundant for the case of circular cylinders. In

addition, the solution should be tested by increasing the number of sources and

matching points. The solution's convergence to a limiting value shouldn't be too

sensitive to the change in the location of the sources within the range mentioned

above. In any case, if the results are too sensitive to the change in the sources

locations, the number of sources and matching points should be increased.
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2.8.3 Results for Square Cylinders

Figure. 2.16 compares the results for a perfectly conducting square cylinder obtained

using the multifilament current model, the generalized multiple multipoles technique

and the moment of method solutions. The cylinder of. Icl - 2n, where / is the

side length, and excited by an incident transverse magnetic T M plane wave with

öi : -45". For the MFCM solution, a technique developed by Eisler faz] is used

to select the locations of the filamentary sources. The scattered field has been

simulated by three sets of sources as shown in Fig. 2.18: (i) 48 filaments evenly

spaced on a concentric square surface situated at a distance d, :0.1À from the

boundary C; (ii) 16 filaments at a distance 0.01À from the edges, 2 filaments on

each side of each edge; and (iä) 24 filaments gradually connecting the former two

sets. The number of matching point Nc :1/r is used and distributed evenly on the

boundary surface. For the GMMP solution, the scattered field has been simulated

bytwosetsofmultipoleslinesourcesasshowninFig.2.lg: (i)36multipolesoforder

zero evenly spaced on a concentric square surface situated at a distance d : 0.11

from the boundary C; (ii) a set of 4 multipoles of order one, one multipole situated

at each corner at a distance 0.01À from the boundary. In this case, the number of

unknown expansion coefficients is M : Dy-rQN{ * 1) : 43. The number of the

matching point Nc : 3M is used. As shown in Fig 2.16, the agreement between

results based on the MFCM solution, the GMMP and the MoM is excellent.

Figure. 2.17 shows the results for a perfectly and imperfectly conducting square

cylinder obtained using the generalized multiple multipoles technique. The cylinders

of kl : 2r, where / is the side length, and €,. : 10.0 - j3.0 for the imperfectly

conducting. The cylinders are excited by an incident transverse magnetic T M plane

wave with ó¿ : _0o. The selection of the sources and matching points are the same

ones used to obtain Fig. 2.16.
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2.8.4 Numerical Considenatíon for Square Cylinders

As for the cylinders of smooth cross section, the rate of convergence may be affected

by the choice of the sources locations, number of unknowns and number of matching

points. Since, for the rectangular cylinders , the fields near the edges are inherently

singular, the errors are expected to be higher than the rest of the surface. Therefore

special consideration should be given to the edges. The MFCM and the GMMP

simulations differ in the method by which they treat the singularity of the fields in

the edges. Fig. 2.18 illustrates the distribution of the filamentary sources inside a

squa e cylinder. This choice of locations reduces the errors in the boundary condi-

tions and gives accurate results for the square cylinders. Furthermore, the accuracy

of the solution can be improved by increasing the number of sources and the number

of matching points.

Figure 2.19 illustrates the distribution of the multipoles line sources inside a

square cylinder. In this configuration, all distance of multipoles along the straight

line have constant values. Since the field near the edges is rapidly changing, one

multipole is placed very close to the boundary in each corn.er of the rectangular

cross section. According to Hafner [3], the fields of higher order multipoles are

much more concentrated around its origin than the fields of lower order multipoles.

Therefore, the multipoles close to the edges must be of higher order to allow the

domain of the greatest influence of the multipole to cover that part of the boundary

around the edges. The domain of the greatest influence of the multipoles is a circle

around its origin with radius ,R which is the minimum distance d from the boundary

multiplied by a factor of {2. Fig. 2.20 shows the effect of changing the locations

of the first order multipoles on the convergence of the solution. It is seen that the

closer the higher order multipoles to the boundary the more accurate solution is

obtained. No other multipoles should be inside the domain of great influence of any
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multipoles in orde¡ to avoid the dependency between the multipoles, hence avoiding

an ill conditioned matrix. The numerical accuracy can be improved by controlling

the number of the multipoles, the corresponding truncation order and the number of

matching points. It was found that the over-determined system of linear equations

gives a more accurate result and the solution converges faster than the case of a

well determined system. Good results may be obtained when three times as many

equations as unknowns are used" Again, it is evident and understandable that a large

cylinder of high permittivity will require more sources and matching points than a

smaller one of lower permittivity in order to achieve the same level of accuracy.

In addition, the solution should be tested by increasing the number of sources and

matching points. The convergence of the solution to a limiting value shouldn't be

too sensitiveto the location ofthe sources. In any case, ifthe results are too sensitive

to the change in the location of sources, the number of sources and matching points

should be increased.
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CETAFT'ER, 3

Multiple Scatteníng by Farallel Cylinders

S.L Introduction

In this chapter, the multifilament current model [2I], l22l is used to solve the

problem of multiple scattering by parallel cylinders of arbitrary cross sections. The

problem is classified into two parts; transverse magnetic gM) and transverse elec-

fric (T E) according to the type of excitation. For each excitation type, the for-

mulation is carried out for the problems of homogeneous dielectric and imperfectly

conducting cylinders. For the case of homogeneous dielectric cyiinders, the problem

is formulated using two sets of fictitious filamentary sources to simulate the fields of

each cylinder. For each cylinder, one set of sources is placed inside it to simulate its

scattered fields. The other set of sources is placed outside each cylinder to simulate

the fields inside the respective cylinder. Application of the boundary conditions

yields a system of linear equations which can be solved for the unknown filamentary

currents .

For imperfectly conducting cylinders, as stated in chapter 2, the surface

impedance boundary conditions (IBC) simplify the formulation by eliminating the

need for the inclusion of the interior field [a0]. Therefore, only one set of filamen-

tary sources is needed to simulate the fields of each cylinder. This set of sources is

placed inside each cylinder to simulate its scattered field. Again, application of the

IBC results in a system of linear equations which can be solved for the unknown

filamentary currents. The case of perfectly conducting cylinders can be handled as a
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special case of the imperfectly conducting cyiinders by setting the surface impedance

to zero. Once the strengths of the filamentary currents are computed, the scattered

field and other parameters of interest can be obtained. In the following sections,

the formulation will be carried out in details for homogeneous dielectric and imper-

fectly conducting cylinders, for the T M case" The solution for the T E case will

be discussed in a later section" R.esults for the normalized echo width for selected

geometries of arbitrary cross sections and of various parameters are presented.

Region O

(vo" e o)

Region I ¡

Physical Surface

Figure 3.1: Geometry of the problem

,e¡,6 ¡)
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3.2 Description of the Problern for TM case

The scattering geometry considered is shown in Fig. 3.1. Consider M parallel

cylinders of arbitrary cross sections whose axes are taken to be parallel to the z- axis

of a rectangular coordinate system. The /¿à cylinder is composed of a homogeneous

dielectric material of permittivity e¿, permeability ltt, and conductivity d¿, where

l:7,2...M. The region surrounding the cylinders is free space of permittivity eo

and permeability ¡-r,.

