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Abstract

Stephen Kudla has conjectured a relationship between the Fourier coefficients of Eisenstein series, and the arith-
metic heights of certain special cycles. Luis Garcia and Siddarth Sankaran confirmed the conjecture for certain
Shimura varieties of type U(p, q), arising as the quotient of a symmetric space by a group action, when q=1. An
essential step in their argument relies on establishing that a specific form is a highest weight vector of a particular
weight, for the Weil representation. In an effort to extend the results of Garcia and Sankaran, we show that the afore-
mentioned forms are highest weight vectors of the expected weight, under the action of the Weil representation, in
various cases when q>1. In particular, we show that this result holds for all cases when q=2. We prove this result by
using an inductive argument, which depends on a technical result about immersed submanifolds, and various results
about splitting the action of the Weil representation on tensor products. The base cases are intractable to carry out by
hand, and thus the final section of the thesis contains Sage code which was written to carry out the computations of
the base cases.
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0.1. INTRODUCTION 1

0.1 Introduction

In the paper [4], Garcia and Sankaran obtain an explicit formula for the local Archimedean height of a special cycle of a
certain Shimura variety of type U (p, 1), in terms of a Fourier coefficient of a special derivative of an Eisenstein series.
Their result supports a more general conjectured identity of Kudla, known as the arithmetic Siegel-Weil formula.
An important object in Kudla’s investigations is the Kudla-Millson form 'KM ∈ (V ) ⊗ q,q(D) where (V ) is
the Schwartz space of (rapidly decreasing) functions on V for a (p+ q)-dimensional ℂ-vector space V with Hermitian
form of signature (p, q) (we call this a (p, q)-space for short),D(V ) is diffeomorphic to the symmetric spaceG∕K where
G = U (p, q), and K ≅ U (p) × U (q) is a maximal compact subgroup of G, and q,q(D(V )) is the space of complex
differential forms of type (q, q) on D(V ).
A key step in the argument of [4] involves the use of Quillen’s theory of superconnections, and the construction of
forms '(v), �r(v) ∈ (V ⊕r)⊗Ω∙(D(V )), generalizing the classical Chern-Weil theory, and when r = 1, the degree 2q
component of '(v)[2q] is 'KM . The aforementioned Shimura variety of type U (p, q) is realized as a quotient Γ∖D(V )
by the action of a certain arithmetic group Γ.
The investigation of the forms �r is carried out by studying their behavior under the Weil representation for U (r, r).
In particular, in [4] it’s proved that the form �r generates an irreducible subrepresentation of the Weil representation,
when q = 1.
In this thesis, we will show that the form �r generates an irreducible subrepresentation for various cases when q > 1,
including (p, q) = (p, 2) for any p. In fact, we also manage to prove an inductive step which shows that for any
fixed q, and a p satisfying a particular bound in terms of q, if �r ∈ (V r) ⊗ Ω∙(D) is a highest weight vector for all
(p + q)-dimensional vector spaces with a Hermitian form of signature (p, q), then the analogously constructed form
�′r ∈ (V ′r)⊗ Ω∙(D(V ′)) is highest weight vector for all (p′ + q)-spaces where p′ ≥ p. Unfortunately the base cases
remain un-established in general, but we include an algorithm written in Sage which determines any of these cases "by
hand".

In chapter one, we recall some of the basic theory of complex manifolds, and Hermitian vector bundles. We also
reconstruct much Quillen’s seminal paper [8] on the theory of superconnections.
In the second chapter, we recall the basic theory of Lie groups, Lie algebras, and their representations. Important facts
about the theory of highest weight vectors will be stated, and relevant explicit computations will be made along the
way. This will culminate in explicit computations for the action of the Weil representation ! ∶ kss → (V r), where
kss is the semi-simplification of the complexified Lie algebra Lie(U (p) × U (q)).
In the third chapter, we will describe the manifold D, and reproduce the construction of the form �r ∈ (V r)⊗Ω∙(D)

of [4], by exploiting Quillen’s theory of superconnections for a particular vector bundle over D.
The Weil representation can be made realized as ! ∶ kss → (V r)⊗ Ω∙(D), just by acting on the (V r) factor. We
then establish a series of inductive results for the form(s) �r, and together with the code laid out in the fourth chapter,
establish the aforementioned results for �r.





Chapter 1

Geometric Background

1.1 Hermitian Geometry

As our main interest is involves constructing differential forms on the complex manifoldD(V ) through a generalization
of connections, for this first chapter, we review the basic theory of real and complexmanifolds, smooth and holomorphic
vector bundles, connections, and introduce Quillen’s theory of superconnections [8]. Much of this section closely
follows the development as written in [10], with some minor adaptations to our specific interests.

Vector Bundles

Let K be ℝ or ℂ, and let M be an -manifold, by which we mean either a smooth or holomorphic manifold with a
sheaf  =  of smooth or  =  holomorphic functions.
We will speak of -morphisms, by which we either mean smooth or holomorphic maps, depending on the context.
Recall that an-vector bundle is a tuple (E, V ,M, �)whereE andM are-manifolds, V is an r-dimensionalK-vector
space and � is an -morphism such that

1. � ∶ E →M is a surjective -map,
2. ∀p ∈M , the fiber Ep ∶= �−1(p) is a K-vector space, and
3. ∀p ∈ M there exists an open set U ⊆ M containing p and a homeomorphism  ∶ �−1(U ) → U × Kr where
 (Ep) ⊆ {p} ×Kr, and for the projection

proj ∶ {p} ×Kr → Kr

(p, k)↦ k

the map  p = proj◦ ∶ Ep → Kr is a K-linear isomorphism.

The pair (U, ) is called a local trivialization. Throughout this section we will adopt the convention of writing
intersections of indexed open sets (say U� and U�) as a multi-indexed open set, i.e. U�� ∶= U� ∩ U� . Any two

3



4 CHAPTER 1. GEOMETRIC BACKGROUND

trivializations (U� ,  �) and (U� ,  �) determine a map

 �◦ 
−1
� ∶ U�� ×Kr → U�� ×Kr,

and thus a map

g�� ∶ U�� → GL(r, K)
p↦  p�◦( 

p
� )
−1

called a transition function.
Given a pair of vector bundles �E ∶ E →M and �F ∶ F →M , an-morphism of vector bundles is a map f ∶ E → F

such that �E = �F ◦f , and the map on each fiber f ∶ Ep → F�F ◦f (p) is a K-linear morphism. We say that f is an
-bundle isomorphism if f is an -isomorphism and the induced map on the fibers is a K-linear isomorphism.

Given an -morphism f ∶ N →M , we define the pullback bundle

f ∗E ∶= {(p, e) ∈ N × E ∶ �(e) = f (p)},

onN . We give f ∗E the subspace topology ofN ×E, with the projection map f ∗�(p, e) = p, and the equip each fiber
(f ∗E)p with the linear structure induced from Ep. That is, for u, v ∈ Ep and �, � ∈ K

�(p, u) + �(p, v) = (p, �u + �v).

