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Abstract

One of the most important problems in Approximation Theory is to connect
the rate with which a function can be approximated and the smoothness of this
function. The goal is to show direct and inverse estimates in terms of some measure
of smoothness. Typically, results are of the following type: “a function can be
approximated with a given order if and only if it belongs to a certain smoothness
class”. We focus on the case of the weighted L,[—1,1] spaces with not rapidly
changing bounded not vanishing inside interval (—1,1) weights. In order to describe
certain smoothness classes we will use moduli of smoothness wéﬁ and w;k and prove
their equivalence. As a final result, we will prove direct theorems for monotone and

convex approximation.



Chapter 1

Intoduction

Perhaps the most fundamental theorem in Approximation Theory was proved by
Karl Weierstrass in 1885. It states that any continuous function f defined on the
real closed interval [a,b] can be estimated by polynomial functions. More precisely,
for any positive € > 0, there exists a polynomial p such that for all  in [a, b], we
have |f(z) — p(x)| < e. However, the original proof was quite complicated, so many
famous mathematicians tried to find simpler proofs. A short proof was presented by
Sergei Bernstein in 1912. He used what’s well known today as Bernstein polynomials:
Bulf.a) = 3 (1)afl0 - o stk (1)
=0

where f € C0, 1], and showed that B,,(f) converge to f uniformly on [0, 1] as n — co.
The natural question is “how good is approximation by Bernstein polynomials”?

To answer this question we need to define modulus of smoothness.

Let

S (Y (=D f(x — kh/2 +1ih), if @ £ kh/2 € [a, 0],

AL (f,x,[a,b]) = '
0, otherwise,

be the k-th symmetric difference, and let
Nk k
Ay (f,,[a,0]) = Ay (f, 2 + kh/2, [a, b))

1



and

e
Ab (f,,[a,0]) = A (f, @ — kh/2,[a, b))
be the forward and backward k-th differences, respectively.

Definition 1.1. The modulus of smoothness of order k € N (the k-th modulus of

smoothness) of a function f € Cla,b] is defined as follows:

wi(f,0;[a,b]) == sup  sup |AR(f, 2, [a,0])]. (1.2)

0<h<d aLz<b—kh

In the trigonometric case for a 2m-periodic function f € C(R), we will use the

following (trigonometric) modulus of smoothness:

WI(f,0) = sup sup|AL(f,z,R)| (1.3)

0<h<é zeR

Remark 1.2. The modulus of smoothness of order k = 1 is called the modulus of

continuity.

The following estimate in terms of w; was established by T. Popoviciu in 1933

(see [20]):

|Bu(f,7) = f()] < L5wi(f,1/v/n), fe€C[0,1], z€l01]. (1.4)
For a function f = |z — 1|, wi(f,1/v/n) = 1/y/n. At the same time

Buf.1/2) - 51/ =2 ()~

so the estimate ([1.4)) is accurate. On the other hand, E,(f,[0,1]) <n~!, where

En(f,]a,b]) := inf sup [f(x)—p(z)]

PElln g<z<b

is the error of the best polynomial approximation by polynomials II, of degree less
then n. So Bernstein polynomials are not close to the best approximation.

The investigation of the rate of best approximation is a very important topic in
Approximation Theory. Of course, the rate depends on the function, so we want to
relate it to some properties of the function being approximated. First result in this

area belongs to Dunham Jackson (see [12]):



Theorem 1.3 (Jackson’s inequality). Let f be a 2mw-periodic v times differentiable

function. Then, for any n € N,
Eq(f) < eon”"w(f7,n7h),

where ¢, is a constant depending on r only, and EL(f) := injf sup | f(z) — p(z)| is
PE€LIn geR
an error of the best trigonometric approzimation by trigonometric polynomials T,, of

degree less then n.
Jackson’s inequality is also valid for approximation by algebraic polynomials.

Theorem 1.4. Let f be an r times differentiable function on the interval |a,b).

Then, for any n € N,
E.(f.]a,b]) < e;n"w(fT, n7 [a, b)),
where ¢, 1s a constant depending on r only.

The following generalizations of Theorem with higher order moduli were
proved by Zygmund (k = 2) in 1945 (see [26]) and Steckin (k > 2) in 1949 (see
[21]):

Theorem 1.5. Let f be a 2mw-periodic r times differentiable function. Then, for any
neN,

EY(f) < e "W (F7,071),
where ¢y, 15 a constant depending on k + r only.

We have a similar result in the algebraic case (for example, see [21]).

Theorem 1.6. Let f : [0,1] — R be an r times differentiable function. Then, for
any n € N|
E.(£,10,1]) < crppn"wr(f, 071,

where ¢y, 15 a constant depending on k + r only.



Remark 1.7. Such theorems are called Jackson-type inequalities or direct theorems.

Reversed inequalities are called inverse theorems.

The first inverse results were proved Bernstein in 1912 (see [2]). Let C** de-
note the Holder space of all k-times continuously differentiable functions whose kth

derivatives satisfy the Holder condition of order «:

[P (@) — [P ()]

sup < 0.
THY |ZL‘ - yla

For approximation by trigonometric polynomials, we have:

Theorem 1.8. Let f be a 2w-periodic continuous function and ET(f) < Cn=F,

with k € Ny and 0 < o < 1. Then f € C**.
Theorems [1.3] and [I.8] imply the following result.

Corollary 1.9. For any 2m-periodic continuous function f, any k € Ny and 0 <

a < 1, we have
E (f)=0n""), n—=oo <= w(f,d)=0(""), §-0+.

Unfortunately, a similar result for approximation by algebraic polynomials is
not valid. Nikol’skii discovered that algebraic polynomials, retaining on the whole
interval the best order of approximation of a function can yield a substantially better
approximation at the endpoints of the interval. In fact, it was proved (see, e.g. [10]),
that for a function f € C[—1,1], wg(f,t) = O(t*), 0 < o < k, if and only if there

exists a sequence of (algebraic) polynomials {p,} of degree n, such that
[f(z) =pa(@)] S c(n™'V1-22+n7%)"  ze[-11]. (1.5)

To deal with this phenomenon - known as boundary effect - Ditzian and Totik

suggested to use another modulus of smoothness (see [9]):



Definition 1.10. For a function f € C[—1,1], the Ditzian- Totik modulus of smooth-
ness of order k, is the function wi(t) = wk(t; f;[—1,1]) defined on (0,00) by the
equality

Wi (f.0)y = Sup 1R (s [=1 D) e, (1.6)

where ¢p(x) = /1 — x2.

For any continuous on interval [—1, 1] function f, any k € Ny and 0 < o < k we

have (see, e.g. [9])
E.(f.[-1,1) =0(n™*), n—o0 < wj(f,0)=0(6%, §—0+.

As usual, let L,([a, b]), p > 0, be a space of all functions for which the pth power

of the absolute value is a Lebesgue integrable. The norm is defined as || f||L, (0,5 :=

b 1/p
(f |f(:c)|pdx> . For 0 <p <1, | lL,(ap) does not satisfy the triangle inequality,
so it is only a quasi-norm. For [a, b] = [—1, 1] we will use notation L,, := L, ([—1, 1]),
and || - [l :== [ - llL,-1.0)-
In the L,, p > 0, spaces, the moduli of smoothness are defined similarly to the

continuous case.

Definition 1.11. The modulus of smoothness of order k € N (the k-th modulus of

smoothness) of a function f € L, is defined as follows:

Wk(f, 6)10 ‘= Ssup ”Ai(fa " [_17 1])”1’ (17)
0<h<d

In the trigonometric case we will use the trigonometric modulus of smoothness
defined by
wi (f,8)p = sup [IAR(f, -, [, 7 + hk])]l,- (1.8)

0<h<d
The Ditzian-Totik modulus of smoothness of order k for function f € L, is the

function W (t), = Wi(t, f,[-1,1]), defined on (0,00) by the equality

we(f,0)p = sup [[AL(f, [=1,1]),- (1.9)
0<h<$



The Direct Theorem is the following (see, e.g. [1]):

Theorem 1.12 (Direct Theorem). Let f € L,([—m,7|) be a 2m-periodic function,

0 <p<oo. Then, for any n € N,

Eg(fv [_ﬂ-v ﬂ-])p < Cwlz(f: n71>p7

where ¢ is a constant depending only on r and p as p — 0, and EL(f,[—m, 7)), =
injf |.f = pllL,(=x,x) is an error of the best trigonometric L, approzimation.
pEln

If fel,, 0 <p<oo, then, for any n € N,

En(f> [_1? 1])73 < ng(fa n_l)pa

where ¢ is a constant depending only on k and p as p — 0, and E,(f,[-1,1]), :=

irhf | f — pll, is the error of the best L, approximation.
clly
The Inverse Theorem (see, e.g. [11]) in the trigonometric case is the following:

Theorem 1.13 (Inverse Theorem). Let f € L,([—m,7]) be a 2mw-periodic function.
Then, for all k,n € N,

wi (fon ™y <en™ > BN (f),, if p>1,

i=1
and
wi (f,n)h < en™ Zikp’lEiT(f)z, if 0<p<l,
i=1
where ¢ are constants depending only on k and p as p — 0.

The algebraic versions (see [§]) are the following:

Theorem 1.14. If f € L,, p > 1, then for all k,n € N,

wh(fin )y < en™FY T ITUE(f),,
=1

where constant ¢ depends on k only.



Theorem 1.15. If f € L,, 0 < p <1, then for all k,n € N,

Wh(f,n™hE < en™N T FTIE(f)R,

i=1

where a constant ¢ depends only on k and p.

Another topic that we are interested in is shape preserving approximation. The
problem of shape preserving approximation is to approximate a given function by
polynomials with the same 'shape’. Here by ’shape’ of the function f we will un-
derstand positivity of its n-th derivative (if f is differentiable). It is known that
Bernstein polynomials B, (f, z) defined in have the same shape as initial func-
tion f(x). This guaranties the existence of a sequence of polynomials that preserves
the shape of a given function f, and converges to it, but does not help to find the
rate of shape preserving approximation.

In Chapter 2, we will discuss the weighted shape preserving approximation and
introduce main results of this thesis. The norm in the weighted L,([—1, 1])-space
with weight w is defined by || f||wp = [[wf||L,(-1,1)- Any non-negative function w
could be used as a weight, but we will focus on the weights that do not rapidly
change and are not vanishing in the interior of interval [—1, 1], specifically the Jacobi
weights w, () := (1 + 2)*(1 — x)".

In Chapter 3, we will prove equivalence of moduli of smoothness wq"; and wgk,
defined in Chapter 2. Those moduli describe smoothness classes corresponding to
approximation with the rate O(n™%).

In Chapter 4, we will construct splines to approximate given monotone (convex)
functions and polynomials to approximate those splines. This will provide the proof

of the main result which is Theorem 2.16l



Chapter 2

Main results

Recall that a weight function on an interval I is a nonnegative function w : I — R,
and the norm in the weighted space L, space is defined by || f|lL,» = ||wf]L,
The error of the best weighted L, approximation with weight w on interval [a, b] is

defined by
Eu(f, a, bDw,p = pierhf If — pHLp,w

We will focus on a special class of doubling weights W, that were defined in [14]:

Definition 2.1. Let m € N and Z = (z;)7

T, ml<an <<z, <L We say that

doubling weight w belongs to the class W(Z) if, for any € > 0 and any x,y € [—1,1]
such that |z — y| < ep(z) + €* and dist([z,y], z;) > €p(z;) + € for all 1 < j < m, the

following inequalities are satisfied

cw(y) < w(r) < ctw(y), (2.1)

where the constant ¢ depends only on weight w.

It is known that, if the weight w # 1, the then modulus of smoothness should
be modified near zeroes and singularities. We discus only w with zeroes at the ends

of interval I = [—1,1], and without singularities. Define now a proper subclass

W cCcW(H{-1,1}).



Definition 2.2. We say that the Lebesque integrable weight function w is in the class
W if it satisfies the following conditions:

Low@zm swp wly), if-1<z<0,
—1<y<2z+1

2. w(x) >m sup w(y), f0<z<l1,
2x—1<y<1

where m > 0 is a constant depending on w only.
Remark 2.3. Forw € W, in particular, we have w(x) > mw(z), and so 0 < m < 1.