Let the cylinders be immersed in an incident transverse magnetic plane wave

(TM) characterized by

E : ùrE2

Hi:t.,Hi+trsVi

where the time dependent ei't is understood. Here, ùr, ùo, artd tt,,

vectors in the x, y, and z directions, respectively, and

p,i 
- .jko(øcos$¿¡ysin$')u"-v

(3.1)

(3.2)

denote the unit

(3.3)

.1
Hi : - i- sinó¿ eiko(ccosói +ssi'nó¿)

4o

Hi -- L r", ó' 
"i 

oo(cco sSi ¡s sinþi )

(3.4)

(3.5)

where ?o and ko ate, respectiveiy, the intrinsic impedance and the wave number in

free space, and þ¿ is the angle of incidence. The problem is a two-dimensional one

and can be worked out in some z :constant plane because Ei ís z_directed and

independent of. z and the cylinders cross section is uniform along the z direction.
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3.3 ElomogeneousÐielectricCylinders

For homogeneous dielectric cylinders, the objective is to calculate the fields

scattered by the cylinders, and the fields transmitted inside the cylinders" Therefore,

we set two simulated equivalent situation to the original ones in regions O and It

shown in Fig. 3.1. In the simulated equivalence for region O, shown in Fig. 3.2,

the field scattered by the /¿å cylinder is simulated by the field of a set of fictitious

eiectric current filaments placed on a closed surface enclosed by Ct, where C¡ is the

surface of the /¿h cylinder and I : I,2,3...M. These filaments are z directed, infinite

(E'+ E" , H +tÌ )

a-\e*5
f * +\

[* t
t*t
g .t"r+ *o

\ x/
\* 7
\' *tns{¿ u2

Filamentary Sources F,.
u

Mathematical Surface

Figure 3.2: Simulated equivalence situation for region O

in extent and carry, yet undetermined, constant currents F¡¿ri : Ir2r3..N{, where

/{,F is the number of sources inside the lth cylinder. They are treated as electric

current sources radiating in free space. In Fig. 3.2, (8",-F1") are the electromagnetic

U nbounde d H omo g e ne ous Sp ac e

(LLo, e o)



scattered fields due to all fictitious current filaments inside all the cylinders and

(En, Ho) are the fields of the incident wave as given by (3.1)- (3.5)" The total fields

(E' + Eã , H' + Hu) in the region O are approximations of the fields in region (O) in

the original situation. Similarly, in the simulated equivalence for the interior regions

d, shown in Fig. 3.3, the transmitted fields inside each cylinder are simulated by

the fields of. M sets of fictitious electric current filaments. The /úå set of filament

is placed on a closed surface enclosing Q" Again, these filaments are z directed,

.$,"'

ú
0t

a
0

,' 
u')

*

* 
Filamentary Currents f,

c, ./
o1'er ol )

*/
,r'

Y*stÉ
Mathematical Surface C

Figure 3.3: Simulated equivalence situation for region 1¡

infinite in extent and carry, yet undetermined, constant currents Pt¿ri: \12,3..N|,

where /úf is the number of filaments surrounding Lhe lth cylinder. The /¿r set

is treated as electric current sources radiating in a space fiiled with homogeneous



material identical to the material composing the lth cylinder. The fields @f , Hl)

due to the fictitious current filaments P¡¡ are approximations of the fields in region

1¿ in the original situation. The relationship between the electromagnetic fields

(8" + Ei, H" + Ho) and (El ,äf ) in the simulated equivalent situations shown in

Figs. 3.2 and 3.3, respectively, is dictated by the boundary conditions at the surface

of the /¿å cylinder shown in Fig. 3.1. Specifically, the continuity of the tangential

electric and magnetic field components across Q.

3.3.1 Expressions for E' and H'

The scattered fi.elds (E',H') at an observation point (*,y) in some z :constant

plane due to the current filaments Furi :1.r2r3, ..¡f¡F and / : 7,2,3,...M radiating

in an unbounded free space are given by

m ¡vf

E" : ù"ÐÐÆå,
I=L i=l-

(3.6)

M NtF uw{
H": û"ÐÐa;,, +ùoÐDH¡,,, (3.7)

where E),,, Hå,, and flj,, are, respectivel¡ the scattered electric and magnetic field

components at an observation point (*,y) in region O due to the itä electric current

filament F¡¿ of the lth cylinder, situated at (n{,y,f) inside Ct and are given by

l-1 i=l I-l i=L

Í')Ur"pl)

Ds lconoFuE),,: -'""''î- 
* H:')Ut.pl)

rrs li"Fu(y - ai)nlÐ&"p{)flrrr: ---AlF

trs _ k.Fu(æ - æl) ufrlr, : --- 4JE-

(3.8)

(3.e)

Ðb

(3.10)



Here HQ) and ä{2) are the second kind }Iankel functions

order, respectively, and

pf:ffi (3.11)

is the radial distance between the i,th source point located inside the lth cylinder and

the observation point under consideration.

3.3.2 Expressions for EP and, HP

The electromagnetic fields @f , Hl) at an observation point (*, a) in region 1¿ due to

the current filaments Pt¿,i : I,z,ïr...¡frP radiating in an unbounded homogeneous

dielectric space is given by

MNT
EP : û,,ÐÐn1,,

I='J. i=L

MNT MN{
HP : a"ÐÐ nl,, + ùoÐÐ uT,, (3.13)

I-l i=\ I-1 i=\

of zero order and first

(3.12)

(3.14)

(3.15)

(3.16)

where E!,,, Hl,, and Hfi are) respectivelg the electric and magnetic field components

at an observation point (r,A) in region 1¡ due to an electric current filament P¿¿

situated at (æf,yf) outside C¡ and are given by

r;tp lctntPuEí:- "a"U[')(t*,pl)

rtp ktP¿¿(a - aÐnlÐ@,pl)frrrr: 
-4iF

nP - lc¡P¡¿(æ - *ÐrÍr, 
&, pf),,au _ ___4j 

p=

Here qr and k¡ are, respectively, the intrinsic impedance and the wave number of the

/úä cylinder, and

pl:W
,ff

(3.1 7)



is the radial distance between the ith source point located outside the lth cylinder

and the observation point under consideration.

3.3.S Evaluation of the {Jnknown Cr¡rrents F¡¿ and P¡¿

For a dielectric object, the tangential components of the electric and magnetic fields

must be continuous across the boundary" This leads to the operator equations on

C¡rl :7,2r3,....M.

ñ.x(8" - E'): -ñxE; (3.18)

ñx(H" - Fl'): -ñ.xH¿ (3.1e)

where â is a unit vector normal to the cylinder su¡face and pointing toward region O

as shown in Fig. 3.1. Selecting ¡/¿c matching points on the surface of each cylinder

and enforcing the boundary condition (3.18) and (3.19) at the matching points result

in a system of linear equations. These equations can be written in a matrix form

,A,I : V (3.20)

where

Aîi

Aïi

A'ri

A;?

Aî;

^iB
A:,2

^it

Aïi¿ -al; -xT;
Aïtu -nfi -alt

^'r:tø -NTt -xI;
A;iú -Alri -xlt

tP"
-^lM

-xlt*
-nï;,o

-Á.lri,A_ (3.21)

A!¡it, A",&,

A"frt A"*,

A"tftru -A!ni, _L!ni,

A"rt* -Ã!ni, -alnÎ,

_Alnå*

-A'ni*
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F'r¿

F"¿
-ví
-vf
-vi
-vl,

-v"M

-vfu

(3.22)ï- V_

P ¡rr;

Here, A(Mr,tutr) is the generalized impedance matrix, where M1 - 2ÐYr/ú¿c and

M2 - D!!r@f + ¡/¡P). ,A,i; is an (tr/¡cxl/oF) matrix whose elements are the electric

field intensify Ei due to the ith frlament of unit current inside the qth,, q : 7,2...M ,

cylinder evaluated at the jth rnatching point on Ct. Similarly, Afo' is an (.n/¿cx,n/fl)

matrix whose elements are the electric field intensity E!0, due to the ith filament of

unit current outside the qth cylinder evaluated at the júä matching point on C¡. Ãij

is an (,n/¿c"trfl) matrix whose elements are the tangential magnetic field intensity

H) ùrc to the irÀ filament of unit current inside the qth cylinder evaluated at

the jth matching point ot Ct. Afon is an (,n/¡cx,núfl) matrix whose elements are the

tangential magnetic field intensity It!¡, due to tbe ith filament of unit current outside

the qth cylinder evaluated at the ith matching point on ct. rt¡Ërtr,.*7ye¡, is the

generalized unknown current vector. VtrÐIrN,r) ir the generalized voltage source

vector. VÍfr,"l and Vfl1ru.,are column vectors whose elements are, respectively, the

incident electric field and the incident tangential magnetic field intensities evaluated

at the matching point under consideration.

Having formulated the matrix equation (3.20), the unknown current vector f can

be solved for by inversion or elimination if the boundary conditions are enforced at

Nf : lú,t : /ú¡P selected points on C¡. On the othe¡ hand, if the BCs are enforced
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at Nf > ¡f¿F or /ü¡P selected points on C¡ the least-square er¡or solution to (3.20)

may be used [21]. This solution minimizes the standard norm of the vector AI- V

and is known to be

r : (Ã"A)-'Ã"v (3.23)

where Ã, ir th" transpose of A, and the asterisk denotes complex conjugate.