Thus, we see that (p, v)↦ v gives us a K-linear isomorphism (f ∗E)p ≅ Ef (p).
For any p ∈ N , let (U, ) be a trivialization of E → M such that f (p) ∈ U . Thus f−1(U ) is an open set of N
containing p, and the map

f−1(U ) ×Kr → (f ∗�)−1(f−1(U ))

(p, v)↦ (p,  −1(f (p), v))

is an -isomorphism, and thus it provides us with a local trivialization of f ∗E → N .
From an -bundle E → M we can also construct the bundle End(E) = ⋃

p∈M End(Ep) with the projection map
�(A) = p for A ∈ End(Ep). For a local trivialization (U, ) of E → M , the isomorphisms  p ∶ Ep → Kr induce
isomorphisms  pEnd ∶ End(Ep) → End(Kr) ≅ Kr2 . Then the map  End ∶ �−1(U ) → U × Kr2 sending A ∈ �−1(U )

with A ∈ End(Ep) to (p,  pEnd(A)) is an isomorpism. Thus (U, pEnd) gives us a local trivialization for End(E)→M .
Given an -morphism f ∶ N → M , we define a map f ∗(End(E)) → End(f ∗E) by sending (p, A) ∈ f ∗(End(E)) to
the operator that acts on (p, v) ∈ f ∗E by (p, A) ⋅ (p, v) = (p, Av). (Noting that by definition A ∈ End(Ep) and v ∈ Ep,
so this is in fact defined). This map determines an -morphism f ∗(End(E)) ≅ End(f ∗E).
We can extend the usual trace of a linear operator to a map tr ∶ End(E)→ K where for A ∈ (End(E))p = End(Ep) we
define tr(A) to be the trace of A. Since the usual trace is preserved under K-linear isomorphisms of vector spaces, the
isomorphisms of the fibers (f ∗End(E))p ≅ End(f ∗)p implies that the trace commutes with the pullback.
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Any open set U ⊆ M determines an -manifold, and thus we define the restriction E|U of E to U to be the vector
bundle �∗E → U , where � ∶ U ↪M is the standard inclusion map.
For any open set U ⊆ M an -section is an -map s ∶ U → E such that �◦s = IdM . We let (M,E) be the space of
all -sections onM . For each open set U ⊆ M we define (U,E) ∶= (U,E|U ).
Suppose that for an open set U ⊆ M , there exists a collection e = {e1, ..., er} ⊆ (U,E) of -sections such that for
each p ∈ U , the set e = {e1(p), ..., er(p)} is a basis for the fiber Ep. Then we call e = {e1, ..., er} a local frame for E.
Suppose ℎ = {ℎ1, ..., ℎr} is another frame over U . For each p ∈ U there exists a change-of-basis e→ ℎ. That is, there
is some (invertible) matrix g(p) such that in terms of e, for each 1 ≤ k ≤ r, we have ℎk(p) = ∑r

j=1 gj,k(p)ej(p). Note
that ℎk(p) is just the kth entry of the matrix of columns [e1(p), ..., er(p)] multiplied by g(p) on the right, and thus we
write ℎ = eg. When we want to specify the coordinates of a section � in a frame e, we’ll write �(e) = ∑r

j=1 �j(e)ej(p).
Thus, writing �(e) as a column vector

�(e) =

⎛

⎜

⎜

⎜

⎜

⎝

�1(e)

...

�r(e)

⎞

⎟

⎟

⎟

⎟

⎠

,

we must have

�(ℎ) = �(eg) = g−1�(e). (1.1)

That is, g�(eg) = �(e). Conversely, if one defines a section in terms of frames for the open sets of some cover of
M , such that the section obeys the transformation property above, then it defines a global section.

Given an -morphism f ∶ N → M , a vector bundle � ∶ E → M and a frame {e1, ..., er} for some open set
U ⊆ M , the isomorphism (f ∗E)p ≅ Ef (p) on the fibers implies that {f ∗e1, ..., f ∗er} is a local frame for f ∗E → N

over f−1(U ).
Having an assignment for each of these opens sets, we define a sheaf M (E) withM complex or real, where for each
open set U ⊆ M we set M (E)(U ) ∶= (U,E). In fact, for the structure sheaf M , the sheaf (E) is a sheaf of
M -modules.
Recall that the stalk M,p is aK-algebra, defined to be the limit limp∈U⊆M M (U ) over all open sets containing p ∈M .
A derivation is a K-linear map D ∶ M,p → K such that, for all f, g ∈ M,p

D(fg) = D(f )g(p) + f (p)D(g).

We define the tangent space Tp(M) to be the K-vector space of derivations on M,p. For an -morphism
f ∶ N →M and an open set U ⊆ M , we define a K-algebra morphsim f ∗ ∶ M (U )→ N (f−1(U )) by
f ∗(ℎ) = ℎ◦f , which descends to aK-algebra morphism of N,f (p) → M,p. The map dfp ∶ Tp(N)→ Tp(M) defined
by dfp(Dp) = Dp◦f ∗ is known as the Jacobian, push-forward, or differential of f .
For example, for the Euclidean -manifold Kn, for any p ∈ Kn, the vector space Tp(Kn) has a basis provided by the
coordinate derivatives )

)x1
|p, ...,

)
)xn

|p.
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Define T (M) ∶=
⋃

p∈M Tp(M), and � ∶ T (M)→M where for v ∈ Tp(M), �(v) = p. We will show that
� ∶ T (M)→M is a vector bundle, which we call the tangent bundle.
Let {(U� , ��)} be an atlas for M . The map �� ∶ U� → Kn is an -isomorphism onto its image, and thus for any
p ∈ U� , the induced map (d��)p ∶ Tp(M) → T��(p)(K

n) is an isomorphism. Now, for any v ∈ �−1(U�), where
v ∈ Tp(M) and p ∈ U� , we have d��,p(v⃗) ∈ T��(p)(Kn), where we write the coefficients

d��,p(v) =
n
∑

j=1
�j

)
)xj

|��(p).

Define the maps
 � ∶ �−1(U�)→ U� ×Kn (1.2)

v ↦ (p, �1(p), ..., �n(p)) (1.3)
and

 p� ∶ TpM
 �
←←←←←←←←←←←→ {p} ×Kn proj.

←←←←←←←←←←←←←←←←←→ Kn.

The fact that  p� is a K-linear isomorphism follows from the fact that d��,p is a K-linear isomorphism. Furthermore,
for any � and �, we identify the vector spaces T��(p)(Kn) and T�� (p)(Kn) with Kn, and thus the K-linear isomorphsim
(d��)◦(d��)−1 ∶ T�� (p)(K

n)→ T��(p)(K
n), determines an -isomorphism Kn → Kn, which implies that

 �◦ −1� ∶ U�� ×Kn → U�� ×Kn is an -isomorphism. Since the U� coverM , if we can choose a topology on T (M)

such that the  � are homeomorphisms, we could conclude that T (M) is an -manifold, and thus � ∶ T (M)→M is an
-vector bundle. To this end, we decree thatU ⊆ T (M) is open iff  �(U ∩�−1(U�)) is open inU�×Kr for all �. Thus,
since the maps  � are bijections, for each �, we have that  �(�−1(U�)∩�−1(U�)) =  �(�−1(U�)) = U�×Kn is open in
U� ×Kn. Therefore {(U� ,  �)} is an atlas for T (M), as well as a collection of local trivializations for � ∶ T (M)→M .

Complex Structures

Just as the complex numbers have a richer structure than the reals, both complex manifolds and vector spaces have a
richer structure than their real counterparts. Together, this translates into the tangent bundles (hence differential forms)
of complex manifolds possessing extra structure. We will investigate such structures in this section.
Definition 1.1.1. A complex structure on an ℝ-vector space V , is a linear map J ∶ V → V such that J 2 = −I .

For an arbitrary ℂ-vector space V , a vector v ∈ V and � + �i = z ∈ ℂ we have zv = (� + �i)v = �v + �(iv).
That is, for a ℂ-basis {v1, ..., vn} of V , the set {v1, iv1, ..., vn, ivn} is an ℝ-basis for V . Furthermore, the map sending
vj ↦ ivj and ivj ↦ −vj is a complex structure on V .
For the Euclidean vector space ℂn, and any vector (z1, ..., zn) ∈ ℂn, we write xj = Re(zj) and yj = Im(zj) for each
1 ≤ j ≤ n. If we identify the point (z1, ..., zn) ∈ ℂn with (x1, y1, ..., xn, yn) ∈ ℝ2n, then multiplication by i in ℂn

induces the standard complex structure J ∶ ℝ2n → ℝ2n given by
J (x1, y1, ..., xn, yn) = (−y1, x1, ..., yn,−xn).
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Definition 1.1.2. LetX be a complex manifold, with an atlas {(U� , ��)}. We letX0 = X as sets, and equip it with the
same topology. For each chart (U� , ��) we define

�̃� ∶ U� → ℝ2n

x↦
(Re(�1(x)), Im(�1(x)), ...,Re(�n(x)), Im(�n(x))

)

,

Since �� is holomorphic, the map �̃� is smooth. Thus {(U� , �̃�)} is a smooth atlas for X0, making X0 into a smooth
manifold which we refer to as the underlying smooth manifold of X.