Lemma 2.4. W is a proper subclass W({—1,1}).

Proof. Firstly, we will show that every w € W is a doubling weight.
It is sufficient to check the following condition.

For every interval [a,b] C [—1,1]

/Iw(l’)ldw ~

where equivalence constant depends only on w.

a+b
2

a+b

[ e, 2.9)

Let ¢ := “T*b < 0 and d := %< Then for every x € [d,c] and every y € [c, D]

w(z) > mw(c) > m?w(y). Then
/|w(m)|dm > /|w(x)|dx > muw(c)(c — d) > %mQ/ w(z)|dz.

Similarly, fb|w(x)|dx > 1m? fc |w(x)|dx. So, w is a doubling weight.

Now we will show that w € W satisfies conditions from Definition[2.1Jof W({-1,1}).

Suppose that x,y and € satisfy conditions from Definition 2.1, We have to show
that w(z) > cw(y) and w(y) < cw(z).

Consider another weight wy(z) = w(—2), z € [-1,1]. Then w; € W with

the same constant m. Let also 2y := —z, y; = —y. Then dist([z,y],—1) =
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dist([z1, 1], 1), dist([x,y], 1) = dist([z1,y1], —1) and ¢(x1) = ¢(x). So, z1,y1, € also
satisfy conditions from Definition[2.1} Then, cw(y) < w(z) < ¢ w(y) can be written
as cwy(y1) < wi(z1) < ¢ lwi(y1). Hence, without loss of generality, we can assume
that z < 0.

Note that € < /1 + z, since 1 +z > dist([z,y], —1) > ed(—1) + €2 = €. Then

y<zt+ep(r)+eE<z+Vitavl—a2+1+r=14+22+1+2)V1 -

If —1/2 <z <0, then 1+ 2z > 0, so w(z) > mw(0) > m?w(y).

If # < —1/2, then since w is a W weight, we have w(z) > mw(2x + 1). Also,
3+dr=1422x+21+z)>14+2x+V1—z(l+2z) >y,

and so —1 <y <344z <1.

Since 1 4 2x < 0, then

w(x) > mw(l +2x) >m*  sup  w(z) > mPw(y).
—1<2<3+4a

Hence, the first inequality in holds with the constant m?2. Since m < 1, it also
holds with the constant ¢ = m3.

Let us show the second inequality in (2.1) now. Recall that we assumed that
x < 0. First, if z <y < —x then ¢(x) < ¢(y) and |z — y| < ed(x) + € < ed(y) + €2.
In this case, we can repeat the above argument to show that w(y) > m?w(z).

Now, let =1 <y < x < 0. Then 1+ y = dist([z,y], —1) > ep(—1) + €* = €%. So
e<V1+uy.

We will now show that z < 7+ 8y. Indeed, let ¢ satisfy 1 + z = #(1 + y). Then,
r=t—1+ty<y++/1+yvl—a?2+1+y,

which implies

t—2+ty—2y=(t—2)1+y) </1+yV1—2a2
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Hence, either t < 2 or
t—2%1+y) <l-2*=(1-2)(1+2)<2(l+2)=2t1+y),

which yields
(t—2)* < 2t.

Therefore, t < 3+ /5 < 8, and so z < 7+ 8y as claimed.

If y > —3/4, then w(y) > m*w(0) > m3w(x). If y < —3/4, then w(y) >
mw(1 + 2y) > m*w(3 + 4y) > m3w(z).

Finally, let 0 < —z < y < 1. Then dist([z,y],1) =1 —y > ep(1) + €2 = €%, and

so € < /1 —y. Hence,
y<lr—yl<ed(z)+E</1—-y+1—y,

which implies that y < 3/4. Then, w(y) > m*w(0) > m3w(z).
Therefore, we conclude that w is a W({—1,1}) weight with the constant ¢ =

m?. O

Remark 2.5. The class W is not a class of W({—1, 1}) weights without singularities.
More precisely, let Wo(Z) be the set of bounded weights w € W(Z). Then W #

Wo({—1,1}).

Nlw

Lemma 2.6. Let z, := 9-( )n, n € Z. Consider functions

xQ_]glx27 YRS (kaa ka—l]u ke Z;
fx) =S zopa™2, x € (Topyr, To), k € Z;
0, =0

and

Then w € Wo({—1,1}) \ W.
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3
Proof. Note that z,,1 = x5, n € Z. Then, for every k € Z we have

e lim w(x)= lim f(z)= $2k+1$;k% = xékx;k% = To;
(T2 —1)— T—Tog—
. : ~1..2 .
* xﬁ(gknile(x) = x_lgfg}ﬁ fz) =z w3 = o
li — i flo) =23t 0%, = I R
® xﬁ(mfﬂil)iw(@ x%;%ﬂil_ 2k+202k+1 2k L2k 2k+1
- - 3 _
hd xa(xlgﬂqnw(@ = xﬁlzl%ﬂiﬁ fz) = Lok+1Topy1 = Lopy1-

Also, w is continuous on each interval (x, — 1,x,_; — 1) since f is continuous on
(xnwrn—l)-

So, w is continuous on (—1,0) function and w(xe, — 1) = xok, w(Topy1 — 1) =
VZot1, Kk €Z. Then z +1 < w(z) <vVz+1,z € (-1,0). So, ml}lg_w(x) =0 and
lim w(z) = 1. Therefore, w is continuous on [—1, 1].

z—0+
Let us show now that w ¢ W.

Assume that w € W with constant m. Then for z = z9, — 1 < 0 and y =

Topr1 — 1 € [—1,22 4 1] we have 0 < m < 383 However,

w(x) To 32k 3\ 2k+1 ()2 1
) = x2:+1 =27V = (277 S0,k o

Therefore, w ¢ W.

Let us show now that w is a bounded doubling weight.

Clearly, w(x) <1, z € [-1,1].

We need to check condition . Let c := GTH’

Since w(z) ~ 1 on any (—1+46,1], d > 0, it is sufficient to consider only intervals
la,b] with b < 1.

We consider 3 cases:
1. [a,b] C [zop — 1, 2951 — 1], for some k € Z;

2. [a,b] C [ropr1 — 1, x9, — 1], for some k € Z;
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3. x, € (a+1,b+ 1), for some n € Z.
In each of these cases we have:

1. Let w(z) = p(1 + z)? on [a,b], for some p > 0, then

[t =B+ = (14 %) ~ e - a1+ o

a

~ b= 1+~ B0 = (14 o) = [ wle)da,

2. Let w(z) = q(1+2)~2 on [a, ], for some ¢ > 0, then

/w(m)dm =2¢((1+¢)2 = (14a)?) ~qlc—a)(l+c)

a

N[

(b= )1+ B)F ~ 2((1+b)% — (14 ¢)%) = /w(x)dx.

3. Assume that z, € [a,b] is the largest. Then 1 + ¢~ 1+b ~ x,, p(1 +x)? <

w(z) < q(1+2)72, z € [a,2, — 1] and ¢(1 + 2)"2 < w(z) < p(1l + )%,
1

T € [z, — 1,b], where p, ¢ are chosen so pr? = w(z,) = qr, 2. Let ¢ <z, — 1.

Then we have

/p(l + z)%dr < /w(x)dx < /q(l + x)*%dx,
but .

/p(l + 2)%dz ~ p(c —a)(1 + ¢)* ~ p(c — a)z?
and

[

[ a0 b~ gle = @)1+ 9} ~ ale — @y = ple - a)e?

a



So

[

/w(x)da: ~ plc—a)r?.

a
Tn

b
Similarly, [ w(z)dx ~ p(z, — ¢)22 and [ w(z)dx ~ p(b — x,)x2. Then,

Tn

b c

/ w(@)dz ~ p(b — c)a? ~ / w(z)da.

C a

The case ¢ > x,, is similar.

Therefore w is a doubling weight.

Finally, we need to show that w satisfies conditions from Definition [2.1]
Let z,y satisfy conditions from Definition [2.1 with some e.

If #,y € [z, — 1,21 — 1], then w(z) ~ w(y) since (1 + z)? and (1 + )2

are W({—1,1}) weights. Let z,, € [x,y] for some n € Z. Choose p,q such that
_1 1 1

pry, = w(zy) = qzn®. Then p(1+2)? < w(z) < ¢(1+2)72 and g(1+y) 72 < w(y) <

p(1+y)*

Recall that for x,y satisfying conditions from Definition (see proof of Lemma
l1+y) <142 <8(1+y). Then iz, <1+ <1+y <8z, So,

1\~ )
<gq (gxn) = 82px?

< w(y) < p(1+y)* < p(8w,)”.
Therefore w(x) ~ w(y) and w € Wy({—1,1}) \ W.

N
[SIE

p (é%) <p(l+2)’ <wx) <ql+az)

and

N

8 2pa? = q(8x,) 77 < q(1+y)

We are now going to define weighted moduli of smoothness as in [9].

The main part weighted modulus of smoothness is defined as

Q5 (f, A 0)uyp = sup ||w(-)A’,j¢(,)(f, L1 4 AR T — AR m1an2a—anz,  (2.3)

0<h<§

where A is a positive constant.

14
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Definition 2.7. The weighted Ditzian-Totik modulus of smoothness of order k € N
of a function f € L, ,(—1,1) is defined as follows:

— <
Wi (f, A, 0)wp = (F, A, 0)wp + DE(FL A, 8)uwp + QE(f, A, 0)wp, (2.4)
where
k Nk 2
(j)(fa A7 6)w,p - sup ||wAh(f7 ) [_17 -1 + 246 ])||Lp[,17,1+2/_152},

0<h<2A462

and

— —
Q’;(f, A 8)pp = sup JwAE(f,[1—2A46% 1)L, 1-2462,1-
0<h<2A62

Remark 2.8. In the above definition Xﬁ(f,x, [—1, -1+ 2A6%]) = 0, when x + kh >
14248, and NE(f,x, [L — 246%,1]) = 0, when = — kh > 1 — 245°.

Remark 2.9. We use the main part of modulus Af to describe behavior of function
— —
in the middle of interval [—1,1]; we use A and A¥ to describe behavior of function

near endpoints —1 and 1 respectively.

It is difficult to work with modulus w(’Z( fy A, 6)wp. To prove the direct result we

will use another type of modulus of smoothness with the weight w introduced in [19):

W;Sk(fa A7 5)w,p = Qg(fv A? 6)wa,ﬁ7p+Ek(f7 [_17 _1+2A52])w7p+Ek’(f7 [1 _2A627 1])111,1)'
(2.5)

Definition 2.10. We say that two quantities A and B are equivalent and write
A ~ B if there exists a positive constant C' (which we call “the equivalence constant” )
such that

1

— A< B<CA.

oAb s

To show that all results for modulus of smoothes w;’“ are also valid for wé”, we

will prove their equivalence:
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Theorem 2.11. For k €e N, A > 0, w € W and f € Ly,, p > 0, there exists a

constant 6o > 0 such that

w;k(ﬁ A7 5)10,17 ~ wg(.f? Av 5)w,pa

for all 0 < 6 < &g, where 6y depends only on A, and the equivalence constant depend

only on k, w and p.

Remark 2.12. Here and everywhere else “depends on w” means depends on constant

m from Definition 2.3,

Using Theorem [2.11| we can formulate direct and inverse results for both moduli.

Theorem 2.13. Let 1 <p<oo, keN, A>0,we W and f € L,,. Then

En(f)w,p < ngk(fa A, n_l)w,p ~ cwg(ﬁ A, n_1>w,p
and

Wh(f, A Dy ~ W ANy < en™ Y T E(fug,
=1

where constants ¢ depend only on k.

Theorem 2.14. Let f € L,, w e W, 0 <p < 1, then for all k,n € N

En(f)w,p S ng(fa A7 nil)UhP

and
& 1 c

Wi, =)oy < == > T E(f),,
=1

n’ WP — nkp '

where constants ¢ depend only on k and p.

Note that the direct and inverse theorems with w}* were proved in [14].

Consider now the problem of preserving shape.
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Denote by Al(a, b) the set of all I-monotone functions on (a, b) (i.e., functions with
nonnegative [-th order divided difference [tq,%s,- - ,t;; f] for any choice of distinct
points {t1,ta, -+ ,t;} C (a,b)).