3.4 Imperfectly Conducting Cylinders

Consider M lossy dielectric cylinders of arbitrary cross section whose axes are

taken to be parallel with the z-axis of a rectangular coordinate system, see Fig. 3.1.

The material of each imperfectly conducting cylinder can be represented by a sur-

face impedance Z"(p). For imperfectly conducting cylinders, the surface impedance

boundary conditions (IBC) eliminate the need for the inclusion of the interior

field [a0]. Therefore, only one set of filamentary sources is needed to simulate the

fields of each cylinder. In the simulated equivalence for region O, shown in Fig. 3.2,

the fields scattered by the /¿å cylinder are simulated by the fields of a set of fictitious

electric current filaments placed on a closed surface enclosed in C¡, where Q is the

surface of the /úå cylinder and I : 7,,2,3...M " These filaments are z directed, infinite

in extent and carry, yet undetermined, constant currents Fu,,i :7r2r3..N{, where

ffF is the number of sources inside the lth cylinder. They are treated as electric

current sources radiating in free space. In Fig. 3.2, (8",I1") are the electromagnetic

scattered fieids due to all fictitious current filaments inside all the cylinders and

(E',Ho) arethefieldsof theincidentwaveasgivenby(3.1)-(3.5). Thetotalfields

(8" + Ei, H" + Hi) in the region O are approximations of the field in region O in the

original situation. Selecting i/¡c matching points on the surface of each cylinder and

enforcing ihe IBC at ali the matching points result in a system of linear equations



which can be solved for the unknown filamentary currents. The expressions for the

incident and the scattered fields are given by (3.1)-(3.11).

3.4.1 Expression for the IEC

For objects with IBC the total electric and magnetic fields, on the surface C, are

related by [a0]

E - (ñ.. E)ñ.: z"(p)(ñ.x Fr)

z.(p):z*(r+q(p))

^[Æ for a lossy dielectric regionv Jue+oc

0.0 for a perfectly conducting region

q(p) :å,t - i)6k*(p) - k,(p)

(3.24)

with

(3.25)

(3.26)

(3.27)

,-:{

where ø" is the conductivity of the material, ó is the skin depth, Z- ís the wave

impedance within the object and k"(p) and k"(p) are the principle curvatures of C

at p. For small signal penetration, or for objects with large radii of curvature, Z"(p)

can be assumed constant and equals to Z-.

The impedance boundary condition in (3.12) can be reduced to

E,: Z"(p)Ir, (3.28)

where E, is the total tangential electric field component in the exterior region and,

fI¿ is the total tangential magnetic field component in that region.
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3"4.2 Ðvaluation of the ÏJnknown Electric Currents F¿¿

Selecting /ú¡c matching points on the surface of each cylinder and enforcing the

boundary condition in (3.28) at the jtt', j :1,2,...Nf , matching point on th.e lth

cylinder, we get

(8"",0 * 8,,,) : Z"(pu)(Hï,, t Hí,,\ (3.2e)

where Ei,, and Hf, are, respectively, the scattered tangential electric and magnetic

field components evaluated at the jiä matching point of the /¿À cylinder. 82,,, Hj,,

are the incident tangential electric and magnetic field components evaluated at the

same point, and Z"(p¡¡) is the curvature dependent surface impedance evaluated at

the jth matching point of the /úh cylinder. Enforcing (3.29) at all matching points

results in a set of linear equations which can be written in a matrix form in which

the various matrices are interpreted in terms of generalized network parameters.

The result is

,A.F : V (3.30)

where

Aïi + Z"(pr)Aii

Aíi + Z"(pr)Ai\

Aiå + Z.(p')Aî,

Ai; + Z"(pr)Aib
^i"M 

+ Z"(pr)AiÏ,r

^i"M 
+ Z"(pr)A:r?ø

A_ (3.31)

Ai?, * Z"(p¡w)A',h, Aluh, * Z.(p¡ø)A|fr,
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nr_ (3.32)

\¡-

(-82, + Z"(p1)Hi)

(-Ei" + Z"(pz)H;,)

(-82* + Zlpy)H;*)

Here, Ã(rr,rr) is the generalized impedance matrix, where Mt : 7{, Nf aú

M2 - Dy N{ . (Ain' * Z.(pr)Aii) is an llrr,cxlfnF) matrix, where Ai; and Ail are,

respectively, the electric field and the tangential magnetic field intensities due to

the ith filament inside the qth cylinder of unit current evaluated at the jrå matching

point on Ct. ItDË, Jv,") ir the generalized unknown current vector. VfÐË, ¡¡r¡ is the

generalized voltage source vector.

Having formulated the matrix equation (3.20), the unkno\ryn current vector F

can be solved for by inversion or elimination if the IBC are enforced at 1/,c : 
^/¿F

selected points on each Q. On the other hand, if the IBC are enforced at Nf > ¡f¿F

selected points on Ct the least-square error solution given by (3.23)may be used

3"5 F'ar-Scattered Field

In the far-freld region, the multiple scattering pattern of the cylinders can be

obtained by employing the asymptotic expansion for the Hankel function and tak-

ing [18]

Ft¿

Fz¿

Fnr¿

(3.33)
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pH: p-n¡¿cosþ-y¡¿sins (3.34)

where p and $ are the polar coordinates of the distant observation point and p¡¿ is

the distance from the ith source of the /úä cylinder to the distant observation point.

Therefore, the far-scattered field is given by

Ei:

The scattering cross section per unit

MN{
- i n 

" 
o 

\\ F¡¿ ei k 
" 
(, ¡ ; co sSls ¡; sinþ) (3.35)

l=1 i=l

length, i.e.,the echo width, o is defined by

koTo T u
4 y 

"k"p"

o(ó):)*znolryf

From (3.34) and (3.35), the echo width is given by

o(ó) : ffilå ä 
F¡¿siko(*t;"o"ó+a""¿*ó)l

3.6 Solution for TE Frobler¡r

(3.36)

(3.37)

Let the M cylinders, shown in Fig. 3.1., be immersed in an incident transverse

electric waveTE, the solution proceeds, similar to the TM problem, line for line.

The sources are now magnetic current filaments, F¿¿ and P¡¿. Using the Duality

theorem [41], the field equations can be obtained by systematically interchanging

thesymbols(8,,-Hó,e,p)by(H,,8ó,¡.t,e)inequations (3.1) through (3.37). Asfor

the T M problem, the boundary conditions should be enforced at selected matching

points at all the cylinders surfaces which result in a system of matrix equation similar

to (3.19). By solving this system of matrix equation, the values for the unknowns

F¡¿ and Pt¿ can be obtained.



3"7 Selected Numerical Results.

The validity of the multifilament current model (MFCM) solution for multiple

scattering problems has been verified by comparison against results obtained for

different geometries using the method of moments (MoM) solutions. A program

based on Richmond's formulation for a single scatterer [18] has been modified to

solve for the multiple scattering by parallel cylinders. The agreement between results

based on the MoM solution and the forgoing method is excellent, indicating the

high accuracy of the present numerical method" The convergence of the MFCM was

confirmed by increasing the number of sources and matching points, changing the

location of the sources and by interchanging the direction of the incidence and the

observation points. The square root of the normalized scattered echo width {ø
is obtained for ali cases considered in this section. The results are presented for

multiple scattering by only two cylinders although the analysis is carried out and

similar results can be generated for arbitrary number of cylinders.

Figure 3.4 illustrates the results for two identical dielectric circular cylinders of

radius lcoo, : ø' placed along the Y-axis and their axes are separated by a distance

lcod, : 6z-. The cylinders of permittivity e, : 2.6 are excited by an incident transverse

magnetic T M plane wave with ó¿ : 0o . For the MFCM, a set Iüfl -- N{ : 2S

filament sources is placed on a circular surface of radius rF : 0.75a inside each

cylinder and another set fft : Nl :25 filament sources is placed on a circular

surface of radius rP : 1.5ø outside each cylinder. The number of the matching

points Nl : Ng -- /úrF is used. The sources and the matching points are evenly

spaced on their respective surfaces. For the MoM solution, the matrix size is (200

x 200).