The example of inducing a complex structure onℝ2n fromℂn can be applied in a consistent (and canonical) manner
to tangent space of holomorphic manifolds. This is the content of Example 3.2 on page 28 of [10], but we formalize it
here as a proposition.

Proposition 1.1.3. For a complex manifold X, the underlying real vector space of Tx(X) is isomorphic to the vector

space Tx(X0), and Tx(X) induces a canonical complex structure on Tx(X0).

Proof. For any complex manifold X and x ∈ X, we define the ℝ-linear map �X,x ∶ TxX0 → TxX such that for all
f ∈ X,x in real and complex components f = u + iv, and D ∈ TxX0, we define �X,x(D)f = D(u) + iD(v). Note
that since f ∈ X,x is holomorphic, u and v are smooth, hence u, v ∈ X0,x, so the map is defined.
Our goal is to prove that �X,x is an isomorphism. First, we will demonstrate this for � = �ℂn,p ∶ Tp(ℂn0) → Tp(ℂn).
Then writing the coordinates of (z1, ..., zn) ∈ ℂn, as zj = xj + iyj the collections of partial coordinate derivatives

{

)
)xj

|

|

|

|

|p
, )
)yj

|

|

|

|

|p
∶ 1 ≤ j ≤ n

}

,

{

)
)zj

|

|

|

|

|p
∶ 1 ≤ j ≤ n

}

.

are respective ℝ and ℂ bases for Tpℂn0 and Tpℂn, and thus
{

)
)zj

|

|

|

|p
, i )

)zj

|

|

|

|p
∶ 1 ≤ j ≤ n

}

is an ℝ-basis for Tpℂn.
For any f = u+ iv ∈ ℂn,p, and recalling that the Cauchy-Riemann equations state that )u

)xj
= )v

)yj
and )u

)yj
= − )v

)xj
for

each j, we find

�

(

)
)xj

|

|

|

|

|p

)

f = )u
)xj

|

|

|

|

|p
+ i )v

)xj

|

|

|

|

|p
= 1
2

(

)u
)xj

|

|

|

|

|p
+ i )v

)xj

|

|

|

|

|p
+ )u
)xj

|

|

|

|

|p
+ i )v

)xj

|

|

|

|

|p

)

=

(

)u
)xj

|

|

|

|

|p
+ i )v

)xj

|

|

|

|

|p
+ )v
)yj

|

|

|

|

|p
− i )u

)yj

|

|

|

|

|p

)

= 1
2

(

)
)xj

|

|

|

|

|p
− i )

)yj

|

|

|

|

|p

)

(u + iv)

=
)f
)zj

|

|

|

|

|p
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Similarly,

�

(

)
)yj

|

|

|

|

|p

)

f = 1
2

(

)u
)yj

|

|

|

|

|p
+ i )v

)yj

|

|

|

|

|p
+ )u
)yj

|

|

|

|

|p
+ i )v

)yj

|

|

|

|

|p

)

= 1
2

(

)u
)yj

|

|

|

|

|p
+ i )v

)yj

|

|

|

|

|p
− )v
)xj

|

|

|

|

|p
+ i )u

)xj

|

|

|

|

|p

)

= i ⋅ 1
2

(

−i )u
)yj

|

|

|

|

|p
+ )v
)yj

|

|

|

|

|p
+ i )v

)xj

|

|

|

|

|p
+ )u
)x

|

|

|

|p

)

= i ⋅ 1
2

(

)
)xj

|

|

|

|

|p
− i )

)yj

|

|

|

|

|p

)

(u + iv)

= i
)f
)zj

|

|

|

|

|p
.

Therefore � is surjective, and since Tpℂn0 and Tpℂn have the same real dimension, � is an isomorphism.

Returning to the general case, any holomorphic map f ∶ X → Y of holomorphic manifolds defines a smooth
map f̃ ∶ X0 → Y0. For any x ∈ X, the ℝ-linear map between the underlying real vector spaces of Tx(X)and Tf (x)Y
induced by (df )x is simply the real Jacobian (df̃ )x. Thus, for any g = u + iv ∈ X,x and D ∈ TxX0, we compute

�Y ,f (x)
(

(df̃ )x
)

g = (df̃ )xDu + i(df̃ )xDv = (df̃ )x(Du + iDv) = (df̃ )x�X,x(D)g,

and thus the diagram
TxX0 TxX

Tf (x)Y0 Tf (x)Y

�X,x

(df̃ )x (df )x
�Y ,f (x)

is commutative1. In particular, for any chart (U� , ��) of X,

TxX0 TxX

T��(x)ℂ
n
0 T��(x)ℂ

n

�X,x

(d�̃�)x (d��)x
�Y ,�� (x)

is commutative, and since d�̃� and �ℝ2n,��(x) are isomorphisms, so must be �X,x.
Therefore, the complex structure on TxX induces a canonical complex structure on TxX0 via �X,x.

Definition 1.1.4. For a real manifoldM of dimension 2n, we call a vector bundle isomorphism

J ∶ TM → TM,

such that J 2 = −IdTM , an almost complex structure. In other words, for all p ∈ M , the map Jp ∶ TpM → TpM is a
complex structure. In this case, we call the pair (M,J ) an almost complex manifold.

1The composition of maps in either direction agree
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Theorem 1.1.5. Every complex manifold X induces an almost complex structure on its underlying real manifold X0.

Proof. The previous proposition demonstrates that for each x ∈ X, the complex structure on TxX induces a a canonical
complex structure on TxX0. Thus one need only check that these structures vary smoothly. The proof can be found in
Proposition 3.4 on page 30 of [10].

Recall that for an arbitrary K-vector space V , the tensor algebra T (V ) = ⨁∞
k=0 V

⊗k, and the ideal I = ⟨v ⊗ v⟩,
we define⋀V ∶= T (V )∕I . The image of v1 ⊗ ... ⊗ vk in the quotient is denoted by v1 ∧ ... ∧ vk.
We set⋀0 V ∶= K , and for 1 ≤ k ≤ dimV , we define⋀k V ∶= spanK{v1 ∧ ... ∧ vk|v1, ..., vk ∈ V }.

For a smooth (real) manifoldM , we define the cotangent bundle T ∗M → M to be the vector bundle whose fiber
at p ∈ M is the vector space dual (TpM)∗ of TpM . Writing n = dim M , we define the exterior algebra bundles
⋀∙TM →M and⋀∙T ∗M →M , where for p ∈M the respective fibers are

⋀∙
TpM ∶=

n
⨁

k=0

⋀k
TpM, and ⋀∙

T ∗pM ∶=
n

⨁

k=0

⋀k
T ∗pM.

Definition 1.1.6. For any open set U ⊆ M , for 1 ≤ k ≤ n we define the C∞ differential forms of degree k to be

k(U ) = 
(

U,
⋀k

T ∗M
)

.

Thus the exterior derivative defines a map d ∶ k(U )→ k+1(U ).

Complexification

In this section we combine some of the results of the previous section in order to define the complex differential forms
on a holomorphic manifold X.

Definition 1.1.7. Given a (left) vector space V , we define the complexification to be the (right) ℂ-vector space
Vℂ ∶= V ⊗ℝ ℂ.

Given a complex structure J on a vector space V , one can extend the action of J to Vℂ by J (v ⊗ z) = J (v)⊗ z.
As the relation J 2 = −I still holds, we may decompose Vℂ into its respective +i and −i eigenspaces, V (1,0) and V (0,1).
The subspaces V (1,0), V (0,1) ⊆ Vℂ give rise to natural inclusions⋀∙ V (1,0),

⋀∙ V (0,1) ⊆
⋀∙ Vℂ.