Recall that [t; f] = f(t) and, for [ > 1,

[ttt [l = ([t S tieas T = [ty St f/ (6= ).

In particular, A'(a,b) and A%(a, b) are sets of monotone and convex functions on
(a,b), respectively. The error of best [-monotone approximation by polynomials of

degree less than n is

EY D)wp = inf — )|l (-
w (f5 [0, 0])wp pnenigMa’b)HW(f Pl (ot

We also denote
ED(Fup = EL(f, [=1,1])up-

We denote the Jacobi weights by

—1/p,0) if p < o0,
wos = (L4 21— 2), afedyemq PO HP
[0, 00) if p= oo,

Note that, for a, 8 > 0, w5 € W with the constant m = max{2%,2°}.

For Jacobi weights, it is known (see |17]) that the following theorem holds

Theorem 2.15. Letl =1 orl =2,1<p<o00, A>0, ap € J,, and [ €
L, 5p N A(=1,1). Then

E(l)(f)waﬁ,p < cw;(lﬂ)(f,A, 1/n)w, 5p,  forall n>1+1.

n

We will show the generalization of Theorem [2.15

The main result of this thesis is the following theorem

Theorem 2.16. Letl=1o0rl=2,p> 0, A> 0, wis a W weight, and f € L, ,NA".
Then
EO(Fup < cws TV (f A )y, forall n>1+1. (2.6)
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Theorems [2.11], 2.14] and [2.16] immediately imply the following result.

Corollary 2.17. Letl=1o0rl=2,p>0, A>0, we W and f € L,,. Then for
0<vy<l+1, we have

ED(Nup=00m") = (A6, = 0.



Chapter 3

Equivalence of moduli

In this chapter, we prove Theorem [2.11] We start with several auxiliary results.

3.1 Auxiliary Results

We need the following definition of a class of weights defined on [0, 1].

Definition 3.1. We say that a weight function v : [0,1] — [0, 00] belongs to the class
V if, for any x € [0,1] and any y € [0, min{2x, 1}], we have v(x) > muv(y), where

m > 0 depends only on the weight v.

Recall that

— —
Wi(f, A 0)wp = Q5 (f A 0wy + LE(f, A 0)wp + Q5(f A, 0wy

and
w;’f(f, A, 0)wyp = Qf;(f, A, 0)wp + Eu(f, =1, =14+ 2A46%))wp + Er(f, [1 — 2467, 1))

We assume that § < §y := \/%7&, so the intervals [—1, —1 + 2A44?], [1 — 2442, 1] do
not intersect.

Q'(;(f, A, 6)y,p is the common part in both moduli, so it is sufficient to show that

19



20

%
1. Q(’;(f, A 0)wp ~ Er(f, [-1, -1+ 2A52])w7p, and
Ok 2

2. Qd,(f,A,(S)w,p ~ Ek(f, [1 — 2A6°, 1])w’p,

where equivalence constants depend only on £k, w and p.

Introducing changes of variables: x +— 2“2%12 and x — 212—52, we get

L [-1,-142A8% sz —y = &5 € [0,1].

Then with f(y) = f(z) = f(245*y — 1), we have

—142A52 1/p
Bulf =114 248y = int | [ Je@)(7(e) - puo)Pds
-1
1 1/p
= int (245 [ Joi() (o) ~ )Py

0

= (248" By (1, 0, 1)1, 10,00

where v (y) = w(z) = w(2A8%y — 1) and q.(y) = pr(x) = pr(240%y — 1).

Also, since f(2A6%y — 1+ ih) = fi(y +ih/(2A6?%)), we have

— —
Ql;)(f7 A7 6)10,]) = Sup HwAfL<f7 K [_17 -1+ 2A52])HLP[71,71+2A§2]

0<h<2A62
— 142452 Lp
%
. / (@) RE(f,a, [—1, —1 + 2462 Pda
0<h<2A62

21
1/p

1

%

— s 2497 / 010 K o age) (f1, . [0, )Py
0<h<2A62 9

1 —
- (2A52) /]Dosup<1 ||v1 Af{l(fl)HLp[o,l],

<h1<

where hy = h/(2A6%).

For 0 < x; <1 and 0 <y < min{2z4, 1}, let 2y = % and 1, = %. Then,

r = 2A46%z; — 1 € [-1,—-1 + 246 and y = 245%y; — 1 € [-1,—1 + 246?].
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Also, 2z +1 = 4A%r; —1 > 2A6%y; — 1 =y, and so vy (z1) = w(x) > mw(y) =

muvy(y1). Then, vy is a V weight with the same constant m as weight w.

2. 1-248% 132~ y=475€(0,1].

Then with fo(y) = f(z) = f(1 — 2A8%y), we have

1 1/p
Eu(f, 1 —240% 1)), = p,félrf[k / lw(z)(f(z) — pu(@))|Pda
1-2A82
1 1/p
= nt (248 [ Joa0) (alo) — auto)) Py

0

= (246%)"" B( 2, 0, D, o1

where va(y) = w(z) = w(l — 245%), qx(y) = pi(z) = pr(1 — 246%y).

Also,

Ao <
Qi(fﬂ A7 5)w,p = sup ||ZUAi(f7 K [1 - 2A52a 1])||LP[—1,—1+2A(52]

0<h<2A52
1 1/p
%
= swp | [ @)X - 248 )P
0<h<2A62
—2A52
0 1/p
2 _>k p
= sup —2A0 ‘U2(y)Ah/(2A62)(f2ayv [0, 1])[Pdy
0<h<2A52 /
1 —
= (240%)"" sup (02K}, (fo)llz, 0.,
0<ho<1
where hy = h/(2A6%).
For 0 < 25 <1 and 0 < yo < min{2x9, 1}, let x5 = 212—5””2 and yp = 2114_—63’2. Then

r=1-2A0% € [1 —246% 1] and y = 1 — 245%y, € [1 — 2A46%,1]. Also,
20 — 1 =1—4A8%1y < 1—2A48%s = 1, 50 va(x2) = w(x) > mw(y) = mua(ys).

Then, v, is a V weight with the same constant m as w.
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In both cases, we have to prove now the following
— ,
sup HviAh(fi)HLp[Ov” ~ Ek(f7,7 [07 1])111,177 1=1,2,
0<h<1

where f; € Ly, ,([0,1]), v; € V. The equivalence constants must depend only on &, p

and v;.

%
Remark 3.2. Let wi(f,0)y,p = sup [|o; AF(f)||L,01) be the classical weighted mod-
0<h<d

—
ulus of smoothness of order k. Then, wi(f, 1)y, = sup |[;AF(fi)||z,0,1), and so we
0<h<1

may look on the equivalence above as on a type of Whitney’s inequality.

Remark 3.3. For a weight w € V, consider v(xz) := sup w(y), x € [0,1]. Then, v :
0<y<=z
[0,1] — [0, 00] is a non-decreasing function and w(z) < v(x) < m~tw(z), z € [0, 1].

So,veV and v~ w.

Everywhere below, let v : [0, 1] — [0, 4+00] be a non-decreasing V weight.
Therefore, Theorem follows by the following lemma.

Lemma 3.4. Let p >0, k € N, v € V is a non-decreasing weight and f € L, ,[0, 1].

Then, we have
Wk(fa l)v,p < CEk(f)U,p (31)
and

Ei(fop < Cwi(f, 1)y, (3.2)

where constants C' depend on k and p only.

For 1 < p < oo, Lemma could be proved using the same method as in
[5, Proposition 4.2]. We will show this method in Section [3.2] Unfortunately, this
method does not work for 0 < p < 1.

In the case 0 < p < 1, we introduce a new modulus of smoothness @i (f, )y,

defined by
~ —
Or(f,0)vp = sup [[An, o p, (F5 [0, 1)L, 0.07)05 (3.3)

0<h; <9,
1<i<k
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where Khl’...,hk(f, z,[0,1]) is defined recursively by

Z)hl,"',hk (f7 x, [07 1]) = Xhl (Kh2~--hk (f: xZ, [07 1])7 xz, [O’ 1]) . (34)

Remark 3.5. When hy = hg = -+ = hy, = h we deduce

wk(fy 5)v,p < (Dk(fa 5)1},10'

We will show equivalence of @ (f, )y, and wi(f,d),,. In fact, we will prove the

following generalization of Lemma [3.4]

Lemma 3.6. Let 0 < p < 1, k € N, v € V s a non-decreasing weight and f €
L, [0,1]. Then, we have

wi(f, 1), < CE(f)} (3.5)

Ex(f)h, < Ca(f, 1)), (3.6)
and

('Dk(f7 1)€,p < ka(fv 1)€,p7 (37>

where constants C' depend on k only.

Inequality is inequality raised to power 1/p. However, we prove (3.1
only for 1 < p < oo. We will prove in Section .

Inequality will be proved in Section |3.3]

Inequality follows from the following theorem which we will prove in Section

B4
Let Xh be the unrestricted, i.e. defined for all x € R, difference operator defined

by
Rf(x) = flz+h) - f(x)

and let T; be the translation operator defined by

Tif(z) = flz +1),
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where x,h,t € R and f: R — R.
— — —
Note that A, f(z) = An(f,z,[a,b]) for x € [a,b — h|, however, A, f(x) not

necessarily vanishing for x ¢ [a,b — h].

Theorem 3.7. Let n € N, hy, ho, ..., h, be positive numbers. Then there exist

M, € N, collections of non-negative numbers {hi}\ {t;}Mn and a collection of

signs {si}2n | s; = +1 such that

1

— — — —
Ky = By o Ny = i AT, (3.8)

and

Remark 3.8. Ifz,x+hi+---+h, € [a,b], then x+t;, x+t;+nh € [a,b], 1 <i < M,.

So, condition (3.9) guaranties that the following analogue of identity (3.8]) holds

Mn
- -
Ky oo (frs b)) = si A (frw+ 13, [a,0)), @ €fa,b—hy—--—hy]. (3.10)

=1

The following lemma immediately follows from [14, lemma A.1].

Lemma 3.9. Let p > 0, k € N and v € V be a non-decreasing weight. Let also Py
be the polynomial of near best approximation of f € LL,, on interval I C [0,1]. Then

it is a polynomial of near best approximation on any interval J, I C J C [0,1] i.e,

1f = Pelliyne < cEx(fs I )vp,
where the constant ¢ depends only on m, p and |I|.
Lemma yields the following corollary.
Corollary 3.10. Let p > 0, k € N and v € V be a non-decreasing weight. Then,
Ei(f,10,1])vp < cEi(f,10,3/4])up + cE(f, [1/4,1])up,

where constant ¢ depends only on v and p.
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Proof. Let Py be the polynomial of near best approximation on interval I = [1/4,3/4].
Then by Lemma 3.9 P, also is the polynomial of near best approximation on intervals

Ji = [0,3/4] and J, = [1/4,1]. Then,
Ek(f: [07 1])5,1} < ||f - Pk”lﬁlip([OJ]),v

~ [1o@)f@) - PPz

3/4

/|v _ Pz ]pda:+/]v _ P(x))Pdz

1/4
- Hf Pka ([0,3/4)), v T Hf Pk‘HL ([1/4,1]) 0
< By (£:10,3/4])y, + cEx (f, [1/4,1]);,,

and the proof is complete.

3.2 Case 1 <p< oo in Lemma

We start with the proof of (3.1)). That is, we show that if 1 <p<oco, ke N, v eV

is a non-decreasing weight and f € L, [0, 1], then

wk(f) 1)v,p S CEk(f)UJJ

Proof of (3.1]). Since Xﬁ(Pk) = 0 for any polynomial P, of degree < k, we can write
— —
[o(2) AL(f,2,[0,1])] = [(2)[| AR (f — Pr, 2, [0, 1])]
k
@3 () 0 = Rt -
=0

Now, using the fact that v is a non-decreasing weight function, we can estimate
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%
lv(x) A%(f,2,[0,1])| as follows

— b . k ,
o R 0D < 3 ote + =) x| (5) (7 = e+ (= i)

(kf) w(f — B (x + (k — z‘)h)‘ .

(4

Note that we set v(y) = f(y) = Pk(y) = 0 for y ¢ [0, 1].