Figures 3.5 and 3.6 compare the normalizedforward scattering and backscatter-
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ing echo width ,[Ð, respectively, versus the angle of incidence /i using the MFCM

solution against the MoM solution" The results are for the two cylinders considered

in Fig. 4 with the same locations and number of sources and matching points.

Figure 3.7 compare the results for two identical perfectly conducting elliptic

cylinders (2. : 0.0), each of a semi-major axis koa" : Ztr along the Y-axis and

an axial ratio of 4.0. The cylinders are located along the Y-axis and their centers

are separated by kod, : 8tr. The cylinders are excited by an incident transverse

magnetic TM plane wave with ó¿ : 0o " For the MFCM, a set of I/," : 32 filament

sources is placed inside each cylinder on an elliptical surface of major axis 0.975ø"

and an axial ratio of 4.0 . The number of matching points N? : Nl : NF is used.

The sources and the matching points are again evenly spaced on their respective

surfaces.

To check the accuracy of the impedance boundary conditions, the results based

on the MFCM combined with IBC are compared with those of the MoM with exact

boundary conditions. Fig. 3"8 compares the results for a perfectly conducting

circular cylinder of radius lcoa : n' and a lossy dielectric circular cylinder of radius

koo.: zr and complex permittivity ., : 4 - j5. The center of the dielectric cylinder

is located along the positive X-axis at a distance lcod = 6z- from the center of the

perfectly conducting cylinder. The cylinders are excited by an incident transverse

magnetic T M plane wave with ói : 780o . For the MFCM, a set I/,F : 25 filament

sources is placed inside each cylinder on a circular surface of radius rF :0.75a. The

number of matching points Nr" : N9 : -l/F is used. The sources and matching

points are evenly spaced on their respective surfaces.

Figure 3.9 compares the results for a perfectly conducting elliptic cylinder with

semi-major axis kocl" : r' along the Y-axis and an axial ratio of 2.0 and a dielectric

circular cylinder of radius koa : zr and permittivity e, : 2.6 - j2. The center of the
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circular cylinder is located along the positive direction of the X-axis at a distance

lcod, : 6n from the center of the elliptic cylinder. The cylinders are excited by an

incident transverse magnetic TM pLane wave with óà :90o. For MFCM, a set

of .n/fl : 32 filament sources is placed inside the elliptic cylinder on an elliptical

surface of major axis 0.975ø" and an axial ratio of 2.0. Another set of N{ : 2S

filament sources is placed inside the circular cylinder on a circular surface of radius

rF : 0.75a. The numbers of the matching points Nf : ffF and Nl : N{ are

used. The sources and the matching points are evenly spaced on their respective

surfaces. The impedance boundary condition with constant surface impedance is

enforced at the matching points for the MFCM.

Figure 3.10 compares the results for two identical perfectiy conducting square

cylinders of side length koa¡ : zr'. The axes of the cylinders are located on the X-

axis and separated by a distance kod:6r. The cylinders are excited by an incident

transverse magnetic TM plane wave with ói :0o. For rectangular cylinders, a

technique developed by Eisler and Leviat an la2l is used to select the locations of the

filamentary sources. The scattered field has been simulated by three sets of sources:

(i) 28 filaments evenly spaced on a concentric square surface situated at a distance

d : 0.1À from the boundary Ct; (ä) 16 filaments at a distance 0.01À from the edges,

2 filaments on each side of each edge; and (iii) 12 filaments gradually connecting the

former two sets. The number of the matching points Nf : Nl :1/F is used and

distributed evenly on the boundary surface. As shown in Fig 3.10, the agreement

between results based on the MoL4 solution and the forgoing method is excellent.

Finally, figure 3.11 illustrates the results for two dielectric circular cylinders of

radii a1 - 0.11, and a2 : 0.2Ào, respectively. The axes of the cylinders are separated

by a distance 0.4À and placed along the X-axis. The cylinders of permittivity e,, :

€rz 2 and are excited by an incident transverse electric TE or TM planewave
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v/ith di : 0o. Two sets N{ : 17 and N{ :30 of filamentary sources are placed

on a circular surface of radius rF : 0.5a1 and rF : 0.5a2, respectively, inside the

cylinders. Another two sets /ür" : 17 and Nl : 30 of filamentary sources are

placed on a circular surface of radius rP : 1.05ø1 and rP : 1.05a2 outside the

cylinders. The numbers of the matching points Nl -- Iy'rF and Nl : lúrF are used.

The sources and the matching points are evenly spaced on their respective surfaces.

The accuracy of the results is confirmed by comparing the far scattered fields with

results obtained by Elsherbeni and Kishk [a3].
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Figure 3.4: The normalized echo-width pattern for two circular cylinders.
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cylinders.

77



90

0o
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To study the behavior of the echo width backscattering versus the separation

distance between two parallel cylinders, results for cylinders, located on the x-axis,

of various parameters and cross sections for T M plane wave with Ói : 0o (endfire)

and $¿ : 90o (broadside) are included.

Figure 3.12 shows the broadside backscattering versus the separation distance

Icod for two identicai homogeneous dieiectric circular cylinders of. Icoa : 0.5 and

permittivity e, - 2.25. A set y'üF : 15 filament sources is placed on a circular

surface of radius rF : 0.75a inside each cylinder and another set .ð{P : 15 filament

sources is placed on a circular surface of radius rP :2a outside each cylinder. The

number of the matching points Iüc : -lúF is used. The sources and the matching

points are evenly spaced on their respective surfaces. As shown in the figure, the

oscillations decay with increasing the separation distance between the cyiinders and

the mean value is 0.395 which is about four times the value of the independent

scattering from the single cylinder (0.0987). The wavelength of the oscillation is 2tr.

These results agree well with results obtained analytically by Olaofe [32].

Figure 3.13 shows the endfire backscattering versus the separation distance kod

for two identical homogeneous dielectric circular cylinders of. koa: 0.5 and permit-

tivity e, :2.25. The number and location of sources and the number of matching

point are the same as for Fig. 3"72. As shown for all values of lcod, the endfire

backscattering is below four times the corresponding value for the single cylinder

(0.174). The wavelength of the oscillations is n. The amplitude of the oscillations

of each is almost constant, non-negligible, and almost completeiy independent of

separation. Again, these results agree well with results obtained analytically by

Olaofe [32].

Figure 3.14 shows the broadside backscattering versus the separation distance

k.d for three sets of two identical imperfectly conducting circular cylinders of koa:

tt



1.0. The cylinders have a constant surface impedance of Z. - 200f¿, Z" : 300Q

and Z" : 370f). A set ¡ffl(: ¡ff) : 20 filament sources is placed on a circular

surface of radius rF : 0.75a inside each cylinder. The number of the matching

point Nl : ffF is used to obtain the results of each curve. The sources and the

matching points are evenly spaced on their respective surfaces. As shown in the

figure, for the three curves, the oscillations decay with increasing the separation

distance between the cylinders; they have mean value corresponding to four times

the value of the independent scattering from the single cylinder. The wavelength of

the oscillation is 2z-. Also, the mean value of the oscillation decreases by increasing

the value of the surface impedance which agrees with the results shown in Fig. 2.14.

78



434.7

426.1

417.4

fl408.8O
E
â400.1
ÞË
Hsel.s

382.8

374.1

365.5

2 dielec. cir.