We define
⋀k,l

V ∶= spanℂ
{

u ∧w ∶ u ∈
⋀k

V (1,0), w ∈
⋀l

V (0,1)
}

.

Definition 1.1.8. For a real manifoldM , we define the space of complex valued differential forms of total degree r to
be

r(M)ℂ ∶= 
(

M,
⋀r

T ∗Mℂ

)

.
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Again, the exterior derivative can be extended to a map d ∶ r(M)ℂ → r+1(M)ℂ.
If (M,J ) is an almost complex manifold, then complexifying the fibers, we obtain a complex-vector bundle
T (M)ℂ → M , and the operator J extends to a complex-linear morphism of T (M)ℂ with eigenvalues ±i, where we
write the bundles of the respective eigenspaces T (M)1,0 and T (M)0,1 .
By taking the wedges fiber-wise, we also obtain the vector bundle⋀k,l T ∗M where the fiber over x ∈M is⋀k,l T ∗xM .
We denote

k,l(M) ∶= 
(

M,
⋀k,l

T ∗M
)

.

Thus we obtain a decomposition r(M)ℂ =
⨁

k+l=rk,l(M).
The exterior derivative can be extended again (see page 33 of [10]) to a map

d ∶ k,l(M)→ k+l+1(M) =
⨁

r+s=k+l+1
r,s(M).

We define

() = �k+1,l◦d) ∶ k,l → k+1,l(M)

()̄ = �k,l+1◦d) ∶ k,l → k,l+1(M),

where the �∙,∙ are natural projection maps. By (complex) linearity, these extend to all of ∙(M)ℂ =
⨁n

r=0
r(M)ℂ.

We can decompose the above map d as

d =
∑

r+s=k+l+1
�r,s◦d = ... + �k+1,l◦d + �k,l+1◦d + ... = ... + ) + )̄ + ...

If it happens that the other terms in this sum cancel out/are zero, that is d = ) + )̄, we say that the almost complex
structure is integrable.

Theorem 1.1.9. Given a complex manifold X, the induced complex structure is integrable.

Proof. See Page 34 of [10].

Hermitian Geometry

We have already seen that the notion of complex structures on vector spaces gives rise to a similar notion for vector
bundles. Often, one is interested in complex vector spaces equipped with a kind of inner product known as aHermitian
form ofHermitian inner product (to be defined below). Hermitian inner products can also be defined for vector bundles,
and we’ll see that their existence in the case of holomorphic vector bundles, leads to a rich geometric theory.

Definition 1.1.10. A connection ∇ on a vector bundle E → M is a ℂ-linear map (M,E) → 1(M,E), such that
∀� ∈ (M),∀! ∈ (M,E)

∇(�!) = (d�) ∧ ! + � ∧ ∇!.
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Given a frame {e1, ..., er} over an open set U ⊆ M , there exist �ij ∈ 1(U ) such that

∇ej =
r
∑

i=1
�ijei,

and thus we obtain a matrix � with values in1(U ) whose i, j entry is �i,j . Now given some section
� =

∑r
i=1 �1er ∈ (U,E),

∇� = ∇

( r
∑

j=1
�rej

)

=
r
∑

j=1

(

(d�j) ∧ ej + �j ∧ ∇ej
)

=
r
∑

j=1

(

(d�j) ∧ ej + �j ∧
r
∑

i=1
�ijei

)

=
r
∑

j=1

(

(d�j) ∧ ej + �j ∧ �ej
)

=

( r
∑

j=1
(d�j) ∧ ej

)

+

(

�
r
∑

j=1
�j ∧ ej

)

= d� + ��

= (d + �)�.

As � is a matrix of 1-forms, it defines a map k(U,E)→ k+1(U,E), and thus we can extend ∇ to a map

(d + �) ∶ k(U,E)→ k+1(U,E).

In fact, as on page 74 of [10], these local descriptions glue in a consistent fashion so that we can view ∇ = d + �

as a map
k(M,E)→ k+1(M,E),

known as the covariant derivative.

If M is an almost-complex manifold, then Since 1(M,E) = 1,0(M,E) ⊕ 0,1(M,E), any connection ∇ ∶

(M,E)→ 1(M,E) can be split into maps

∇′ ∶ (M,E)→ 1,0(M,E)

∇′′ ∶ (M,E)→ 0,1(M,E)

where ∇ = ∇′ + ∇′′.

Given a pair of (n × n) matrices A and B valued in ∙(M), we define A ∧ B (occasionally writing AB when the
context is understood) such that the (j, k)th entry is given by [AB]jk = ∑n

l=1 Ajl ∧ Blk.

Definition 1.1.11. Given a connection ∇ for a vector bundle E → M , with a local description ∇ = d + �, we define
the curvature matrix Θ by Θ ∶= d� + � ∧ �.
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For � = (�1, ..., �r) ∈ (U,E), we recall that d(� ∧ �) = (−1)deg �� ∧ d�, and writing d� for the matrix whose
i, jth entry is d�i,j ,

d(��i) = d
r
∑

j=1
�i,j�j =

r
∑

j=1

(

(d�ij)�j − �ijd�j
)

= (d�)�i − �(d�i).

Using this result, we can compute the explicit form

∇2� = (d + �)2� = (d2 + d� + �d + �2)� = d2� + d(��) + �d� + �2�

= 0 + ((d�)� − �d�) + �d� + �2�

= (d�)� + �2�

= (d� + �2)�.

Therefore, locally, the curvature can be expressed as thematrixΘ = (d+�)2 = ∇◦∇ = ∇2. These local descriptions
of Θ can also be glued together to obtain a global element Θ ∈ 2(M,EndE). That is, Proposition 1.9 on page 74 of
[10] states that ∇2 = Θ is an operator k(M,E) → k+2(M,E). Thus we can think of the operator Θ as a matrix of
2-forms.
Given an -morphism f ∶ N → M , we know that f induces a pullback map f ∗ ∶ ∙(M) → ∙(N). Furthermore,
given a vector bundle E →M , there exists a pullback bundle f ∗E → N , and a pair of maps which we also denote by
f ∗, where

f ∗ ∶ 0(M,E)→ 0(N, f ∗E)

f ∗ ∶ 0(M,End(E))→ 0(N,End(f ∗E)).

The first of these maps, together with the pullback of differential forms, induces another pullback map
f ∗ ∶ ∙(M,E)→ ∙(N, f ∗E).
Given that a connection ∇ on E → M is a map 0(M,E) → 1(M,E), one may hope there exists a connection
f ∗∇ on f ∗E → N , which is naturally induced by f and ∇. A prior, there are many possible choices of connections
on f ∗E → N , however we would like f ∗∇ to be compatible with the other notions of pullback. That is, letting
s ∶M → E be a section of E →M , a reasonable guess for dictating how f ∗∇ should act on f ∗s, is by simply having
∇ act on s, and then pullback. That is, f ∗∇(f ∗s) = f ∗(∇s). In fact, this request is enough to uniquely characterize
f ∗∇.

Theorem 1.1.12. Let ∇ be a connection on an -bundle E →M and f ∶ N →M and -morphism. Then

1. There exists a unique connection f ∗∇ on f ∗E → N such that, for all sections s ∈ 0(M,E) we have

f ∗∇(f ∗s) = f ∗ (∇s),

2. If, given a frame {e1, ..., er} over an open set U ⊆ M , the connection has the local description ∇ = dM + �,

then for the frame {f ∗e1, ..., f ∗er} over f−1(U ), the connection f ∗∇ has local description f ∗∇ = dN + f ∗�,

where f ∗ is the entry-wise pullback of the matrix of forms �, and
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3. If Θ ∶ k(M,E)→ k+2(M,E) is the curvature operator associated to �, then the curvature operator associ-

ated to f ∗Θ is just the entry-wise pullback of Θ under f .