Then we get

Lk
%
HUAi(f> E [07 1])“]L,;[O,1] < (/ (Z
0

=0

(’“) (f = POl (@ + (k — )h)

p 1/p
) da:)

1=0

sé(’“) / o(f = Po)l (x + (k —i)h)|)"dx :
sfj (k) / |o(a)(f(x) - k<x>>”dw) :

= 2"[|v(f = P)llL, 0.1

Taking supremum over h and infimum over P, we deduce ({3.1).
O

We will now prove (3.2] - for 1 < p < oo. We will adopt the idea from [5]. Note that

%
in [5] modulus of smoothness wy, is defined with Xk ¥ f(x) instead of A¥(f,z,[0,1]),
i.e., it has different behavior near the right end of the interval [0, 1]. Therefore, we

have to modify the proof from [5].

Proof of (3.2). By Corollary we have
Ek(fv [07 1])1},;0 < CEk(fa [07 3/4])1)7;0 + CEk(f? [1/47 1])v,p

It is sufficient to show that

Ei(f,10,3/4)vp < Cwr(f; vy (3.11)
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and
Ek(f? [1/47 1])11,10 < ka(fa 1)1)710' (312>

To prove the converse inequality (3.11)) for 1 < p < oo we define the Steklov

1

mean function with 7 = o

fr(x) = (2k)*

O\N‘H
=
o

\»;ﬁ"—‘

(Z(—l)i_l (l;) flo+ir(t+---+ m))) dty ... dty.

=1

Steklov function is k£ times continuously differentiable as k-times integrated con-

tinuous function. Note that

<z tir(ti 4+ +t) <r+k ! +1—+kT
T i 1T(l1 k T T 2]{3 o =X 2,

so @ +it(ty 4+ -+ t) €[0,1] for 0 <z <1— % and f.(z) is defined on [0, 2] for

_ 1
T_2k'

Compute now fT(k) for0<z<1-— k—; =1-

>

1
4

VR
\'M?r
|
=

7

—
VR
S

.)f(k)(x +ar(ty + - +tk))> dty . ..dty

SOz +ir(ty + -+ tp))dty ... diy

1
1T

_ Z ( ) (2k) (27’)_’“2% f(a).

Recall that 0 < z < 3 and so x4+ k< < 1. Then zlfif(x) = X’L(f,a:, [0,1]) and
2k 2k

i f(k 1)(1- + ZT(tQ +---+ tk))dtg coodty

o o
—ye T —y
o\§‘H D\ﬁ"_‘

1w =S -0 (Fewrin B (e o). 61y
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Note that the k-times differentiable function f, can be estimated by its Taylor

polynomial. We write

Er(f,10,3/4)up < o(f = )l 0,87 + (7 = Ti(f2) e, 0,21

= [1 +IZ7

where Ty(f,) is the Taylor polynomial of degree k — 1 of function f. at the point

z0= 2.
Consider now ;. Note that
3% ok
(zk)k/.../dtl...dtk:L
0 0
and so

1
2k
%
| ./v(x)A';(t1+,__+tk)(f, 2, [0, 1])dty . . dt,
0

%
[0 A% vty (F 75 [0, ) 0,200 - - d,

< (2% [ ...

N
sup ||UA];L(f7 ) [07 1])||LP[O,%]dt1 s dtk
0<h<Z

%
< sup [[vAF(f, -0, 1])HLP[0,§]
0<h<1

< wk(f? 1)11717'

]LP[074]
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To estimate Iy, we use the remainder term of the Taylor formula. We obtain

N[

W0~ Tl £ G [ = 2y

T

W

< = [ = Wl

x, x>0;
where x, =
0, otherwise.

Using the above inequality we obtain

=

3

1= / o(@P|f(2) — Talfr, 2)Pde

3 3 p
1 1

<a=mi | ]| Jo- 1wl a

0 0

Recall that for measurable function F' : S; x Sy — R Minkowski’s integral in-

equality is (see [22]):

P 1/p 1/p
(/ dy) < / ( |F(z,y)| dy) dx.
So S1 Sa

/sl F(x,y)dx



Then, with Sy = S, = [0,3/4] and F(z,y) = (y — )" £ (y)|v(y) we obtain

1
I, < k’

/ k=D
0

"()lv(y)

o —

= ®) () |v(y
<k—1>!<<—1p+ é/'f o

(y — )™

= (k=1)ptl pd
vty (( )p+1y ) Y
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P

Paz | dy

3 =

Pdx | dy

=

k1+

In the last integral, we use Holder’s inequality for functions | ka (y)|v(y) and ykiH%

to obtain
I < 1 IS @) @) o2 18 0.2
(k — 1) ((k=Dp+1)»
%
¢ / O wldy |
where ¢ satisfies L +1 =1, and C = 1 o HP [P (0.2]) depends on k
P (k=) ((k=1)p+1)7 !

and p only.

Then, taking into account (3.13)), we obtain

[2 < C sup HA (f7 7[0 1])”1[4;0(01 < ka(fa )v, .

1<i<k

Note that argument is valid for v = 1, so Ex(f, [0, 4]) < Cwi(f,1),.

It remains to prove inequality ((3.12)).
We have mv(3) < v(z) < m™tv(3), for § <z <1, and

Then it is sufficient to show that Ej(f,[1,1]), < Cwi(f,1)

so v(z) ~ v(3) on [1,1].

p- This follows from the

previous case with v = 1 after change of variable x — y =1 — . O
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bik

3.3 Proof of inequalities (3.5) and (3.6

In this section, we will prove inequalities (3.5 and (3.6 of Lemma . As mentioned
earlier, inequality (3.7 follows from theorem which will be proved in Section .

Recall inequality (3.5)):
wk(f? )gp < CEk(f)v;m
where 0 < p <1, k € N, v € V is a non-decreasing weight and f € L, [0, 1].

Proof. We prove inequality (3.5) using the same method as the one used to prove
inequality (3.1]) in Section 3.2} Recall that

k
() R (f, 2, [0, 1) Z

where v(y) = f(y) = Pi(y) = 0 for y ¢ [0, 1].
Then

() (f = POl (@ + (k — )|,

1

loRECS, - 0, DE o < /(

)

¢
(

E

(k) w(f — B (x + (k — z’)h)‘)pdx

]

Il
=)

IA
>~

p/ o(f = Py)] (z + (k —i)h)|)’dz

) /i
’“)O/|U o) [de

= 2"[|o(f — Pk)H]’ip[O,l]a

IN

- - -

I§
o

A

Taking supremum over h and infimum over P finishes the proof. ]

Now we are going to prove inequality (3.6)), which is

Ek(f)gp < ka(fa )vp
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Whitney’s inequality
E(f)p < Cwr(f,1),
was proved in [24]. This is inequality (3.6) with v = 1. Recall that, according to

Remark 3.5 wi(f,1) < @(f,1). So inequality (3.6]) holds for v ~ 1.
We will prove inequality (3.6]) by induction on k.
The base case (k = 1) is similar to 7, Lemma 12.5.2].

Lemma 3.11. Inequality (3.6)) holds for k =1, i.e.

El(fv [07 1])2,;0 < C(:)l (f> 1)€,p'

Proof. Note that

o (f,1)7, = wi(f,1)F, = sup lo() Rl s, - [0, DI, 0.0

0<h<1

Then, we need to show that

sup [[o() An(f- 0,117 0y = cEa(f, [0, 1])2,

0<h<1

or, equivalently

1-h 1
sup /0 (v(@)|f(z +h) = f(2)])" dw = Cinf/o (v()]f(z) — al])" d.

0<h<1 acR

Using the fact that supremum is not less then average we obtain

sup / C @)|f @+ k) — f@)]) e >

0<h<1

Lt (3.14)
/0 /o (v(@)|f(z +h) — f(2)]) dxdh.

After change of variables y = x 4+ h in (3.14) we obtain
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@mmzlif@muw—ﬂmwmw (3.15)
yva: — f(2)? dxd
ZKMA(UV@ f(@)))? dady
1 1/2 1 Y
= v(z — f(x)D? dxd v(z — ()P dad
L el - @) y+[mLJ<ﬂﬂw F(@)))" dady
=L +1

We leave the first integral without changes. In the second integral, we change the

order of integration and swap variables.

h=[;LJWMﬂw—ﬂMVM@
=[ﬂ/w@uw—ﬂmww@

z/ (mo(1/2)| £ (y) — f(2)])Pdady
/2y

QAQ (m*o(@)|f(y) — F()])" ddy

=1,

Now, the second integral can be estimated by

m2p 1
b= —p b+ ——l,
m2P 1 I

I
Z 12t

:Wwwﬂiﬂz/) ~ F(@)))" dudy

- m2p +1 /1/2 /1/2 (v(2)|f(y) — f(x)|)! dedy.




Taking into account (3.15)), we get

o(f, )8, > L+ 1y

1l
2]1+c/ / (v(z
172 J1/2

—c / ( / "y / /) ()| (w)
> // / (@) f(y) -

>c inf / (w(@)|f () — F(@)) d

1/2<y<1 J

> CEl(f I)

v,p?

and the proof is now complete.

— f(2)])" dady

— f(@)])" dady

f(@)])" dedy
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]

Note that the polynomial (constant) of ’good enough’ approximation is equal to

f(y) for some y € (1/2,1). A more general result is valid that shows that such y

could be chosen from any interval [a,b] C [0, 1] with constant ¢ depending also on

b—a.

Lemma 3.12. For any interval [a,b] C [0, 1], there exists y € [a,b] such that

r(f, )0, Z ellf() =

where constant ¢ depends on w, p and b — a.

Proof. Assume that 2a > b (if not we can replace interval [a,b] by [(a + b)/2,b]).



Then, (3.15) yields

s | [

o
[f
[[e

=L+ 1+ Is.

Y

Vv

Similarly to Lemma [3.11] we get

oef [
13>c//

and

Then

(f 1)vp>11+12+[3

e f e

)P dxdy
)P dxdy
)P dxdy

)Y dxdy
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W dedy =: 1,

W dedy =: I3,

1
(Il—FIQ—{—[g—l—CI/ —|-C]/) >C([1—|—13—|—I/+[/)

([ // // o) [)ee

x)])" dedy

)P dxdy

>c<b—a>/0 (0(@)|f(y) — f(2)])" d,

for some y € [a, b].

[]

Now we are going to prove the inductive step for inequality (3.6). Let & > 1 be

fixed. Assume that

By 1 (f)h, < Capa(f,1)0,

(3.16)
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holds for every function f € L, ,[0, 1] with constant C' depending on k only. We need
to show that
Ek(f)g,p < C(Dk(fa 1)5,])‘

Our strategy is to estimate wi(f, 1)), by

- —
H Ahl,"' 1 (f’ 5 [07 1]) - Ahh'" Jhie—1 (fv Y, [07 1]) ||£p([0,1])7q)

and use the inductive assumption (3.16]). Note that y may depend on h;. However, if

f = P, is a polynomial of degree less then k on some interval [a,b] C [0, 1], then for

b—a

b—a a_+b]
2k

sufficiently small h;, 1 < i < k — 1 (for example, h; < %), and for any y € [a, 3
we have y + hy + -+ + hy—1 € [a,b]. Then

- -
Ay (19,10, 1]) = Aopy oy (Bi 9, [0,1]).