/ V'V
:

:

20 30 40 50 60 70 80 90 100
kod

Figure 3.12: The normalized echo-width pattern versus the separation distance for

two circular cylinders, ói :90o

(v



"<b
Ë
CI
Ø

50
kod

Figure 3.13: The normalized echo-width pattern versus the separation distance for

two circular cylinders, ói :0o

80



504.3

432.6

fl360.eo
3
â28e.3
lc-
Ë
ï ztz.a

145.9

74.25

2.578

I
t
I

kod

Figure 3.14: The normalized echo-width pattern versus the separation distance,

ó¿ :0o

.?\. :
! /: \ : -/'\\ r': 'r :-r' \- :+ ï":" '\ "":t""" 't" 

1

if:tr+tt\ r' : 'r !': \-:r'\,/ : i .r: t. irT
i v': V

353020 45 50

81



CFTAFT'ER, 4

R adiatíon From AxiaÏIy-Slotted Cylinders

In this chapter, the multifilament current model and the generalized multiple

multipole technique are used t,o solve the problems of electomagnetic radiation from

axially-slotted cylinders of arbitrary cross sections. The exciting source is assumed

to be either a prescribed aperture fieid distribution -8" on the slot or an electric

line source placed inside the shell. In the following section, the formulation will be

given for electomagnetic radiation from axially-slotted cylinders excited by E" on the

slot. The formulation is carried out using the multifilament current model (MFCM)

and the generalized multiple multipole technique (GMMP). The formulation for the

electomagnetic radiation from dielectric-loaded axially-slotted cylinders excited by

an electric line source placed inside the shell will be given in a later section using

the GMMP technique only. Results for circular cylinders of various parameters are

given and compared with available analytical and numerical solutions.

4.L Formulation for Known Aperture Field Ðistribution

4.1..L Problem Specification

Figure. 4.1 shows an infinitely long slot-perforated cylindrical shell whose axis is

taken to be parallel with the z-axis of a rectangular coordinate system. It is

assumed that the sheil is infinitesimally thin and made of perfect conductor. The

sheli is situated in free space of permittivity eo and permeability þo. The theory is

given for TE axial slots.
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4"-1..2 Multifilament Current lvlodel

The multifilament current model simulation uses one set of filamentary sources to

simulate the fields radiated by the cylinder" This set of sources is placed inside

the cylinder at some distance from its surface to simulate its radiated fields. The

sources carry, yet to be determined, constant complex currents. They generate

smooth field functions capable of representing smooth fields in the boundary surface.

The singular behavior of the fields near the edges of the slot can be approximated

by locating some of the filamentary sources in the vicinity of the slot edge [39].

Application of the boundary conditions resuits in a system of linear equations which

can be solved for the unknown filamentary currents. Fig. 4.2 shows the simulation of

the field radiated by the cylinder, where the radiated field is simulated by the fields

of a set of fictitious magnetic current filaments placed on a closed surface enclosed by

C. These filaments are z directed, infinite in extent and carry, yet to be determined,

constant currents K{ri : 7r2r3r...¡/1. They are treated as magnetic current sources

radiating in free space. In Fig. 4.2, (E',II') are the electromagneticradiated fields

due to all the fictitious current filaments and (E") is the fi.eld across the slot. The

field (E') in the surrounding region in Fig. 4.2 is an approximation of the field

in the surrounding region in the originai situation. Note that the locations of the

filaments inside C has not been specified. As far as the formulation is concerned,

their locations can be arbitrary. The question of selecting filament locations suitable

for a numerical solution will be dealt with later on.

4.L.2.L Expression for -E'

The radiated field (E') at an observation point (*,,y) in some z :constant plane due

to the current filaments Klri : L,2r3r.../{r radiating in an unbounded free space

is given by
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jV¡

E,:ù,,Ðpir+trsÐEii
i=t i=l

where EI¿ all.d EI¿ are the radiated electric field components at

point (*,A) in the exterior region due to a magnetic current filament

(*l,y{) inside C and are given by

¡¿-r

(4.1)

an observation

1Ç situated at

ñr k"IÇ(v - u{)¡1!rtgc"p{)Løi: 4n

k"IÇ(xI¿ - r) r_re)ttrHl"'(k"p',)

,l:ffi

Eit:

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

where Há') uttd H{') ur. the second kind Hankel functions of zero order and first

order, respectively and pf is the radial distance between the source point and the

observation point under consideration.

4.'i".2.2 Evaluation of the {Jnknown Currents /(r1

In order to compute the unknor¡/n magnetic currents, only the boundary condi-

tions have to be fulfilled. Therefore, by enforcing the BC at a selected number of

matching points we can evaluate K{ . The tangentiai electric field must vanish over

the perfectly conducting surface and match the prescribed aperture fi.eld distribution

in the slot, i.e,

ñxE' : E" on C"

ñ,xE' : A
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where fi. is a unit vector normal to the cylinder surface and pointing outward as

shown in Fig.4.1. Selecting l/"c matching points on the metallic surface of the

cyiinder and Nfl matching points on the slot and enforcing the boundary condition

(a.5) and (a.6) at the jth, j : 1,2,...(NY + NS), matching point we get

Ei¡: E" on C" (4.7)

Ei¡:o on C* (4.8)

(4.e)

where EI¡ is EI evahated at the jrä matching point. Enforcing equation (4.7) at all

the matching points on the metallic surface of the cylinder and enforcing equation

(a.8) at all the matching points on the slot result in a set of linear equations which

can be written in a matrix form in which the various matrices are interpreted in

terms of generalized network parameters. The result is

,A.K : V

where

Air Ai,

Air Ai,

Å'r,'lN¡

Ai*,

A-
Aiugt AkE,

Air Ai,,

Ai' Ai,

Aiyc¡¡r

Ai*,

Ai*,

(4.10)

Aks, Aks, Ai¡"¡¡,
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K-

V_

KL

I{z

KN,

(4.11)

(4.r2)

(4.13)

(4.t4)

Ert

E"z

E"wf

0

0

0

with

Ár
"11 -

k.(r¡-*I¿)to¡-fu¡ - a{)tr¡ uÍt)@"p,0,)
+j pl¿

e'or:ffi
Here, 41ru,c+lrg,lrr¡ is the generalized impedance matrix. K1r,,a¡ is the generalized

unknown current vector, and V1lr"¡ is the generalized voltage source vector. In (4.9),

4n 1" the tangential electric field intensity due to a filament K{ of unit magnetic

current evaluated at pl¿ on C. In (4.11), E"¡ is the electric field prescribed on the

slot at the jth matching point and plr¿ is the radial distance between the ith source

and the júä matching point. ú"¡ and to¡ are, respectivel¡ the z and y components

of the tangential unit vector evaluated at the j¿å matching points.
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Having formulated the matrix equation (4.9), the unknown current vector K can

be solvedfor byinversionor eliminationif the BCs are enforced at I/"c +Nl": -lür

selected points on C. On the other hand, if the BCs are enforced at y'y'"c + NS > 1/1

selected points on C the least-square error solution to (a.9) may be used [22]. This

solution minimizes the standard norm of the vector AK - V and is given by

x{ : (ÃxA)-'Ã-v (4.1b)

where Ã ir th" transpose of A and the asterisk denotes a complex conjugate.

4"X..3 Generalized Multiple Multipole Technique

The generalized multiple multipole technique (GMMF) represents the radiated fields

by multiple expansions with different origins of outward cylindrical r'¡'/aves. The

multiplicity of the origins for the outward waves can be interpreted as equivalent

source locations within the boundary of the cylinder. Then, the total radiated

fields are represented as a sum over the contribution from each origin. Furthermore,

the source distribution at each origin generates a field represented as a sum over

cylindrical waves, each of which is generated by a specific source component at that

origin. The sources are multipoles which include monopoles, dipoles and higher

order multipoles. As a result, we have a distribution of equivalent sources within

the boundary which creates a field on the boundary that leads to the satisfaction

of the boundary conditions. Applying the boundary conditions in the least square

sense results in a system of linear equations which can be solved for the unknown

expansion coefficients. The GMMP simulation for the fields radiated by the cylinder

is similar to the multifilament current model simulation. However, the GMMP

simulation uses a set of multipole line sources to simulate the fields radiated by the

cylinder. Again, this set of multipoles is situated inside the cylinder to simulate its

radiated fields. In this case, the singular behavior of the fields near the edges of the



slot can be approximated by locating some of the muitipole line sources with higher

truncation order in the vicinity of the slot edge. The procedure of the solution for

the unknown expansion coefficients is exactly the same as the MFCM procedure.

The simulation of the radiated fields is shown in Fig. 4.2 where the filamentary

sources are replaced by multipoles line sources. The GMMP formulation is given in

the following section.