Proof. For the proof of existence of 1), and the proofs of 2) and 3), see Theorem 3.6, page 92 of [10]. We will prove
uniqueness of the pullback connection here. Let ∇′ be another connection satisfying ∇′(f ∗s) = f ∗ (∇(s)). Given an
open set U ⊂ M and a frame {e1, ..., er}, the set {f ∗e1, ..., f ∗er} is a frame over f−1(U ). By our assumption, for
1 ≤ j ≤ r we find

∇′(1⊗ f ∗ej) = ∇′
(

f ∗(1⊗ ej)
)

= f ∗
(

∇(1⊗ ej)
)

= f ∗∇
(

f ∗(1⊗ ej)
)

= f ∗∇(1⊗ f ∗ej).

Thus, writing an arbitrary � ∈ 0(N, f ∗E) as � = ∑r
j=1 �j ⊗ f ∗er, by the definition of a connection

∇′(�) = ∇′
( r
∑

j=1
�j ⊗ f ∗ej

)

=
r
∑

j=1
∇′(�j ⊗ f ∗ej)

=
r
∑

j=1
d�j ⊗ f ∗ej + �j ∧ ∇′(1⊗ f ∗ej)

=
r
∑

j=1
d�j ⊗ f ∗ej + �j ∧ f ∗∇(1⊗ f ∗ej)

=
r
∑

j=1
f ∗∇(�j ⊗ f ∗ej)

= f ∗∇

( r
∑

j=1
� ⊗ ej

)

= f ∗∇(�).

As every point of N is contained in a set of the form f−1(U ) for an open set U ⊆ M possessing a frame, and the
arbitrary choice of � ∈ 0(N, f ∗E), we conclude that ∇′ = f ∗∇.

Definition 1.1.13. Given a ℂ-vector spaceW , a Hermitian inner product is a map ⟨, ⟩ ∶ W ×W → ℂ such that, for
all u, v,w ∈ W and � ∈ ℂ,

1. ⟨�(u + v), w⟩ = � ⟨u,w⟩ + � ⟨v,w⟩,

2. ⟨u, �(v +w)⟩ = �̄ ⟨u, v⟩ + �̄ ⟨u,w⟩,

3. ⟨v, u⟩ = ⟨u, v⟩,

4. ⟨u, u⟩ ≥ 0 with equality iff u = 0.
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Definition 1.1.14. Given a smooth, complex vector bundle E →M , a Hermitian metric on E is a choice of Hermitian
inner product ⟨, ⟩p on each fiber Ep, such that for any open set U ⊆ M and �, � ∈ (U,E), the map

U → ℂ

p↦ ⟨�(p), �(p)⟩

is smooth. In this case we say that E →M is a Hermitian vector bundle.

Given a Hermitian vector bundle E → M , we can define an extension of the Hermitian form ⟨, ⟩ on E → X0 to
a map ⟨, ⟩ ∶ k(X,E)⊗0(M) l(X,E) → k+l(M). First, for all ! ∈ ∧kT ∗x (X0), � ∈ ∧lT ∗x (X0) and �, � ∈ E we
define

⟨!⊗ �, 
 ⊗ �⟩p ∶= ! ∧ 
 ⟨�, �⟩p .

By linearity this extends to all of k(M,E)⊗0(M) l(M,E).
Definition 1.1.15. We say that a connection ∇ is compatible with a metric if for any open set U ⊆ X, and
�, � ∈ (U,E),

d ⟨�, �⟩ = ⟨∇�, �⟩ + ⟨�,∇�⟩ .

Suppose now that we have a holomorphic vector bundleE → X. This determines a smooth (complex) vector bundle
on the underlying real manifold X0. If E → X0 has a Hermitian metric, we call E → X a Hermitian holomorphic

vector bundle.
Theorem 1.1.16. Given a holomorphic Hermitian vector bundle E → X, there exists a unique connection ∇ such that

1. ∇ is compatible with the metric, and

2. for any open set U ⊆ X and � ∈ (U,E) we have ∇′′� = 0.

Proof. See page 78 of [10].

The above connection is referred to as the canonical connection associated to the Hermitian holomorphic vector
bundle. Both the canonical connection, and the associated curvature, have a particularly nice local description, which
we make use of in the code at the end of this document.
Proposition 1.1.17. Let E → X be a Hermitian holomorphic vector bundle, {e1, ..., er} be a local frame over an open

set U ⊆ X, and write the canonical connection ∇ in its local description as ∇ = d + �.

Then, for the Hermitian form ⟨, ⟩, the matrix Hjk =
⟨

ej , ek
⟩

, and the operator Θ ∈ 2(X,EndE) determined by the

curvature,

� = H−1)H

Θ = )̄�

Proof. See page 79 of [10].
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1.2 Super Geometry

In [8], Quillen introduced the notion of superconnections, generalizing both the classical notion of connection, and
Chern-Weil theory. Superconnections are essential to the constructions of [4] used in later chapters, and thus we
recreate the relevant aspects of the theory in this section.

Super Vector Spaces

A K-vector space V with a ℤ2-grading, that is V = V 0 ⊕ V 1, will be referred to as a super vector space. The
ℤ2-grading on V induces a grading

(EndV )0 = End(V 0)⊕ End(V 1)
(EndV )1 = Hom(V 0, V 1)⊕ Hom(V 1, V 0),

making EndV into a superalgebra. We say that an element X ∈ (EndV )i homogeneous, and call it even if i = 0, and
odd if i = 1. We introduce a supercommutator on EndV , given by

[X, Y ] ∶= XY − (−1)degX deg Y Y X.

Indeed, the supercommutator satisfies an augmented version of the definition of the Lie bracket.

Definition 1.2.1. For an arbitrary K , and a ℤ2-graded K-vector space g, a K-bilinear map [, ] ∶ g × g → g is said to
be a super Lie bracket if for all X ∈ gi, Y ∈ gj , Z ∈ gk,

1. [Y ,X] = −(−1)degX deg Y [X, Y ],

2. (−1)degX degZ [X, [Y ,Z]] + (−1)deg Y degX[Y , [Z,X]] + (−1)degZ deg Y [Z, [X, Y ]] (the super Jacobi identity).

Any such pair (g, [, ]) is referred to as a super Lie algebra.

Proposition 1.2.2. For any ℤ2-graded (associative) K-algebra g, the bracket defined by

[X, Y ] ∶= XY − (−1)degX deg Y Y X,

is a super Lie bracket, and thus (g, [, ]) is a Lie superalgebra.

We also make note of the fact that for a ℤ2-graded algebra g, and X,∈ gi, Y ∈ gj we have XY , Y X ∈ gi+j , and
therefore [X, Y ] ∈ gi+j . Therefore deg[X, Y ] ∶= degX + deg Y = i + j. (Where both here and in the following, all
arithmetic is done modulo 2.)
In particular, the super commutator on EndV makes it into a Lie superalgebra.

Proposition 1.2.3. The even and odd endomorphisms respectively commute and anti-commute with the involution

�(v) = (−1)deg vv.
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Proof. Suppose X ∈ (EndV )0, Y ∈ (EndV )1, and let v ∈ V be homogeneous. Since X is even deg v = degXv, and
thus

X� (v) = X(−1)deg vv = (−1)deg vXv = (−1)deg(Xv)Xv = �(Xv).

Since Y is odd, deg Y v = deg v + 1 ⇒ deg v = deg(Y v) − 1, hence

Y �v = Y (−1)deg vv = (−1)deg vY v = (−1)deg(Y v)−1Y v = −(−1)deg Y vY v = −�Y v.

By the arbitrary choice of v ∈ V , the even endomorphisms commute with �, while the odd endomorphisms anti-
commute.

We define the supertrace to be

trs ∶ EndV → ℂ

X ↦ tr(�X)

The additive property of the supertrace follows from that of the usual trace,

trs(X + Y ) = tr(�(X + Y )) = tr(�X + �Y ) = tr(�X) + tr(�Y ) = trs(X) + trs(Y ).

Let Y ∈ (EndV )1. By properties of tr we have tr(�Y ) = tr(Y �); however Y anti-commutes with � and thus

trs(Y ) = tr(�Y ) = tr(Y �) = tr(−�Y ) = −tr(�Y ) = −trs(Y ).