Let Py(y) = ap_19** + -+ + a1y + ap. Then

th,l(Pk, y,10,1]) = Pi(y + hi—1) — Pi(y)
= a1 ((y + ) =y D+ a((y ) —y) =

= ak_l(k: - 1)hk_1yk_2 + ...

is a polynomial of degree less then k — 1.
Similarly, Ay, .. p, (P, y,[0,1]) = Ay, (Ah2___hk_l(Pk, v, [0,1)), z, [0, 1]) is a poly-
%
nomial of degree less then k — (kK —1) =1, i.e. Ap, ., (Pr,y,[0,1]) is a constant
a+b

function. Then for any y € [a, “32] and sufficiently small h;, 1 <i <k — 1 we have

%
= || Ahlﬁ"vhkfl(f - ka " [07 1]>H]Lp([0,1}),v' (317>

Let now Q; be the polynomial of degree < k of near best approximation of

function f on the interval [1/2,2/3] with the weight v, i.e.,

1f = QllL,1/2.2/3),0 < cER(f,[1/2,2/3])0p-



37

Define

flz), x€(0,1/2);

fi(z) = f(2)x(0,1/2) + Qr(z)x(1/2,1) =
Qr(x), x € (1/2,1),

and

Qr(x), x€(0,1/2);
fl@), @e(1/2,1).
In order to prove inequality (3.6]) we split it into the following chain of inequalities

fa() = Qi(x)x(0,1/2) + f(2)x(1/2,1) =

(and prove each if these inequalities separately):

o(f 18, > c(@(f, DE, + k(fo, D)D) (3.18)
> c(Ex(f1,10,1])op + Ei(f2,10,1])0,) (3.19)
> cEp(f,]0,1])u,p- (3.20)

Recall that the modulus of smoothness @y (f,1)? , is defined by equation (3.3) as

~ —
Or(f, D)5, = sup || Apyon (55 [0, )L, (0,10

0<h;<1,

1<i<k
Note that
_) n— l
Aon(fo, [0,1)) = 3 Ry(fo + ih, [0, 1]),
=0

for x,x + nh € |0, 1]. Therefore

- .
Anh1 nhk(f xz, [O 1 Z Z Ah1 fvx + Z1h1 + -+ Zkhka [07 1])7

11=0 1, =0

for z,x +n(hy + -+ hi) € [0,1]. Then,

— —
sup ||UAh17“' 7hk(f? s [O’ 1]) ||€p([0,1]) S nk sup ||UAh1,“~ ,hk(.fa ) [07 1])”&,([0,1})
0<h; <1, 0<nh;<1,
1<i<k 1<i<k

(3.21)

So, it is sufficient to consider h; < Gk, 1<i<k.
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Proof of inequality (3.18). Let 0 < 2 < 1—hy—- - -—hy,. Consider Khl,...,hk(fl, z,[0,1]).
This is the sum of terms of the form +f;(x 4+ h;, +--- + hij), 1< <---<i; < k.
We write ys := x+hy, +- - -+ h;,, where S' = {i1,...,4;}. Recall that fi(ys) = f(ys),
for 0 < yg <1/2, and fi(ys) = Qk(ys), for 1/2 < yg < 1. For 1/2 < yg < 1 we can
write f1(ys) = f(ys) — (f(ys) — Qr(ys)). Then,

0(@) Ko 2 0, 1| = 07(@) | By (£, 10,10) + D @ = ()
S
< o) K (2, 0,1D)] + D 10(@) (@1~ Niws)P
S
where sums are taken over all subsets S = {iy,...,%;} C {1,...,n}, such that

Ys =2 + hi + -+ h;; > 1/2. Now we used the fact that v(z) < v(ys) since v is a

non-decreasing weight to obtain

0(@) Ky (12 [0,1)] < [0@) B (2 10,1+ o) (@1 = NP
S
Then

— -
|| Ahl,"‘yhk (flv R [07 1])”&([0,1]),” < || Ah17“'7hk<f7 K [07 1])||£p([o,1]),v+2k||f_Qk||€p([1/2,1]),v-
(3.22)

By Lemma [3.9[ with I = [1/2,2/3] we get that @ is the polynomial of near best

approximation on interval J = [1/2,1], i.e.,
1 = QRllE o nassye < Bl /2,102,
By taking supremum over 0 < h; <1, 1 <i < k we get
o (fr, D8, < @(f, 18, + 2 Ey(f,[1/2,1))% . (3.23)
On the interval [1/2, 1] we have v ~ v(1/2), and so

Ei(f.11/2.1])up ~ 0(1/2) Bl £, [1/2, 1)), ~ 0(1/2) sup [|R5(S,~ [1/2 1))y /2.0

0<h<1
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In particular,

%
B (f,[1/2,1])0p < ¢ sup AR [1/2, 1)y (/2100

Using Remark we can we get the following inequality

%
Ek(f? [1/2’ 1])%? < CO Sl?gl H Ahl,m 7hk(f7 K [1/27 1]) HLp([1/2,1])' (3'24)
<nh;<1,
1<i<k

Combining (3.23) and - we obtain

N N
sup  [[vAp o n (f1s 5 [0, 1) 1L, 0,1)) <COS}1L1P |0 A py e (5 [0, D |, f0,17)-

0<h;<1,
1<i<k 1<i<k’

(3.25)

Let us prove now inequality

- —
sup ([0 Apy o py, (f2r 5 [0, 1), qoy < ¢ sup (oA ny o n (55 10, 1) L, o))
0<hi< g, 0<hi<gp
1<i<k 1<i<k

6)

(3.2
1 <i<k. Thus, z+hi+--+hp < 245§ <

Recall that we consider only h; < 6k, %
for0 <z < % Also,
— —
Ahl,---,hk(f27 z, [07 1]) = Ahl,---,hk<Qkax7 [07 1]) = 07
for0 <z < % Therefore,

— —
sup HUAhlr" Jhy (f7 ) [07 1])”]141)([071]) = Ssup HUAhl,"- hy (f7 "y [1/37 1])”]14;9([1/3,1})'
1<i<k 1<i<k

Similarly to inequality (3.22)), we can prove the following

_>
1R s U3 DI sy < w13 DI gy (3:27)
+2ka_QkHLp([1/3,1/2]),U' (3'28)

Using Lemma 3.9 we get

Hf - Qk”lﬂ.:p([l/Zi,l/Q]),v < Hf - Qk"ip(1/3,2/3),y < CEk(fa [1/37 2/3])57p
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Again, v(z) ~v(1/2) on [1/3,2/3] and

%
I = Qullt, s/ = € 502 M An (s [1/3, 1/ 2D 11/51/2),
1<i<k’

which deduces ([3.26)).

Adding (3.25)) and (| gives inequality - [

Proof of inequality (3.19). We need to prove inequalities
or(fi, ) > cE(fi, [0, 1])Up, 1=1,2.
Recall that

%
| Ay e (f1s 5 [0, 1) L o0 = ||AhkAh1 gt (15 [0, 1) e, 0,10

%
Then, we apply Lemma [3.12| to the function ¢;(z) = Ay, . p_, (f1,2,[0,1]) and
the interval [1/2,5/6]:

%
(glv 1) > CHAhl hk—1<f17 ) [07 1]) - Ahl “hi— 1(f17y7 [0 1])H]Lp ([0,1]),

where y € [1/2,5/6].
Recall that we can consider only h; < 1<t <k Theny,y+hi+---+hxg1 €

[1/2,1], and so

6k’

— —
Ahl,--- Jhie_1 (fl; Y, [07 1]) H]LP([O,I]),U = Ahl,--- JBhe_1 (Qka Y, [07 1]) HLP([O,I]),U

Then, by (3.17) and the inductive hypotheses (3.16)), we have

@r(f1,1/6)8 , > c||Xh17...7hk_1(f1 — Qk, [0, 1])”&([0,1}),1;
> cBpa(fi = Qx, [0,1]),
> dlfi = Qr — Reall?,
> cEy(f1,[0,1))F

v,p?
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where Rj_q is the polynomial of degree less than &k — 1 of near best approximation

for fi — Q.
For f, we apply Lemma [3.12| to the function go(x) = Khl,-..,hk,l(fml‘, [0,1]) and

the interval [0,1/3]. Similarly, we get

W (fo, 1), = cEr(f2,[0,1])7
]

Proof of inequality (3.20)). Since f; = Qx on [1/2,1], Qy is a polynomial of the best
approximation of f; on [1/2,1]. So it is also a polynomial of near best approximation
n [0,1]. Similarly, @ is a polynomial of near best approximation of f; on [0, 1].

Then, by Lemma

Ey(f1,[0,1])7, + Ex(f1,10,1])7, = cllfi — Qk”m,,([m +cflf2 — anﬁp([o,l]),v =
colf- QkHLp(o1/2 +flf - QkHLp( [1/2,1)), =c|f- Qk”]LP (01w = cEL(f.[0,1])7,

]

Combining inequalities (3.18)), (3.19)) and (3.20) finishes the proof of inequality
9.

3.4 Proof of Theorem [3.7

We will prove a more general result.

%
Ford € N, h,t € R, the unrestricted difference operator A%d) and the translation

operator Tt(d)

Let € R and f : R? — R. Then

may be defined as follows.

RO f(a) = fla+h) — f(x)

and

Tif(x) =T\ f(x) = f(z +1).
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We also define the d-dimensional forward n-th difference operator by

- —(d)n —
A= KD .= AD XD
~———

n times

— -
Clearly, AV = A, and TV = T,

Theorem 3.13. Let d,n € N, hy,hy, ..., h, € R Then, there exist M, € N,

collections of vectors {hiYMn {t3Mn and a collection of signs {s;}M™n, s; = =+1,
such that
- - - — o
d d d d)nrp(d
Koo = DG = A A =N s AT, (3.29)

1

and all vectors t;, nh+t;,i=1,2,..., M,, belong to the convex hull V of all vectors
of the form hg := > h;, S C{1,2,...,n}.

i€s
Remark 3.14. For S =0, the sum in hg is empty, and we define hy := 0.

Remark 3.15. A simple construction was presented in [3, Lemma 5.4.11]. Namely,

forDc{1,....n}, let hp =— i ‘h;, tp = 3 h;. Then

i€D ieD
— .
Bt = 3 (F)PAR T,
De{1,...,n}
However, in this construction, vectors ip, nfL'D +tp, D C {1,...,n}, do not neces-

sarily belong to the convex hull V. Indeed, let n > 2 and D = {1}. Then
{D + n}NLD = hl — nh1 = —(n — 1)h1

If all components of vectors h;, 1 <i < mn, are positive then vector —(n — 1)hy is not

n V.

We will need the following lemmas.
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Lemma 3.16. Let n €N, hy, ho, -+ , hy, be vectors in R?. Then
~ n—|S|
Ay by i f(T) = Z (=" f(z + hs), (3.30)

Sc{1,2,+ n}

where hg := > h; and |S| is a number of elements in the set S.
ies

Proof. We will prove this lemma by induction.

Base case n = 1:

K f(@) = flao+h) = f(@) = fla+hey) = fla+he) = S (~1) B f( + hs).

Sc{1}

Suppose that identity (3.30]) holds for n = k, and prove it for n = k+1 as follows.

— = = —
Ah17h2a""hk+1f<x) = Ahk+1 Ahhhz,"',hkf(x) = Ahk+1 Z (_1>k7‘s‘f(x + hs)

SC{1,2, ,k}
= Y V)@t +hs) = D (DM @+ )
SC{172""»k} SC{LQ,---,IC}
= Y (MR by + Y (=DM (4 hy)
Sc{1,2, .k} Sc{1,2,- ,k}

= X UMb,

Sc{1,2, ,k+1}

O

Lemma 3.17. The convex hull V in the statement of Theorem|3.15 could be expressed

as

V={veR'[v=) \h,0<)\<11<i<n}

=1

Proof. We defined V' by
V= {UeRd’U:ZAShS,Z)\s:L)\SZO,SC{1,...,n}}.
S s

Let
Vie={veR' [v=>) Ah,0< N\ <1 1<i<n}.

=1



44

We need to show V = V;. We will do it in two steps.
Step 1: V C V;.
Consider v = Y Aghg € V.

S

U—Z)\SZh —ZZ)\Sh = Z)\h

icS i=1 §3i
Then 0 <\ =) ¢, As <> g As=1. S0V C Vi.
Step 2: V1CV
Cons1derv—2)\h e .

1=

With out loss of generality assume 0 < A\ < --- <\, < 1. Then
v = Zmi =M(hi+ho 4 R+ Ao — M) (ha + hg + -+ + hy)+

=1

ot (et = An2) (bt + By) + (A = Aci) Z Ashs,

where )\{1 n} = )\1, /\{2 ..... n} — )\2 )\1, cey )\{n} = )\n — )\n_l, )\@ =1- )\n. For all
other S, we have Ag = 0. Since for every S, 0 < Ag <land ) jAs=1,V, CV.

Since V. C V; and V; C V, we have V = V;. O

.....

Proof of Theorem |5.15. First, we will prove theorem for n = 1,2 and then we con-
sider odd and even n separately.

Ifn=1 weset My =1, h] = hy, t; =0 and s; = 1, and so ((3.29)) clearly holds.