4.L.3.X. Expression for E'

The radiated field E' at an observation point (r,y) in some z:constant plane due

to the multipole source K{,i: I,2r3,...,ð/1 radiating in an unbounded free space is

given bv [3]

(4.16)

wherc E[, and Eio are the radiated electric field components at observation

point (*,ù in the exterior region due to a multipole line source ,If situated at

("{,y{) inside C ar.d are given by

Eî,¡,(p,¡,) - i@i --al) ll, r,-u,t )Ur"p,¡,) cos(nþ¡;)
tlo P ji ln =o

Nll
+Ð Qn"H'l')(t "p'o)sin(n/¿) | (4.1i)

n=t I

Eî¡u(p,¡o) : -i(z-:l) 
l,ä 

o""* ')(t .p'¡o) cos(ns¡;)

ru/l
+ Ð Q¿*H':2)&.II¡;) sin(n6n¡) (4.1s)

where Ei, ønd E[, are the radiated electric field components at an observation point

(r¡,y¡) in the exterior region due to the ith source /l;r situated af (æI¿,,yor) inside C,

NI NT

E' : tt,,Ð ni, + t6Ð Eii
i='j, i=l
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lf/ ls the truncation order of the i¿å source, P¿n and Q¿n are the unknown expansion

coefficients and

o'¡n:ffi (4.1e)

(4.20)

4.L.3.2 Evaluation of the {.Jnknown Expansion Coefficients

In order to compute the unknor,¡/n parameters, P¿n and Q¿, in the GMMF expansions,

only the boundary conditions have to be fulfilled because the field equations are

completely satisfied by the GMMP expansions. Selecting Nfi matching points on

the metallic surface and 1{"c matching points on the slot and enforcing the boundary

conditions in (a.7) and (a.8) at all the matching points result in a set of iinear

equations which can be written in a matrix form as

AK:V (4.21)

where

S¡¿: arcta"((a¡ - yÐl@¡ - ,:))

Ar;vt

Az¡rt

Arr

Azt

Arz

Azz

Err Elrz

Bzr Flz,

Etrut

Elzrut

A-
At",

Arr

Azr

Ar"r,

Atz

Ãzz

A.¡y"c.¡yr

Ar¡¡t

Az¡r¡

B¡¡"c¡¡r

Elr¡vt

Elzivt

Bt"t, Bt"t,

Brr Elrz

Bzr FJzz

(4.22)

Arugt A¡¡Sz ATyc¡¿r ts¡rgr FìwSz B.¡yc.¡yr
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F1

P2

E"t

E"z

E"¡¡g

0

0

0

Bt¡'ot

Bjiz

Bli*,

Qt

Q,

with

K-

P¿:

F.¡vt

Qt

Qz

Q¡¡t

v- (4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Ãlo:

4'n"

A'¡io

4i'

Aliw

ETn:

- x!\t,,, - (u, - u!\t-,{)tn¡-@¡-a{)t,¡-----.--- r H,*Ø@.plii)sin(nþ¡;)

Q¿:

Qw,

- 
(*¡

- 
(*¡

B;r"

Ps

Pt

P]v,

Having chosen the number of multipoles and the corresponding truncation order,

the unknoì¡/n expansion coefficients woulð,be M : ÐXQN{* 1). Therefore, the

number of matching points is .ðú,c + Nf, > M. Thus, the order of the matrix A

is (1{"c + NS x M) and that of column vectors K and V are, respectively, M and

NY + Ng. The unknown expansion coefficients can then be solved for using the

least-square error method given by (a.15).
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4.2 Formulation for an Electric T,ïne Source

Figure 4.3 shows an infinitely long slot-perforate cylindrical shell whose axis

is taken to be parallel with the z-axis of a rectangular coordinate system. It is

assumed that the shell is made of perfect conductor and the slot is loaded with a

homogeneous dielectric material of permittivity e,, permeabilíiy ¡t,. The shell is

situated in free space of permittivity eo and permeability ¡t ". The excitation, in this

case, is due to a line source (TM excitation) situated inside or outside the shell.

In some cases, this geometry can provide a useful model to study electromagnetic

coupling/interference/radiation from/into two dimensional structure.

The incident fields due to the electric line source, located at (xo,Ao), are given

by

E',: I.H.(p¡) (4.28)

(4.2e)H": -tu'Íi:¿i' H,(p¡)

Hi:rt#PH,Ø¡) (4.30)

where 1o is the strength of the line source.

We set three simulated equivalent situations to the original ones in regions 1,

2 and 3 shown in Fig. 4.3. In the simulated. equivalence for region 1, shown in

Fig. 4.4, the fields in region 1 are simulated by the fields of a set of fictitious

multipole sources placed on a closed surface enclosed by the shell. These sources

are z directed, infinite in extent and carry, yet undetermined, constant currents.

They are treated as electric current sources radiating in free space. Similarly, in

the simulated equivalence for region 2, shown in Fig. 4.5, the fields in region 2 are

simulated by the fields of a set of fictitious multipole sources placed on a closed
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surface enclosing the shell. Again, these sources are z directed, infinite in extent

and carry, yet undetermined, constant currents. They are treated as electric current

sources radiating in a free space. Similarly, in the simulated equivalence for region 3,

shown in Fig. 4.5, the fields in region 3 are simulated by the fields of a set of fictitious

multipole sources placed on a closed surface enclosing the loading material. Again,

these sources are z directed, infinite in extent and carry, yet undetermined, constant

currents. They are treated as electric current sources radiating in a space filled with

homogeneous material identical to the material filling the slot. The relationships

betweentheelectromagneticfields (8"+Eu,H'+H'),(E',H") and (-83,f/3) inthe

simulated equivalent situation shown in Figs. 4.4 and 4.4, respectively, are dictated

by the boundary conditions in the original problem shown in Fig. 4.3.
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4.2.'L Expression for El and ffl

The scattered fields (8 ,,Ht) at an observation point (r¡,y¡) in some z :constant

plane due to the current sources F¿,í : I,2,3,...N1 radiating in an unbounded free

space are given bv [3]

N1

E : ù,ÐE)¡,
i-r

¡¡1 ¡¡

Hr : tt,ÐHå¡¿ * trsÐ H;ic
i=L i=L

where E:,, Hl, and H], are, respectivel¡ the scattered electric and magnetic field

components at an observation point (r¡,A) in region 1 due to the i¿å electric current

source .4 situated al (x¿,U;) inside C and are given by

Ndl ¡rt1

E)¡¿ : Ð p|"uf¡ (k"p¡,) cos(nþ¡;) + Ð QI*HP @"p¡¿) sin(nS¡;) (4.33)

(4.31)

(4.32)

n=O

H)¡nØl):fu#

n=\

f- ¡r,t

lÐ p:" u'l') (k 
" 
p'¡,) cos(n S ¡ ;)

ln=o

- 
Ë el^H'lÐ &. r¡¡ "i^1,60¡f

(4.34)

HJ¡,(p'¡o) : -i(z+Ð [i ";"1 ')U,"p,¡,) cos(nþ¡¿)

Nr1 I
+ Ð Ql,H':')@"eI¡;) sinçn6,¡1 (4.35)

where E:,,, E:, and E!. are, respectively, the scattered electric and magnetic fields

components at an observation point (*¡,A) in region 1 due to the i¿à source situated

at, (rl,,y¿l) inside region 2, N: is the truncation number of the irå source, Pln and

Ql* are unknown coeffi.cients and

prn:ffi
ój¿: arctan ((a¡ - yÐl@¡ - "Ð)

(4.36)

(4.37)
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4"2.2 Expressions for E2 arrd. Hz

The electromagnetic fields (E', Ht) at an observation point (r¡,y¡) in region 2 due

to the multipole sources I?,i : 1,2r3,....1y'2 situated at (r?,A?) in region 2 ar.d

radiating in an unbounded homogeneous free space are given by equations (a.31)

through (4.35) with the replacement of the superscript l by 2.