Therefore trs(Y ) = 0 for any odd operator Y .
If X, Y ∈ (EndV )1, then by anti-commutativity we get

trs(XY ) = tr(�XY ) = tr(−X(�Y )) = tr (−(�Y )X) = −tr(�Y X) = −trs(Y X).

If degX ≠ deg Y , then XY and Y X are both odd, and thus

trs(XY ) = 0 = trs(Y X).

Therefore we see that in general that

trsXY = (−1)(degX)(deg Y )trsY X.

This implies that for any X, Y ∈ g we find

trs[X, Y ] = trs (XY ) − (−1)(degX)(deg Y )trs (Y X)
= (−1)degX deg Y trs (Y X) − (−1)degX deg Y trs (Y X)
= 0.
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Super Vector Bundles

In this section we will extend the notion of a super vector space, to that of a super vector bundle. We will then upgrade
our previous constructions, such as the curvature and connection, to account for the graded structure.
As in the previous section, we will write K for either ℝ or ℂ, and we will letM be an -manifold.

Definition 1.2.4. For an -manifold M , a super vector bundle is a vector bundle � ∶ E → M with a ℤ2-grading.
Namely, it is the direct sum of vector bundlesE0 →M andE1 →M called the even and odd components respectively.

Recall that for an -morphism f ∶ N →M , the pullback bundle f ∗E → N is defined by setting
f ∗E = {(n, e) ∈ N × E|f (n) = �(e)}. By the commutativity of direct sums and pullbacks of vector bundles

f ∗E = f ∗
(

E0 ⊕E1
)

≅ f ∗
(

E0
)

⊕ f ∗
(

E1
)

,

and thus we obtain a natural ℤ2-grading by setting (f ∗E)0 = f ∗(E0) and (f ∗E)1 = f ∗(E1). Hence the usual pullback
of vector bundles applied to a super vector bundle, produces a super vector bundle.
Recall that a section s ∶M → E defines a section f ∗s ∶ N → f ∗E called the pullback, which is given by
n ↦ (n, s◦f (n)). Throughout this section, the notation f ∗ and terminology "pullback" will be used for a variety of
distinct notions, though each is compatible with the other in a natural way, and the meaning should be clear from
context.
In the case of EndE →M , we obtain an isomorphism f ∗(EndE) ≅ End(f ∗E). In particular

f ∗(EndE) ≅ End (f ∗E) ≅ End ((f ∗E)0)⊕End ((f ∗E)1) ≅ End (f ∗ (E0))⊕End (f ∗ (E1)) ≅ f ∗ (EndE0)⊕f ∗ (EndE1) ,

giving us the natural ℤ2-grading (f ∗(EndE))0 = f ∗
(EndE0) , f ∗ (EndE)1 = f ∗ (EndE1). Therefore, we see that for

any homogeneous A ∈ EndE, we have degA = degf ∗A.
Furthermore, given the standard super Lie bracket [, ] on EndE, it follows that [(n, A), (n, B)]∗ ∶= (n, [A,B]), defines
a super Lie bracket on f ∗(EndE), making it into a super vector bundle whose fibers are Lie superalgebras.

The vector space∙(M) of smooth differential forms is ℤ-graded, and the space0(M,E) of -sections inherits
a ℤ2-grading by (0(M,E))i ∶= 0(M,Ei).
As seen above, we have a map

f ∗
[

0(M,E)
]i = f ∗0(M,Ei)→ 0(N, f ∗(Ei)) ≅ 0(N, (f ∗E)i) =

[

0(N, f ∗E)
]i .

Recall that for any smooth map f ∶ N →M , we also denote the pullback on differential forms∙(M)→ ∙(N)

by f ∗. Since ∙(M) is ℤ-graded, we we obtain a natural ℤ × ℤ2-grading on the ∙(M)-module

(M,E) = ∙(M)⊗0(M) 0(M,E).

However we’ll only be interested in the total ℤ2-grading of ∙(M,E) where for A ∈ i(M)⊗0(M) 0(M,Ej)

we set degA = (i + j) mod 2.
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We also define a map of algebras

f ∗
[

∙(M)⊗0(M) 0(M,E)
]

→ ∙(N)⊗0(N) f
∗0(M,E)

!⊗ s ↦ f ∗!⊗ f ∗s,

which together with

id × f ∗ ∶ ∙(N)⊗0(N) f
∗0(M,E)→ ∙(N)⊗0(N) 0(N, f ∗E),

induces a map

f ∗(M,E) = f ∗
[

∙(M)⊗0(M) 0(M,E)
]

→ ∙(N)⊗0(N)f
∗0(M,E)→ ∙(N)⊗0(N)0(N, f ∗E) ≅ (N, f ∗E).

Similarly, we consider the algebra

Ω = (M,EndE) = ∙(M)⊗
⋀

0(M)0(M,EndE),

where⊗⋀ is the super tensor product given by

(� ⊗ X)(!⊗ Y ) = (−1)(degX)(deg!)(� ∧ !)⊗XY .

The algebra Ω adopts a superalgebra structure from the total ℤ2-grading, of the ℤ × ℤ2-grading where

i(M)⊗
⋀

0(M)0(M,EndEj) ⊆ (i+j)(M,EndE),

where arithmetic of indices is take modulo 2. More explicitly, for � ⊗ X ∈ Ω, where X is homogeneous, we
compute deg(� ⊗ X) = deg � + degX.
Therefore the map f ∗ ∶ f ∗(M,EndE)→ (N,Endf ∗E) is linear and preserves the grading by virtue of the notions
of pullback comprising the map. Finally,

f ∗ [(� ⊗ X)(!⊗ Y )] = f ∗
[

(−1)(degX) deg!(� ∧ !)⊗XY
]

= (−1)(degX) deg!f
∗(�∧!)⊗f∗(XY ) (1.4)

= (−1)(deg f
∗X) degf∗!f ∗� ∧ f ∗!⊗ (f ∗X)(f ∗Y ) (1.5)

= (f ∗� ⊗ f ∗X)(f ∗!⊗ f ∗Y ) (1.6)
= f ∗(� ⊗ X)f ∗(!⊗ Y ), (1.7)

and thus f ∗ ∶ (M,EndE)→ (N, f ∗E) is a map of superalgebras.
We obtain a left action Ω↷ (M,E) given by

(� ⊗ X) ⋅ (!⊗ �) = (−1)(degX)(deg!)(� ∧ !)⊗X�.

Definition 1.2.5. We say that an operator (M,E) → (M,E) is ∙(M)-linear if for each of its homogeneous
components T , all !⊗ � ∈ (M,E) and � ∈ ∙(M) we have

T (� ∧ (!⊗ �)) = (−1)deg T deg!� ∧ T (!⊗ �).
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We now come to Proposition 1 of [8].

Proposition 1.2.6. The algebra Ω can be identified with the algebra of ∙(M)-linear operators.

Proof. By the definitions of the actions above, we see that any homogeneous simple tensor in Ω is∙(M)-linear, and
by linearity we conclude that all of Ω is ∙(M)-linear.
Conversely, suppose T is an ∙(M)-linear operator on (M,E). Let e = {e1, ..., er} be a local frame for some open
set U ⊆ M . For all 1 ≤ i, j ≤ r there exists !i,j(e) ∈ ∙(U ) such that

T (1⊗ ej) =
r
∑

i=1
!i,j(e)⊗ ei =

r
∑

i=1
!i,j(e)⊗Ei,j(1⊗ ej),

whereEij is the matrix with 1 in the (i, j)th entry and 0 elsewhere, and we’ve written!i,j(e) to highlight the dependence
on the frame e. For ease of reading we will drop the frame dependent notation.
Since T and 1⊗ ej are homogeneous∑r

i=1 !i,j ⊗Ei,j(1⊗ ej) must be homogeneous, and thus every term of the sum
must have the same degree. Thus, for any choice of i and j

deg[T (1⊗ ej)] = deg(!i,j ⊗Ei,j ⋅ 1⊗ ej) = deg(!i,j ⊗Ei,j) + deg(1⊗ ej) = deg!i,j + degEi,j + deg ej

and on the other hand
deg[T (1⊗ ej)] = deg T + deg(1⊗ ej) = deg T + deg ej ,

therefore

deg!i,j + degEi,j + deg ej = deg T (1⊗ ej) = deg T + deg ej

⇒ deg!i,j + degEi,j = deg T .