The idea of the proof for n > 2 is to consider subsets S C {1,...,n} withn ¢ S
(there are 2"~! such subsets) and S’ C {1,...,n} with n € S’ (there are 2"~ such
subsets). Then, for each S # n we create a pair S’ := S’(S) > n and rewrite the
right hand side of identity in the form

Z (—1)" B f(z+ hs) = Z (=18 f(x + hs) — f(z + hsr).
SC{1,2, n} SC{1,2,+ n—1}
For an appropriate pairing S, S’ we will have

Ripoemf@ = S (=) ‘S‘A”S, os Tho (). (3.31)

Sc{1,2, n—1}



45

So, our goal is to find such pairings of S and 5.

Let n = 2. Then we pair § with {1,2}, and {1} with {2}.
Remark 3.18. Clearly, 2¢ 0, 2 ¢ {1} and 2 € {1,2}, 2 € {2}.
Now, we have
Ko (@) = f(2) = fla+hy) — f(z+ho) + f(z+ hy + ho)
= fa) -2+ 2

— flz+hy) +2f(x+

)+ f(x+ hy + ho)

(3.32)
Ity pe s h)
N

Ail_h2 Tth(l’).

%
- A%1+h2 f(l’) -

2
With M, =2, by = 382 pl = mohe 4 =0 ¢y = hy, 51 = 1, s = —1, identity

(:32) becomes (3.29).

We now check the second condition of the theorem:
tir=0=hy eV,

tQZhQZh{Q}E‘/,
20 +t1 =hy +hy = hpa €V,
Qh/2+t2:h1=h{1}6‘/.

Suppose now that n > 2.
We were unable to find a pairing that satisfies (3.31]) in the general case. Hence,
we first complete the proof with an additional assumption (Part I) and then (Part

IT) show how this assumption can be removed.

Part I: proof with an additional assumption

We assume that additional condition

(n—i)h = ihn_y, i=12...,n—1, (3.33)
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holds.
For each set S C {1,...,n — 1}, we define the corresponding set S’ := S’(S) C
{1,...,n—1,n} as follows:
S =8(S):={1,...,n}\{n—1i]ie S} (3.34)

Note that for a given S’ we can recover S such that S = S’(S) by the following
rule:
S={1,....n—1}\{n—i]ie S}
Recall that hs := > h;, S C {1,...,n}, and, in particular, for S = (), hs = 0.

i€S
Also, note that

hs =Y hi= > hithy=ho+ Y ho (3.35)

€S’ n—i¢S ¢S
1<i<n—1 1<i<n—1

For S C {1,...,n—1}\ {i}, denote S; := S U {i} and note that
Si=(8) ={1,....n}\{n—jljeSU{i}}
={L....n}\({n—jljeStu{n—i})
=({L....n}\{n—jljeSH\{n—1}

=5\ {n i)
and
hs: = hsr — hn_;
Consider the sum
S =S foh o) = Y (—D)SIRL,  The f(2), (3.36)
Sc{1,..n—1} "

where S’ is defined in ((3.34]).
Each term in the sum (3.36]) will be dealt with separately. Since

n

(5 By i ) = S0/ () ot s 4 1208

=) (—1)lsl+n—i (@)f(IJF thg n (n—i)hs)’

] n n




then

S= Y (—1)ISI+"—i(7?>f(m+ihS’+(”_i>h5), i=0,...,n

] n n

Sc{1,...,n—1}
Hence, for i # 0,n, using (3.33|) we have

Ei o 1\IS|+n—i ihS/ (n—l)hg
= D (LT S

n

)

— Z + Z (—1)|S|+””'f(a: 4 ihg + (n — i)hs)

SC{ln—1}  SC{l,..n—1} n
SZi 531
= Z (_1)|S|+n—i (f( + thy + (n - i)hS)_
Sc{1,...,n—1}
SHi
Fa 1 Doy (n—1) Su{})>
n
- > (—D'S‘*"‘i(f<x+ih5'””"')hs>—
Sc{1,..,n—1} n
S
t(hsr — hp—i) + (n—1)(hs + Ry
s Lo =i 0= s 1))

_ Z (—1)lSl+n=i (f(x n ihs + (n — i)hs)_

Sc{1,...,n—1} n
SHi
o+ s (n —i)hs n( ) )>
_ Z (—1)ISTn—i (f(:v n ihs + (n — i)hs)_
Sc{1,...,n—1} n
SHi

flz+

n

ihg + (n — i)hs)) _0

Since ¥; = 0 for ¢ # 0,n, we conclude that

Y=Y+ Xy

47
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Now,
So= S0 (1SS + h)
Sc{1,..,n—1}
and
o= Y, (DFfe+he),
Sc{l,...,n—1}
and so

S=S+Zy= Y (=D f@tng)+ > (D)FIf(@+ he)

Sc{1,...,n—1} Sc{1,...,n—1}
= Y (U@ h) + (—)S (@ + h)).
Sc{1,...,n—1}

Recall that S +— S’ is a bijection. So, if S runs through all subsets of {1,...,n—1},
then S’ runs through all subsets of {1,...,n} that contain n. Note also that (3.34))
implies | S| + |S’| = n. Then,

= ), (D" Pt hs) + (1" (e + b))

and, by Lemma [3.16]

%
Y= Ahh'”,hnf(m)'

—
The identity ¥ = Ay, ... 4, f(x) can be rewritten as

- -
Ah17"'7h7L - Z (_1)‘S‘A7;Lls/7hSThS

Sc{1,...,n—1} (3 37)

where, by (8:33),
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and

tS = hs = th

icS
Now we will check that vectors tg and Al in identity (3.37)) satisfy the second

condition of the theorem:

tS:hSGV,
nhy +ts = hy + Z Ry s — Zh +Zh_h + Z h, i=he €V.
1<z<n 1 ies ies 1<z<n 1

Hence, if condition is satisfied then our proof is complete.

Part II: proof in the general case
_>
In the general case, our goal is to rewrite Ay, p, ... 5, in the following form.

m

— —
Ky gy = A RTCICE
=1

where vectors hgi), hg), e ,hg) satisfy condition (3.33) for all i = 1,...,m. Then
_>
we rewrite each A p( using (3.37) to find the needed identity of the form

(3-29).

hgl) 7th)7 ’

We consider the cases for even and odd n separately.
Case 1: n is odd.
Suppose that n > 3 is odd, i.e., n = 2k + 1.
All difference operators in Z)hl e Kh commute, so we can write them in any

order. Group Ah and Ah , 1 < i <k together. Note that we left Ahn unpaired.
- - = = - o - =
Apphy = D, (Ahlﬁhn_l) (Athhn_z) (Ahk Ahnfk) : (3.38)
For each pair Ah Ah , 1 <1<k we useto get

A2 Th . (3.39)
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Then we combine (3.39) and (3.38]) to obtain

— - (= — — —
2 2 2 2
Ahlv"' i - Ahn (A hithn—1 — A hi—hp_1 Thn—l) o (A hpthn_ — A hg—hn_k Thnk) :
2 2 2 2
(3.40)

We expand the product in (3.40]). Let

k
— —
e:=+A,, (A%iihn_i Thnﬁhni)
| | PnoiFhnoi

i=1 2
be an element in the expanded product, and let A := A, be the set of indexes j, for

which the sign '—’ was taken in the j-th bracket. Then

2

k
— —
A | | 2
€= (_1)| |Ahn (A hi+(1726i,A)hn7i T(Si,Ahn—i)

i=1
k
— —
= (_1>|A|Ahn H (AQ’Li+(125¢,A)hn—i) TZ hp—jo
P S — jEA
where
1, ifie A,
0ia =
0, if gé A.

Taking the sum over all sets A we obtain

k
- - -
Apyo by = Z (DX, H (A%ﬁ(l_mm)hn_i) Ts b,y (3.41)

AC{1,...k} i=1 2 jea

Now, we use the fact that

f(x+mh) = f(x) = (f(x +mh) = f(z + (m = 1Dh)) +--- + (f(z +h) = f(2)),

which implies

n—i—1 i—1
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Using (13.41)) and (3.42)) we obtain:
N - k n—i—1 N
O — Z (—)AA,, H ( Z Ahi-&-(l—%i,A)hniTAhi+(1—26¢7A)hni) X

AC{L,...k} i=1 \ j=0 2(n—i) I 2(n—i)

i—1
%
X (Z A hi+(1—25i,A)hn—iTlhi-i—(l—%z’,A)hn—i> TZ hn—;
21

=0 21

JEA
— k n—i—11i—1 N N
= Z (_1)|A|AhnH Z <AththTjthTlth) TZ P
AcA{1,...k} i=1 j5=0 [=0 nt ’ n—i i jeA
N k _ n—i—1 i—1
NP OICILE | (EUPWE b SICHININY) SV
AC{1,...k} i=1 n—t’ i =0 1=0 n—i i €A
= Z (=)D ATy,
AcA{1,...,k}
(3.43)
where
) hi + (1= 28, 4) i hihnoi i g e A;
A= =
2 hithnos if g A,
- -
DA - AhnH (Ath th) (344)
i=1 n—t?’ 1
and

=1
- = - = T 3.46
= An 4 Anyy Anga Anyy Ay g Any s Ay, ( )
n—1 n—2 n—k Tk 2 1
%
= Aillilz..jln_lhn7

where

. AL i1 <i <k
] A ppi1<i<n—1.

n—i ’
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Then, (n — Z)ﬁl = ih, ; = hia, 1 <i <k, and so P, ... hy_1, hy satisfy condition

(3.33). We can now rewrite (3.46)) using ([3.37)):

_>7Z
Di= > (-)¥&A T (3.47)
Sc{1,...,n—1}
where
/ 1 7 7
hAS = E hn+ Z hn—z hz
¢S i€s
1<i€n—1
1 -1
-2 (s S s ; )
1 i a
= n, y ’
n ( +Z( ’Sn—i)
hn—i,A hn i, A
* Z ( [ — n—z))
= k:+1
k
1 hiA hia
= — h 1 - z n i 1—4 5” t
- ( +Z 5~ On—i,s) +ZZI( s) —z)
k
n hiA
= — i, 5n—i —1 ; —
n Z:: S ¥ On—i§ )z(n—z)
and

hi a hi a
t —Eh—g@h—g dig—— + Op_is—— | .
A,S 2 s 4 ( — 57 )
Now, consider the translatlon part (3.45) and expand the product.

For the term 7. in the expanded product and each i, 1 < i < k we pick indices
J = Jji:=gi(r) and [ :=I; := l;(7). Let J := J(7) := {j1, Ja, .., Jr} be the set of
picked indices j and L := L(7) := {ly, 2, ..., I} be the set of picked indices I. Note
that()gjign—i—land0<l4<2'—1 1 <14 < k. Then,

T, —HT ay rua T sy
=1
and so
th
T E (jn— ) Z —j = tAJL-

i=1 JjEA



53

Taking the sum over all J and L we obtain

Ta=> Y T, (3.48)
J L

Here and everywhere below for the odd case, sum »_ > is taken over all sets
J L
J = {jlaj?a--wjk}a 0 S]z Sn_l_la 1 S ? S k and L = {llal%"'alk} 0 S lz S
1—1, 1 <1<k

Now, (3.47)) and (3.48) yield

_>
N = > (=1)MD,Ty

AcC{1,...,k}

—>TL
= > UM D UMY AR TuiTi,  (349)
Ac{1,...k} Sc{1,...,n—1} J L

= Y Y ENCEIR T,

Ac{1,..,k} Sc{1,...n—1} J L

where

k .
Ois +Ji | On—is +1
tasgr =tas+tasr = Z <( : + = hia+0i ahn—i | .

, n—1i )
=1

Now, we need to check the second condition of the theorem.

Recall that by Lemma |3.1

V:{’UERd‘U:Z)\Z}L“OS)\Z S 1}

=1
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We rewrite t4 551 as

k ,
0is +Ji  On—ig+1i
tasgn = Z (< . j + .5 ) hia+ 5¢,Ahni)
— n—1 )
k .
0is +Ji  On—iys + 1\ hi 4+ (1 —20; 4) i
=D (( STy Coi ) ( 4) + 5i7Ahn—i)
Py n—1 7 2
k .
1 (6 i On—i l;
:z-( 5F5i 4 duoist )hi
e ) n—1 1
=1
k .
0is +Ji  On—is +1;
+Z(( S )(1/2—5i,,4)+5i,,4) B

We first estimate coefficients \; with 1 <i¢ < k:

1 (5i,s+]z’+5ni,§+li) > 2O—i-() +0+O_

Ai =2 . . — =0
2\ n—i i (n—1) 2i

and

= 1.