4.2"8 Expressions for E3 and .Ë/3

The electromagneticfields (8",H") at an observation point (*¡,y¡) in region 3 due

to the multipole sources Il,i: I,2,3,.."1ú3 situated at (*?,A?) outside region 3 and

radiating in an unbounded homogeneous dielectric space is given by

JV3

E3 : ü,Ð E2on

à-x
(4.38)

(4.3e)
N3 N3

H3 : t ,Ð Hï¡o -l ùol Hl¡;
i=\ i=7

where E:,, Hl, and Hl are, respectively, the electric and magnetic fields components

at an observation point (",y) in region 3 due to a multipole line source situated

at (r3nryr3) outside the loading material and are given by equations (4.33), (4.34)

and (4.35) with (ko, To, P|*,Ql*) replaced by (h,, U, Pf*,Q\,), respectively.

4.2,4 Evaluation of the {Jn}<nown Expansion Coefficients.

In order to solve for the unknown expansion coefficients, only the boundary condi-

tions has to be fulfilled because the field equations are completely satisfied by the

GMMP expansions. The boundary conditions, for a line source located inside the

boundary surface, are given by

ñx(EL - E"): 0.0
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ñ,x(FIl - Ft"): 0.0 on Co

ñLx(82 - E"): -ñ,xE¿ on Ct

ñ.x(FIz - E"): _f¿x¡¡¿ on Ct

(4.4r)

(4.42)

(4.43)

(4.44)

(4.45)

(4.+6)

(4.47)

ñ,xÐr :0

ñ.x82 : -ñ,xEà

on C^

on C*

Selecting lfc matching points on boundaries and enforcing the boundary conditions

at all the matching points result in a system of linear equations. These equations

can be written in a matrix form as

where A-

AU:V

AL o.o -A:
Al 0.0 -,{?

0.0 
^2 -,{:

o.o 
^? -,{t

A: o.o o.o

o.o A2 o.o

Pl

al
p?
-7

a?

D3
L¿

a3

-E2t

-Hít

0.0

0.0

-82

0.0

[J-
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where the quantities Al, 
^2, 

A2, Al A? and Af of each element of the matrix A

may be deduced using (4.33) through (4.39).

Having chosen the number of multipoles and the corresponding truncation order,

the unknorffn expansion coeffi.cients would be

M : D{-1,,(2N} + 1) + D['r(2N? + 1) + Ð["(2Nf + 1). Therefore, the number of

matching points 2(Nf + N? + Nfr) > M " Thus, the order of the matrix A is a

(2(NY + N? + Ng) " M) and that of the column vectors K and V are, respectively,

M and 2(NY + Nf + NÐ. The unkno\/ns expansion coefficients can then be solved

for using the least-square error method given by (4.15).

4.3 Selected Numerical Results and Discussion

Versatile computer programs have been developed using the formulations of the

proceeding sections for the axially slotted cylinders. Some representative computa-

tions obtained using these programs for slotted circular cylinders are given in this

section. For all the results given in this section, the slot is centered at ó - 0o and

has half angular width of ó". Thus, in terms of the cylindrical coordinates (p,ó),

(p : o,,ó" < ó S 2tr - ó") define the conducting part of the cylinder C,. while

(p : o,0 < Ó < ö') u (p : a,2tr - Ó" < Ó < 2n) define the slot region C"'

The treatment of the singular behavior of the fields near the edges of the slot

differs between the two numerical solutions, the generalized multipie technique and

the multifilament current model. In the GMMP simulation, we place multipole

sources of higher order in the vicinity of the slot. Since the fields of higher order

multipoles are much more concentrated around its origin than the fields of lower

order multipoles, the singular behavior of field near the edges will be better approx-

imated by the field of these sources. For the MFCM, additional sources are placed

near the slot edges and some sources are gradually placed farther ftom Cu U C".



Source locations that obey this desired form for the circular cylinder under study

are introduced by Leviatan and Haller [39].

In the simulation of the radiated fields using the MFCM, v/e assume a total of

.ly'I sources comprisin1 Nl, sources in front of. C* and Nj sources in front of Cr.

The ith source in front of C* is centered at (pl^(i),öI*(i)), where [39]

pl*(i) : pI#"' - (pt#"' - p!,i''¡",.n( *¡ - 1@),

óL(ù : ir - (n - óo - LþI*)co"tffil,

r<ó<Nl Ø.4e)

LSi<Nl" (4.50)

where, pI;"" and pþr^ denote, respectively, the largest and the smallest radial dis-

tances among the radial distances to the sources in front of C,n. A,SI* denotes a

suitable selected angular shift in the azimuthal direction relative to the position of

the slot edges. The specific choice of the parameters pI#"', pfu'* and A'þI* cleaùy

affects the layout of the sourcese but they follow the above mentioned rule. The

other sources are specified in a similar manrer. The ith source in front of C" is

centered at (pI"(i), ó'"(i)), where

p:(i): pI:"" -(p':"" -pl '')"nr(#?), 1 <i s N: (4.51)

and

( (ó"-Lþ1")cos(i-e), r<i<ry
ó:(i): { 

t" N!-t tt r --: u --: 
' 6.SZ¡

I z"+ (óo-alj)cos(ffi), YsisN!
where, pI"*"' and pr"*,. denote, respectivel¡ the largest and the smallest radial dis-

tances among the radial distances to the sources in front of C". A/j denotes a

suitable selected angular shift in the azimuthal direction.

Figure 4.6 shows results obtained using the exact analytical solution [36], the

MFCM and the GMMP. The results a¡e for slotted circular cylinder of. ksa :2 ard



ö" : 1.5o. We assumed a uniform field E" : Eo with a unit amplitude on the slot.

For the MFCM, we used for the number of sources and matching points: NL:60,

N"t : I0, NS : ïNl' and //"c - 31/"1. And for the location of sources we set:

p:*"" : pþ"" : g.gga, pI"^;. - pI.#r" : 0"75a and L$| : Ló1": 0.03o. For the

GMMP, we set /úr : 4 with first order truncation located at 0.99ø, Nl^ = 24 with

zero order truncation located at 0.8ø, ff"" : 30 and NS :100. Also, the matching

points are more dense near the edges of the slot in C,n. As shown in the figure, both

numerical methods are in good agreement with the analytical solution, however,

better agreement is obtained using the GMMP"

Figure 4.7 shows results obtained using the exact analytical solution [36], the

MFCM and the GMMP. The results are for slotted circular cylinder of k6a: zr and

ó":2.5o. We assumed a field of cosine distributioî E,: E.cosrþf þ" with a unit

amplitude exists on the slot. For the MFCM, we used for the number of sources

and matching points Nl : 75, N: - 15, NS :3Nj and N"c : 31ú"1. And for

the iocation of sources \¡r'e set pþ", : pI#"" : 0.99¿, pI"^;" -- pI#r. :0.75ø and

AÓI^: nöl, :0.065'. For the GMMP, we set N"t : 6 with truncation of order one

located at 0.99ø, Nl" :35 with truncation of order zero located at 0.8ø, N"c : 35

and Nfl: 130. Also, the matching points are more dense near the edges of the slot

in C,n" As shown in the figure, both numerical methods are in good agreement with

the analytical solution, however, better agreement is obtained using the GMMP.

Figure 4.8 shows results obtained using the exact analytical solution [36] and the

GMMP. The results are for slotted circular cylinder of. lcsa: 4 and ó, :2.5o. Two

cases are shown for different field distributions with E":|Vlm. For the GMMP, we

set N"/ - 6 with truncation of order one located at 0.99ø, Nl,:40 with truncation

of order zero located at 0.84, N9 :35 and NS : 150. Also, the matching points

are more dense near the edges of the slot in C-. As shown in the figure, good
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agreement with the analytical solutions are obtained. The corresponding surface

field distribution, computed using the GMMF, are shown in Fig. 4.9. As shown in

the figure, the results are in reasonable agreement with the prescribed fields on the

slot"

The effect of diferent dielectric filling a slot in a thick circular cylindrical shell

on the radiated field is shown in Fig. 4.10" The inner and outer diameters of the

shell are a : 0.707Ào and ô : 0.8071o, respectively. The angular width of the slot

is 60o. The excitation source is an electric line source placed at the center of the

shell. The results are obtained for dielectrics of permittivities €' : 3.0,4.0,5.0 and

6.0. Three sets of sources are used to simulate the fields of the shell: The first

set of -ðy'l : 25 with zero order truncation is located at 0.7a, the second set of

N2 :25 with zero order truncation is located at 2b and the third set of .lú3 : 10

with first order truncation is placed around the slot at a distance 0.01À, from the

boundary surface. The total number of matching points is 140. The results are in

good agreement with results obtained by Arvas and Sarkar laal using the MoM.