Now for any � ∈ ∙(M),
r
∑

i=1

r
∑

j=1
!i,j ⊗Ei,j(� ⊗ ek) =

r
∑

i=1
(−1)degEi,j deg �!i,j ∧ � ⊗ Eikek

=
r
∑

i=1
(−1)degEi,j deg �(−1)deg!i,j deg �� ∧ !i,j ⊗ ei

= � ∧
r
∑

i=1
(−1)(deg!i,j+degEi,j ) deg �!i,j ⊗ ei

= � ∧
r
∑

i=1
(−1)deg T deg �!i,j ⊗ ei

= (−1)deg T deg �
r
∑

i=1
!i,j ⊗ ei

= (−1)deg T deg �T (1⊗ ej)

= T (� ⊗ ej),
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where the last step follows from the∙(M)-linearity of T . Since this holds for any � ∈ ∙(M) and basis vector ej , we
conclude that for all � ∈ (M,E), over U we have

T (�) =
r
∑

i=1

r
∑

j=1
!i,j ⊗Ei,j(�).

Thus there exists an element !U =
∑r
j=1 !i,j ⊗ Ei,j ∈ (U,End(E)) such that over U , for all global sections �,

we have T (�) = !U (�).
We would like to construct an element ! ∈ Ω, such that T (�) = !(�) for all global sections �. To this end, consider
an open cover {U�} and choice of !U� for each �. (such a cover can always be obtained by starting from an arbitrary
cover, by shrinking the open sets until they posses frames on which to apply the processes above.) We define ! such
that for any open set U� of the cover, !|U� = !U� . For any particular � and �, and � ∈ (M,E), over the intersection
U�� we find

!|U� (�) = !U� (�) = T (�) = !U� (�) = !|U� (�).

Therefore our definition of ! is well-defined on any intersection of any two open sets of the cover, hence it is
consistently defined on all ofM . Therefore ! ∈ Ω.

The supertrace on each fiber induces a 0(M)-module map trs ∶ 0(M,EndE) → 0(M), which extends to the
(M)-module map

trs ∶(M,EndE)→ (M),

� ⊗ X ↦ � ∧ trsX.

Thus writing trs for the supertrace on either bundle, for any � ⊗ X ∈ (M,EndE),

trs
(

f ∗ (� ⊗ X)
)

= trs
(

f ∗� ⊗ f ∗X
)

= f ∗� ∧ trs(f ∗X) = f ∗� ∧ f ∗trs(X) = f ∗
(

� ∧ trsX
)

= f ∗
(trs (� ⊗ X)

)

.

(1.8)
Definition 1.2.7. A superconnection on a super vector bundle E → M is an operator ∇ ∶ (M,E) → (M,E) of
odd degree such that ∇(� ∧ (!⊗�)) = d� ∧!⊗�+ (−1)deg �� ∧∇(!⊗�), for all � ∈ (M), and !⊗� ∈ (M,E).

Given two superconnections ∇1,∇2 and any � ∈ ∙(M), ! ⊗ � ∈ ∙(M,E) we have

(∇1 − ∇2)(� ∧ (!⊗ �)) = ∇1(� ∧ (!⊗ �)) − ∇2(� ∧ (!⊗ �))

= d� ∧ !⊗ � + (−1)deg �� ∧ ∇1(!⊗ �) − d� ∧ !⊗ � + (−1)deg �� ∧ ∇2(!⊗ �)

= (−1)deg �� ∧ [∇1 − ∇2](!⊗ �).

Since both∇1 and∇2 are odd, deg[∇1−∇2] is defined, and by the identification ofΩ with∙(M)-linear operators
on (M,E),

(∇1 − ∇2)(� ∧ (!⊗ �)) = (−1)deg(∇1−∇2) deg �� ∧ [∇1 − ∇2](!⊗ �).
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All other terms being equal, we’re forced to conclude that deg! = deg(∇1 − ∇2) deg! for any differential form
!, and thus deg(∇1 − ∇2) = 1. Therefore the difference of two superconnections is an odd endomorphism, hence the
most general way to write a superconnection is ∇ = d + �, for an odd endomorphism � ∈ .
Since we usually work locally, it’s useful to examine the case of the trivial bundle. Furthermore, the main vector
bundles of interest later in this thesis are trivial bundles. Thus, supposing E → M is the trivial bundle E = M × V

for some vector space V , we have A = ∙⊗
⋀

0(M)EndV .
Our main concern in later chapters is with connections ∇ = d + � for trivial bundles where

� = A + L ∈
[

1(M)⊗
⋀

(EndV )0
]

⊕
[

0(M)⊗
⋀

(EndV )1
]

.

Theorem 1.2.8. Let ∇ be a superconnection on a super vector bundle E → M , and let f ∶ N → M be a smooth

map. Then f ∗∇ = dN + f ∗� is a superconnection on the pullback bundle f ∗E → N , which we call the pullback
connection.

Proof. Since pullbacks of both forms and operators preserve their respective degrees, given a superconnection
∇ = dM + � where � = � ⊗ X is odd, f ∗� ⊗ f ∗X = f ∗(� ⊗ X) is also odd, and thus we obtain a connection
f ∗∇ = dN + f ∗� on f ∗E → N .

Following the definition of the curvature of a connection, we define the supercurvature of a superconnection ∇ to
be ∇2.

Lemma 1.2.9. The supercurvature ∇2 defines an element of Ω of even degree.

Proof. For any simple tensor !⊗ � ∈ (M,E), and � ∈ ∙(M) compute

∇2(� ∧ (!⊗ �)) = ∇
(

d� ∧ !⊗ � + (−1)deg �� ∧ ∇(!⊗ �)
)

= d2� ∧ !⊗ � + (−1)deg d�d� ∧ ∇(!⊗ �) + (−1)deg �d� ∧ ∇(!⊗ �) + (−1)deg �(−1)deg �∇2(!⊗ �)

= 0 − (−1)deg �d� ∧ ∇(!⊗ �) + (−1)deg �d� ∧ ∇(!⊗ �) + ∇2(!⊗ �)

= � ∧ ∇2(!⊗ �).

By linearity, this extends to all of (M,E). More specifically, we see that ∇2 is an even ∙(M)-linear operator,
and thus by proposition 1.2.6 ∇2 ∈ Ω.

Note that as an element of (M,EndE), by eq. (1.7), we have

f ∗
(

∇2
)

=
(

f ∗∇
)2 . (1.9)





Chapter 2

Lie Theory Background

2.1 Lie Theory

A key component to the results of [4] mentioned in the introduction, is the behavior of special elements of (V r) ⊗

∙(D) under a certain Lie group representation !̃ ∶ U (r, r)→ End((V ⊕r)⊗∙(D(V ))) known as theWeil represen-

tation.
Here D = G∕K where G = U (p, q) is a Lie group, and K = U (p) × U (q) its maximal compact subgroup. The repre-
sentation above induces a Lie algebra representation u(r, r)→ End((V r)⊗∙(D)).
Thus, in order to extend the results of [4] it is imperative that in this chapter we develop the general theory of Lie
groups, Lie algebras, their representations, and specifically the theory of the highest weight vector. We will then give
a concrete description of the action of the representation of u(r, r) induced by the Weil representation, and proof some
technical lemmas which will be essential for the proof of the main theorem of the thesis.
Throughout this chapter we will closely follow [2], and most proofs not appearing in this chapter can be found there.