;(5i,s+gi+5ni,§+li) < I+n—i—1) 1+(@G—1)

)\i:_
n—i i 2(n —1) N 2i

Now, consider coefficients \; with k+1 <i<n—1. If i € A, then

)\izl_l(5n_i,5ﬂ-]n_i+5iys+l7_i) 21_(1+(2—1)+1+(n—z—1)) :0

2 i n—i 2i 2(n — i)
and
1 » P . i
2 1 n-—21 21 2n —1
If i ¢ A, then
1 6n7iS+.jnfi 5iS+ln7i 040 040
A== : : > =0
2( i * n—1i -2 +2(n—i)
and
)\i:%(&z—i,sﬂ-]n—i +5i,S+ln—i) < 1+ (G—1) N I+ (n—i—1) 1

i n—1i 2i 2(n — 1)



Since 0 < \; <1,1<¢<n—1and )\, =0, we conclude that t4 557 € V.

Now,

k
!
tasar+nhyg= E

i=1

k
+ hn - nz<5i,5 + 5n—i,S - 1) -

i=

05 + Ji
(¢
n—i

1

On—is+1i
)

hia + 5i,Ahni>

k

1
+h =Y (Gi5 + Onis — 1) (

=1

k(|

1=1

k
z : zS +.]z 577,—1',5 +
n—1 1

n—1

l;
) hia + 5i,Ahni>

1
-+ —.) hi a
7

J ,s+

n—1q

i

I+ ) ni 1
-y (P
i—1 n—1

+l— dis
i

+ hp

2

k .
L (1+ji—bns 1+6L—
:hn — 2 -
+Z2( n—1 * ?

L+ —dis

a

k
1_'_]1_711',5
P (Ca=

I
MS

Aih.

=1

]

To estimate coefficients \; with 1 < i < k we write

5
Zys> hia+ 5i,Ahni)

i 1 —260;4)hn—i
hi+ (1= 20:4) +6i,Ahn_i)

) (1/2 —6;.4) + 5i,A> P

=0

1/1+
)\i:_
:(

and

n—1

— Op—ig n 1+ .— 5z‘,s) >
7

1+ —dis

1+0—-1 1+0-1
_I_

2(n — 1)

21

)\i_§< +J ’S-i-

n—1

l

>§1+wn—r—m—o+1+u—1y_o

2

(n —1)

2

5}

=1
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Now, consider coefficients A\; with k+1<i<n—1. If i € A, then

/1 n—i — O 1+ln—i— i
)\i: __( +j : ,S+ .571,7,,5')
2 1 n—1
21_1—1—(2—-1)—0_1+(n—z—.1)—O:O
2i 2(n — 1)
and
1 (14 jn_i — 0 1+l — 0ps 1 -1 1 -1
M=ot (A0 I Z s ) oy 1021 14021
2 1 n—1i 21 2n — 1
If i ¢ A, then
11+ jn_i — 0 1+l — Opy 1+0—-1 1+0-1
A= (0 2 Onis) 5 ZEOZ 2 S ERE S
2 i n—i 2i 2(n — 1)
and
1 1 .n—i - 61 1 n—i ~ Yn—i
/\i:_< +]. 75’_}_ +l (5 ,S)
2 1 n—1
<1+(2—1)—0 1+(n—z—1)—021‘

ST T e
Since 0 < \; <1,1<¢<n—1and A\, =1, we have nha s jr+tas. . €V.
Case 2: n is even.
If n =2k > 4 is even then k = n—k and h; = h,,_ always satisfies condition (3.33)).
Again, we pair Khi and th_i, 1 <i < k-—1. Note that we do not pair th and
th. We have

R = B (B0 Z) (BnZs) (R Bu ) B 650

%
The only difference with the odd case is the extra term Ay, .

- —
Similarly to (3.41)), after replacing each A, Ay . in (3.50) with A2hi+(1725i,4hn—i)’
i

1 <1 <k —1, and expanding the product, we have the following identity.

k-1

G — —
Apy by = Z (_1)|A‘ Ap, Ap, H A2hi+<1725i,A>h‘n7i T_Z hp—j- (3.51)

Ac{1,...k—1} i=1 2(n—1) jeA



Now, we combine (3.51]) and (3.42)) to obtain the following.

nzl

%
Ay hy = Z lA‘ H ( Z hi +(1_25i,A)hn—iT.hi+(1_26i,A)hn—i) X

Ac{l,.. ,k—l} 2(n—1) J 2(n—1)

i—1
_>
(ZAhz+1 261A)nzTh+(1 261A)nz>Tzh AhnAhk

1 2i jeA
N n—i—1 i—1
- Z (_1)|A\H (Ahi (Th“, wA))
AC{l,..k—1} i=1 j=0 1=0
- =
Ap, Ap,
= Y (—)MDATy,
Ac{l,..k—1}
where .
-1
- = —
D=, K ] (AM m)
i=1 n—t’ 1
and
k—1n—i—1 i—1
= IT 5 5 (Gt ) Ty
i=1 j=0 [=0 e e
Similarly to (3.47)) in the odd case we have
—>n
Dy= > (=D)AL, T
SC{1,2,..k—1k+1,..n—1}
where .
hn+<1_25ks)hk hi a
e = : - Oi5 + Opis — 1) ——
and

Similarly to (3.48]) we get
Ta=3_2 T
J L

where

k—
b Zl - hia N  hia S e,
A, JL - jln — 7 i n—j-

i=1 jeA

TZ hnfi

JjeA
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Here and below, sum »_ > is taken over all sets J = {j1,J2,...,Jk-1}, 0 < j; <
J L
77/—2—1, 1§z§k—1andL:{l1,l2,,lk,l}Ogllgz—l, 1§Z§k—1
Finally, we have the following identity.
— —
D= Y Y SN CUERY f. 6
AC{l,..k—1} Sc{l,.n—1} J L

where

tassr =tas+tasr = Z m— - > hia+ 5i,Ahni) + i, shi.

i=1

k-1 .
(<5i,5 + Ji n 5n—z‘,§ + 1

Checking the second condition of Theorem [3.13|is similar to the odd case. [

Proof of Theorem[3.7. Let n € N, hy, ha,...,h, > 0. Consider identity (3.29) for
d=1:

- Mno
Ahl,"whn = S'LAZ;Ez
i=1
Let
s R, h; >0,
1 —K,, K, <0,
y ti, h; > 0,
o e, w <o,
and
, Siy h; >0,
(=1)"s; hi <O
Since
- —
AZ;T;?L = (_1)nAzh§T;ﬁi+nh§’
we have

s My, _
/ n
Ahl,"',hn - E SiAhé'Tti'
i=1

The convex hull V' = [0, hy + - -+ + h,]. Since both ¢; and nh! + t; belong to V,

we have t; > 0.
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Note that
" , nh; + ti, h; 2 O,
—nh, +t;,+nh;, =t;, —h, <O0.
In both cases, nh] +t; € V, so nh] +t; < hy + --- + h,. Then M,, hl, t, s,

i=1,..., M,, satisfy conditions of Theorem [3.7 ]

Remark 3.19. For numbers M, in Theorem[3.15 (and, therefore, in Theorem

we have the following estimates:

3(n—1)

M, <27z (n—1), ifn is odd, (3.53)

n —1)!
M, < 237_1u, if n is even. (3.54)
n

Indeed, consider the last sum in identity (3.49). For A we have 2F possible choices,
for S =271 for j; —n—1i and forl; —i, 1 <i < k. Together J and L gives (n —1)!
different choices. Therefore, M, < 2k2""1(p —1)! = 2@(71 — 1), ifn is odd.

Similarly, considering identity (3.52)), we deduce M, < 23771’1@, if n is even.

However, estimates (3.53) and (3.54) are not accurate for n > 3.
For example, let n = 2k + 1 > 3 be odd and consider set S so that for each 1,

1 <4 <k exactly one of i,n—1 be in S. In other words, this means ;s +0p—1.5 = 1.

n—i—1, 1 €S, 0, 1€S;
Choose also j; = and l; :== .
0, n—1€S. 1—1, n—1€S5.
Then .
h hi a h
hs=— — 0i,s + Opis — 1) —— = —
A5 ;< S s )z(n —i) n
and

k :
0is +Ji | On-ist+li
tasgrL = E (( STH = ) hia + (5@',Ahni>
— n—1i i

n—1

k
= ;(hm + 8, ahn—;) = % Z hi.

i=1
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Note that these hﬁ4,5 =handtags s =:t do not depend on A. Consider sum of
terms in the RHS of identity (3.49) with such S, J, L:

Z Z<_1)|A‘HS|KZ%,STM,S,J,L = Z Z<_1)|A‘+kKZTt

Ac{l,..k} S Ac{l,..k} S

> ym (Z(_n@zn):o.

S

So we can write identity (3.49)) without them. This allows us to reduce M, by 2%*.

Now we have
3(n—1)

M, <2z (n—1)!=2""'" ifn >3 is odd. (3.55)

Similarly,

M, <272

" —1)!
2 *1u — 271 ifn >4 s even. (3.56)
n

Corollary 3.20. Let v be a nondecreasing weight function. Then, inequality (3.7))
holds, i.e., for every p > 0 and for any function f € L, ([0, 1]),

— -
sup ” Ahh'"ﬁn (fv ) [O’ 1])”]}1:)([0,1]),1; S 60251 || Ah(fv ) [07 1])”]{1)([071}),1)7
where constant ¢ depends on n only.

Proof. Using Theorem [3.7] we can write
— Un
Apy o fl2) = Z SiAZ;(fa T +5),
j=1

Wheretj,hg-zo, nh;—l-tjghl—f——f-hn,lngMn



Then

%
HAhL“',hn(f? [0 1])”]L »([0,1]),

and the proof is complete.

61

HZS] h’ f7$+t]7[0 1])”]L(01

7j=1
M,
%n
< Z A7 ( (frx+t, [0, IDIIF (10,170

n

n(for 15,00, 1])‘ dz

]10

<Z/‘ (o + )R, (. + 15,0, 1)[ da

]10

< M, wk(f 1)

v,p?



Chapter 4

Direct Theorem

In this chapter we prove Theorem [2.16]

We will use the same proof as in [17]. The idea is to approximate the function f
by a monotone (if [ = 1) or a convex (if [ = 2) spline g (see Section [4.2), and then
approximate this spline by a polynomial having the same shape (see Section .
Theorem will be proven in Section [4.4]

We will use splines with Chebyshev knots z; = cos(jm/n), and also denote z; := 1,
j <0and z; ;== —1, j > n. Additionally, let I; := [z, 2;_1] and IJ(»V) = [0 Tjmi]
(note that I](O) = [;), and, for an interval [ = [a,b] C [—1, 1], denote |I| :=b — a.

Also, denote
|15

-l i<j<n
|z — x| + |1

() ;
The restricted average main part modulus was defined in |14] as follows:
1/p

6
~ 1
(8= 5 | [ @b (£, )ldudn |
0 S
where S C [—1,1].

Note that ﬁg(f, Ly < Qg(f, O)L,(1)w, Since supremum is greater then the

average.

62
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4.1 Awuxiliary Results

Recall that the main part of modulus of smoothness QF(f, A,1/n)?,
(2.3) and the modulus of smoothness wy ¥ is defined by .

is defined by

P

The following lemma follows from [14, Lemma 4.2] with 6 = 1.
Lemma 4.1. Letp >0, we W, f €Ly, n,k € N and A > 0. Denote
I':={1<i<n|l€[-1+A51- A4},

and suppose that the interval J; such that I; C J; C [=1+ Ad%, 1 — Ad?], and |J;| <

coll;| is given for each i € I*. Then

Y (wz) Bl f, J)p) < eQf(f, A1 n),

iel*

where constant ¢ depends only on k,p, co,w and A.
The following corollary is the same as |17, Corollary 2.4].