Figure 4.11 shows the effect of the unloaded and loaded slots opening on the far

field. The inner and outer diameters of the shell are a :0.707Ào and ó : 0.807À,,

respectively. The angular widths of the slots are 30o,60o and g0o. The excitation

source is an electric line source placed at the center of the shell. The loaded dielectric

material is of permittivity €" : 3.0. Three sets of sources are used to simulate the

fields of the shell: The first set of I/1 : 25 with zero order truncation is located

at 0.7a,, the second set of N2 :25 with zero order truncation is located at 2b and

the third set of .lf3 : 12 with first order truncation is placed around the slot at a

distance 0.01À, from the boundary surface. The total number of matching points is

150. These results agree well with those obtained by Arvas and Sarkar lLa].

Figure 4.12 shows the aperture field amplitude versus / in circular cylindrical
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shell. The diameter of the sheli is ø : 0.398À,. The angular width of the slot is 60o.

The excitation source is a TM pl,ane wave incident at ó¿ :0.0. The aperture is

covered internally by lossless dielectrics of permittivities €, : I.0r3.0 and 5.0. The

angular width of the dielectric strip is 78". The thickness of the dielectric is 0.039À,.

Three sets of sources are used to simulate the fields of the shell: A set of /y'1 : 15

with zero order truncation is located at 0.7a, the second set of N2 :15 with zero

order truncation is located at 2a and the third set of 1/3 : 10 with first order

truncation is placed around the slot at a distance 0.01Ào from the boundary surface.

The total number of matching points is i20. The results are in good agreement with

results obtained by Arvas and Sarkar [44].
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Figure 4.10: Far field amplitude for different dielectric filling a slot in a circular shell
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CFTAPT'ER, 5

Conclusíons

The problems of electromagnetic wave scattering and radiation from homoge-

neous dielectric and perfectly conducting cylinders of arbitrary cross section have

been solved by simple numerical solutions: the multifiiament current model and the

generalized multiple multipole technique. Both numerical methods are used to solve

for a single and multiple scatterers excited by T E and T M polarized electromagnetic

waves.

In chapter 2,lhe multifilament current model and the generalized multiple mul-

tipole technique are used to solve for the problem of TE and TM scattering by

imperfectly conducting cylinders of arbitrary cross section. Each solution uses a

single set of fictitious current sources situated inside the cylinder to simulate its

scattered field. The impedance boundary condition is then imposed at selected

points on the surface of the cylinder. The result is a system of linear equation for

the unknown expansion coefficients which can be solved numerically. The case of

perfectly conducting cylinders may be handled as a special case of the imperfectly

conducting cylinders by setting the surface impedance to zero. Numerical results,

based on these two methods, are examined and found to be in good agreement with

the exact analytical solution for circular cylinders and with a MoM solution for el-

liptic and square cylinders. It is found that the solutions converge faster when the

sources are placed on a contour concentric with and similar to the cross section of

the cylinder. Furthermore, for the MFCM, it is found that changing rr any where

between 0.05r and 0.95r has insignificant effect on the convergence of the solution
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for circular cylinders. However, in the case of elliptic and square cylinders, the re-

sults depend more on the locations of sources. In addition, special consideration

should be given to the edges in the rectangular cylinder cases. The MFCM and the

GMMP simulations differ in the method by which they treat the singularity of the

fi.elds at the edges. In the MFCM simulation, special distribution of the sources is

used to simulate the scattered fields; however, sources with higher truncation order

are used in the GMMP simulation of the scattered fields.

In chapter 3, the MFCM has been used to solve for the problem of multiple elec-

tromagnetic wave scattering from homogeneous dielectric and perfectly conducting

cylinders of arbitrary cross section excited by T M or T E polarized electromagnetic

waves. In the case of two dieiectric cylinders, the solution uses two sets of cur-

rent filaments for each cylinder. One set is placed inside each cylinder to simulate

the fields scattered by the cylinder, the other set is placed outside each cylinder

to simulate the fields transmitted inside the cylinder. The boundary conditions

are imposed at selected points at the surface of each cylinder. For the problem of

perfectly conducting and lossy dielectric cylinders the solution uses a single set of

current filaments for each cylinder. The filaments are situated inside each cylinder

to simulate its scattered fields. The impedance boundary condition is imposed at

seiected points at the surface of each cylinder. Numerical results, based on this

method, are examined and found to be in good agreement with the MoM solutions.

Again, it is found that the solution converges faster when the sources are placed on a

contour concentric with and similar to the shape of the cross section. Furthermore,

it is found that for a circular cross section a choice of sources location inside each

cylinder any where between 0.7a and 0.95ø, and for the outer sources any where

between 1.34 and 7.75a has insignificant effects on the convergence of the solution.

However, in the case of elliptic cylinders, the iocation of the sources should be closer
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to the boundary. For the square cylinders, the special treatment given to the edges

of a single scatterer is applicable to two scatterers.

In chapter 4, the MFCM and the GMMP have been used to solve for the prob-

lem of electromagnetic radiation from axially-slotted circular cylinders excited by a

prescribed field on the slot or a line source located inside/outside the cyiinder. Both

solutions use a single set of fictitious current sources situated inside the cylinder to

simulate its radiated field. By using a special sources distribution inside the cylin-

der and using the least-square error, an accurate MFCM solution is obtained and

compared with the exact analytical solution" For the GMMP, sources of one and

zero truncation order are used to simulate the radiated freld. Using the least-square

error an accurate solution is obtained and compared with the analytical solution. In

addition, the GMMP is used to solve for the radiation from loaded-slotted circular

cylinders. The excitation source is asummed to be either an incident TM plane

wave or a line source located inside the cylinder. Three sets of sources are used to

simulate the fields of the cylinder. The boundary conditions are then imposed at se-

lected points on the boundary surface of the cyiinder. The result is a system of linear

equation for the unknown expansion coefficients which can be solved numerically.

In general, for the numerical solutions presented in the thesis, there is no general

rule of thumb to the choice of the number of sources and matching points because of

the large number of parameters involved. IIowever, the convergence can be examined

by increasing the number of sources and matching points. In addition, the solution's

convergence to a limiting value shouldn't be too sensitive to the change in the

location of the sources within reasonable range. In any case, if the results are

too sensitive to the change in the sources locations, the number of sources and

matching points should be increased. It is understandable that a iarge cylinder of

high permittivity will require more sources and matching points than a smaller one
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of lower permittivity in order to achieve the same level of accuracy.

An advantage of using the impedance boundary conditions on both methods

over the regular boundary conditions lies in the reduction of the number of sources

to one half since only the outer region needs to be simulated. Consequently, only

a matrix of (I[r, //l) elements is needed. The advantage of using the GMMP over

the MFCM lies in the simplicity of selecting the sources distributions to simulate

complex geometries or objects with sharp edges such as rectangular and slotted

cylinders. Furthermore, both methods reduce the computation time significantly in

comparison with the MoM solution with the point matching technique. For example,

for the elliptic cylinder presented in Fig.2.9, a matrix of order (23,23) is used in the

MFCM with IBCs solution and the CFU time is 0.1 second on a Sun 4 workstation;

while, a matrix of (90,90) is used for the MoM solution and the CPU time is 0.5

second. Also, for obtaining the results shown in Fig. 3.4 a matrix of (100,100) is

used in the MFCM soiution and the CPU computation time is 16.49s in the Sun 4

workstation while, for the MoM solution, the matrix size is (200,200) and the CPU

computation time is 29.28s.

Finally, the generalized multiple multipole technique and its special case the

multifilament current model can be applied to more complex geometries and they

are applicable to three-dimensional problems.

Research based on this thesis has been published in [45], 1461,1471, [ S] and [49].
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