Corollary 4.2. Letp >0 ,w e W, fe€L,, A>0,kecNandv € Ny. Then for

each n € N, we have
ST B I), < ct(f AL n), (4.1)
i=1

where constant ¢ depends only on k,p,v,w and A.

We will need the following lemma.

Lemma 4.3. Letne N, 0<p<l,weW, andy; >0,1<j5<n—1. Then for

Sp(x) = Sz, (3)]=)) = ZV|[| Vgl ()

and sufficiently large v, we have

[ <c2w
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Proof. First, we write

1 n—1 p
Hszip([—Ll]),w = /wp(x) (Z%‘Nj‘”pl/}f(l’)) dx
—1 j:l

n-1 1 P, H p
<2 [ (gr) o

J:1_1
n—1 'YP 1
N / WP () (z)da
= 1l
1

Now, consider

1 1

A — /wp(:z;) P () = /wp(x) ( |1 >pu .
a ’ |z — ;| + |1 ’
21

and separate it into the following three integrals:

J+1 ‘[| P .
dr = A + AV 4 40,
|z — ;] + 1]
Tj+1 Xy

Consider now Aj . On the interval [z,41,2,.4], w(z) < cw(zx;) and ¢;(z) < 1.
So

Tj—1
AP < [ cwr(a)de = cwr(e))(a — 00) < 0,1
Tj+1
Assume that xz; < 0 (the case for z; > 0 is similar).
To estimate A§-+), we note that w(z) < m™w(z;) and ¥;(x) = x'ij—] for x €
[_]-axj-i-l]’ SO7
Tj+1
A9 < [ ey

-1

| 1;|*P

(x —ajq)rP

dx

at |],|MP
S m*pwp(xj)(j—)wdx
T —Tj-1
—00
|[.|MP
= m~Pw’(z;) < cw” ()],

(up — 1)(zj1 — 2jyr)P~t
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for pp > 2, since |[;| < (xj_1 — xj41).
We now estimate Agf). Let z € [zj_1,1] and let 2F(z;+1) < x+1 < 281 (z;+ 1),
k € NU{0}. Then for weight w € W we have

w(z) <m™w(2rz;) < - <mT  hw(ay)

log, L ) 1 logy, m
w P ) =t (2)
Also, ¥;(z) < |I;|(z — z;)~" and so

1
B S\ Plosz™m
A9 < / mPwP (x;) Tt _ dx
I r+1 (x — x;)mP

Tj—1

< 7 m PP (z;) ((%‘—1 +1)(z — 17j)>_p10g2m : LI

;]2 + 1) T — )P
Tj—1
< —logy mp
< m_pwp(xj)4_1910€2m/ (@) ’ ﬂdz
|1;] (x — xj)rP
Tj

.| (logy m~+u)p
|45

((logym + p)p — 1) (1 — x;) o2 mtmp=

= m_pwp(xj)4_p1°g2m
< cw®(z;)| 1],

for p > % — log, m. Note that % — log, m does not depends on j.

Then, for sufficiently large p, we have A; < cw®(z;)|I;]. So

o
|E || Z|I]|AJ— Z|I|wp .ZC] |‘[| Z’y]wp ij

and the proof is complete. O

4.2 Approximation by Splines

For n,k € N and r € Ny, we denote by Sy, the set of all r-times differentiable splines
of degree k with n Chebyshev knots.

The following lemma follows from [6, Theorem 1.2].
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Lemma 4.4. Let p > 0, | = 1,2. Then for every function g € A'NL,, n € N, there

ezists spline S = S(g) € Sfj&n N A" and an absolute constant n € N such that
Hg - SH]Lp(Ij) < CEI+1(97[](77))107 1 SJ <n,
where ¢ depends only on | and p.

The following theorem can be proved the same way as [17, Theorem 3.2] with

Wq,p Teplaced by w.

Theorem 4.5. Let | = 1,2, v € Ng, r € NgU {—1} and p > 0. Suppose that for
every g € A'N 1L, and n € N, there exists a spline S = S(g) € Sii1., NA! such that

||g - §||Lp(fj) < COEH-I(fa ]](n))zh 1< j <n.

Then for allw € W, n € N and f € L, N A, there exists v € N, depending only on
n, and a spline S € Sy, N A such that

lw(f = Ly < cBra(f L wp 1S5 <, (4.2)
where ¢ depends only on w, n and cy.
Lemma [4.4{ and Theorem immediately imply the following result.

Corollary 4.6. Letl=1o0orl=2,p>1, weW,neN, and f € L,, N A" Then

there exists a spline S € Sﬁj&n N A and an absolute constant v € N such that
1f = Sleypw < cBea(f, 1wy 1S5 <,

where ¢ depends only on weight w.

4.3 Approximation of Splines by Polynomials

In this section we will show that convex spline g € Sz, N A? can be approximated

by convex polynomials.
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Denote by L;(x,g) the quadratic polynomial interpolating g at z;, z;_; and z,_o,

ie.,

Lir,g)= Y g [ —2

) . ) R 7 B
Jj—2<i<j J—2<i<j,l#1

For n > 2, let S be a continuous piecewise quadratic polynomial with knots at

zj, 1 <j <mn—1,such that

S(ZE) :maX{Lj(xvg>aLj+1(xvg)}a Z'GI]‘ QSJSH_I

S(x) = Lo(z,g9), x€l, and S(z)= L,(z,9), € I,.

Now S is convex since g is convex.

We need the following lemma.

Lemma 4.7. Let p > 0, n € N, k € Ny, and G € S;,,, | > 1. Then for all j,

1 <5< n—1, we have

w(z;) E(G, 1), < cB(G, 1), (4.3)

1
where ¢ depends only on k and weight w.
Proof. First, we consider the case if [J(k) C [xn—1, 21].

Then w(z) ~ w(x;) on interval Ij(k). Let P, be polynomial of degree < [ of best

L., approximation for spline G on interval I ](k). Then

k
E(G, [](. ))va = [[w(G — P,) > cw(z;)||G — Pn||Lp(I](k)

g, 00 > > cw(z;) Ei(G, 1),

)

Assume now that 1 € ]j(-k) (the case for —1 € I](-k) is similar).

Let P be a polynomial of degree < [ of best IL,, , approximation on interval I j(k).
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Then

W (e B (G LY, < u?(@)|G - PIE o,

Jtk
= w’(z;) (Z G — PHp o T G — PHﬁp(h))

Jtk
< w(z;) (Z IG = PIT 1y +llG=PIE 1+m1)/z)>
Jtk
< CZ |w(G — P)H]}ip(li) + c|lw(G — P)Hip(xl,(uxl)/z)

k
=G =PI} o, < BUG T Yo
]
In particular, it follows that for any j, 1 < j <n —1,
VEs(g, IM), < cBEs(g, 1 4.4
U)(.Z'j> 3(97 J )P—C 3(97 J >w7p' ( : )
The following inequalities were proved in [17].
lw(g =,y < cBsle. T Nyipe:  1<i<n. (4.5

It was shown in [13] that all knots z;, 1 < 7 < n, can be separated into classes

LI, IIL, TV so that

S(x) = g2(x) + > Aj (2500 — ) (2 = 25) 4 — (. — 25)7]

2<j<n—1,z;€IUII
+ Z —Aj (25 — 2 (@ — 25) 4 + (2 —25)%]
1<j<n—2,z;€IIUIIT

for some polynomial ¢, and numbers A;.

Then o;(x), Rj(z) and R;(z) could be defined (see [13]) so that the polynomial

Po(x) = Pa(2,9) = g2() + | > Ajl(zj1 — 25)0;(x) — Rj(z)]

+ Z —Aji [(5 = 2j51)05(2) + By(x)]

1<j<n—2,z; eITUIII

of degree < cn is convex on [—1, 1].
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Lemma 4.8. For the spline S the polynomial P, defined above the following inequal-

ities hold.
Jw( P, — E[ 1,1] SCZEii w,p
and

lw(P, = g)E ) < cZEz

where constants ¢ depend on p and w only.

Proof. We prove inequality (4.6) first.
Note that

Jo(P = DI 1y < l(Pu = S oy + (S = DLy

Consider the first term in (4.8)).

S@) = Pu@l =1 >, Al 2@ - )y —05(x)

—((x — ;)7 = R;(2))]
+ > —Aj[(z; — 2j) (2 — 25)4 — 05(2))

+((z — 2;)} — R;(2))]]
< Yo Al —2y)l(e —2y)s — oy(2)]

2<j<n—1,z;€IUII
+( —2;)7 — Ry()]

+ > —Aj [ — 2@ = 25) 4 — 0;5(2))]

1<j<n—2,2; €TIUIIL
Hiw = 2,2 - ()]

The following estimates were shown in [13]:
((z = 25)4 —oi(@)] < L[5 (),
(@ =)} = Ri()| < oL (x),

(@ =)} = Ri(@)] < L") ().

IN

IN

(4.6)

(4.7)

(4.8)

(4.9)
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Then, from (4.9) we deduce

S(@) = Pa@)l < Y Ay [(ggm — 2yl (@)

2<j<n—1,z;€IUII
+H [Py ()]
+c > —Ajir [(25 — i) 110 ()

1<j<n—2,x; €ITUIIL

(4.10)
+H [Py ()]
n—1
< ey ALY (@)
j=2
n—1
< e LT @) Balg, I,
j=2
Hence, using Lemma and (4.4)), we have
le0(S = P)IE, 1.y < cZEs (4.11)
Combining (L), (I5) and (ETT) we get (L3).
The proof or (4.7)) is identical. H

4.4 Proof of Theorem 2.16

Letl=1orl=20<p<oo,weW, f€L,,UA" and n € N be sufficiently large.

Recall that Corollary 4.6| implies that for some spline g; € Sl a Y Aland v €N
Hf - ng]Lp(Ij),w S CEl+1(f7 I](l/))w,pa 1 S j S n. (4']'2)

Then

Hf - gl“]Lp[ 1,1],w Z Hf gl”IL,,(I Y — Z EH—I w,p’ (4-13)
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Let | =2 and P, := P,(g2) be the polynomial associated with convex spline g,.
Then inequality (4.6 from Lemma [4.8] together with (4.13)) and Corollary [4.2] gives

En(f, =115, < lw(f = B)IIE, (11

< w(f = 92T 1y + lwlgz = BT, 119

< cZ Es(g2, 1",

Jj=1

<y (f A 1/n),,

For a monotone function f and monotone spline ¢;(x) let G(z f g1(u)du be
the convex antiderivative of gy(z). Then @, (x) := P/(x,G) is the polynomial that

approximates ¢i(x) = G'(z). Similarly to convex case we have

En(f? [_17 1])2},}) < ”w(f - Qn)”fip([fl,l])

< lw(f — gl)Hip([_M]) + [lw(gr — Qn)”ip([_l’l])

n

< CZEQ 917[( ) w
< cw(?5 (f, A, 1/n)s, .

Hence, Theorem [2.16| is proven.



Chapter 5

Conclusion

We discussed monotone and convex approximation in weighted L, spaces, 0 < p < oo.

We considered a special class of doubling weights W defined in Definition [2.2]
Weights in this class are bounded and do not rapidly change. In particular, Jacobi
weights are in this class. It was shown in Lemma that W is a proper subclass of
W({-1,1}) defined in [14].

Our main goal was to prove the direct theorem (Theorem for monotone and
convex approximation (the inverse results were established in |14]). The technique
of proof is well known: we estimate a monotone (convex) function by a monotone
(convex) spline and this spline by a monotone (convex) polynomial.

To measure smoothness we use moduli of smoothness w;k and wg defined by
and respectively. Modulus w(’; could be easily evaluated and therefore
is more practical. However, it is hard to work with w(’; directly. So, we proved
the direct theorem with modulus wq*ﬁk and showed equivalence of the moduli wéﬁ and
w(;’“ (Theorem . For the proof in the case p > 1 we used the same method
as the one used in [5, Proposition 4.2]. However, this method requires the Holder
inequality, which does not hold for 0 < p < 1. To prove equivalence in the case
0 < p < 1 we proved Lemma 3.6, Our main auxiliary result is Theorem which

is an improvement of [3, Lemma 5.4.11] and may be useful in different contexts.
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