Lie Groups

Definition 2.1.1. A Lie group G is a both a group and smooth manifold, such that the group operation G × G → G

and the map sending an element to its inverse G → G are smooth.

Let F be ℝ or ℂ, and letMn(F ) be the space of n × n matrices, which we identify with F n2 , giving it the structure
of a F -manifold. As it is polynomial in the coordinates, the determinant det ∶Mn(F ) → F is continuous. The group
GLn(F ) of invertible matrices is det−1(F −{0}), and since F −{0} is open, and det is continuous, GLn(F ) is an open
subset ofMn(F ), and thus it inherits the manifold structure ofMn(F ).

23
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In terms of the matrix coordinates, by using cofactor expansion we can write the Jacobian of the determinant as
[

)
)x11

detX, )
)x1,2

detX, ..., )
)xn,n

detX
]

=

[

)
)x11

n
∑

i=1
x1i(−1)i+1M1i,

)
)x12

∑

i=1
x1i(−1)i+1M1,i, ...,

)
)xn,n

n
∑

i=1
xin(−1)i+nMn,i

]

= [M11,−M1,2, ...,Mn,n].

The Jacobian is zero iff each minor is zero, but then detX = 0, which is impossible. Therefore the determinant
has a constant rank of 1, hence by the level set theorem SLn(F ) = det−1{1} is a closed embedded submanifold of
codimension 1 in GLn(F ). Since multiplication and inversion are also smooth, SLn(F ) is also a Lie group.
As this is a subset of GLn(F ), this leads us to, the concept of a Lie subgroup, but first we define morphisms.

Definition 2.1.2. A morphism � ∶ G → H of Lie groups is a group homomorphism which is smooth.

Definition 2.1.3. Given a Lie group G, we define a (closed) Lie subgroup to be a subset which is a closed submanifold
ofG, and a subgroup, meanwhile an immersed subgroup is the image of an injective Lie group homomorphismH → G.

Many important examples of Lie groups arise as subgroups ofGL(V ) for some F -vector space V , by defining them
as the subgroup of elements preserving some bilinear form Q ∶ V × V → F .
If Q is symmetric and positive-definite, and V is real, the group preserving Q is the orthogonal group
On(ℝn) = O(n).
If Q is skew-symmetric (that is, Q(u, v) = −Q(v, u) for all u, v ∈ V ), then the group Sp(Q) preserving Q is called
the symplectic group and only occurs in even dimension if we demand the form is non-degenerate. If it is clear from
context that V has a skew-symmetric form Q, we will write Sp(V ) or Sp2n(F ) as F 2n ≅ V .

Let V be a ℂ-vector space of dimension p+ q, and a Hermitian form ⟨, ⟩ (defined by 1.1.13) such that any maximal
positive-definite subspace has dimension p, and any maximal negative-definite subspace has dimension q.
We are primarily interested in the pseudo-unitary group U (p, q), of endomorphisms of V , preserving the form ⟨, ⟩.
By Gram-schmidt orthonormalization, we may choose a basis e1, ..., ep+q such that

⟨

ei, ej
⟩

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�ij , 1 ≤ i, j ≤ p

−�ij , p + 1 ≤ i, j ≤ p + q

0, otherwise

Define the matrixH such thatHij =
⟨

ei, ej
⟩

. Now for any two vectors u, v ∈ V , we write them in the above basis
as

u =
p+q
∑

i=1
�iei, v =

p+q
∑

j=1
�jej .
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Now writing AT for the transpose of the matrix A
⎛

⎜

⎜

⎜

⎜

⎝

�1
...

�p+q

⎞

⎟

⎟

⎟

⎟

⎠

T

H(�1, ..., �p+q) =
p+q
∑

i=1
�i

p+q
∑

j=1

⟨

ei, ej
⟩

�̄j =

⟨p+q
∑

i=1
�iei,

p+q
∑

j=1
�jej

⟩

= ⟨u, v⟩ .

For X ∈ U (p, q) we must have ⟨Xv,Xw⟩ = ⟨v,w⟩, and writing Ā for the matrix whose (i, j)th entry is the
complex-conjugate of the (i, j)th entry of A, we can write this as

vTHw̄ = (Xv)THXw = vTXTHX̄w̄.

As this holds for every pair of vectors v, we must haveH = XTHX̄. Thus

U (p, q) =
{

X ∈Mp+q(ℂ)|H = XTHX̄
}

, with the special case, (2.1)
U (n) ∶= U (n, 0) =

{

X ∈Mn(ℂ)|X−1 = X∗} , (2.2)

where X∗ = X̄T is the Hermitian conjugate, and we simply refer to U (n) as the unitary group. Our focus will
mainly be on the Hermitian form defined by H =

⎛

⎜

⎜

⎝

Ipp 0pq
0qp −Iqq

⎞

⎟

⎟

⎠

, wherefore the condition defining U (p, q) (in block
form) becomes

⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT CT

BT DT

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

Ā B̄

C̄ D̄

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT CT

BT DT

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

Ā B̄

−C̄ −D̄

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT Ā − CT C̄ AT B̄ − CT D̄

BT Ā −DT C̄ BT B̄ −DT D̄

⎞

⎟

⎟

⎠

,

providing us with the relations

I = AT Ā − CT C̄, AT B̄ = CT D̄,

I = BT B̄ −DT D̄, BT Ā = DT C̄.

Proposition 2.1.4. The group U (p, q) is a Lie group.

Proof. Wewill make use of the regular level set theorem (Corollary 5.24 of [7]) to prove this result. Equip the space of
(p + q) × (p + q) Hermitian matrices Hermq(ℂ) ∶= {X ∈Mp+q(ℂ) ∶ X∗ = X}, with subspace topology ofMp+q(ℂ).
Since the map

F ∶Mp+q(ℂ)→ Hermp+q(ℂ)

X ↦ XTHX̄
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is polynomial in its coordinates, it’s smooth. For any curve 
 ∶ (−�, �) → Hermp+q(ℂ), differentiating 
(t)∗ = 
(t)

simply yields 
 ′(0)∗ = 
 ′(0), and thus for any Y ∈ Hermp+q(ℂ) we have TYHermp+q(ℂ) = Hermp+q(ℂ).
Given X ∈Mp+q(ℂ) and A ∈ TYHermp+q(ℂ) = Hermp+q(ℂ), we compute the push-forward

dFX(A) =
d
dt
(X + tA)TH(X + tA)|t=0 = ATHX̄ +XTHĀ.

We need to show that dFX is surjective to apply the regular level set theorem. Let B ∈ Hermp+q(ℂ), and note that
H = XTHX̄ ⇒ I = HXTHX̄ ⇒ X̄−1 = HXTH.

Like-wise (X−1)T = HX̄H , and thus taking A = 1
2XHB

T ,

FX(A) =
(1
2
XHBT

)T
HX̄ +XTH

(1
2
XHBT

)

= 1
2
B(HXTH)X̄ + 1

2
XT (HX̄H)B∗

= 1
2
(B + B∗)

= 1
2
(B + B)

= B.

Therefore dFX is surjective. By the arbitrary choice of X, the map F is regular, and therefore U (p, q) = F−1{H}
is a closed embedded submanifold ofMp+q(ℂ).
The fact that the group operation and inversion are smooth follows from the fact that these operations are rational
functions in their coordinates (and defined everywhere).

Of particular import for us will be the subgroup

K ∶ =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

∈ Mp+q(ℂ) ∶
⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

∈ U (p, q)

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

∈ Mp+q(ℂ) ∶ H =
⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

T

H
⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

By the defining relations of the Lie group,
⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT 0

0 DT

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

Ā 0

0 D̄

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT 0

0 DT

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

Ā 0

0 D̄

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT Ā 0

0 −DT D̄

⎞

⎟

⎟

⎠

,
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thus A−1 = A∗ and D−1 = D∗, so we find that

K =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

∈Mp+q(ℂ) ∶ A ∈ U (p), D ∈ U (q)

⎫

⎪

⎬

⎪

⎭

≅ U (p) × U (q).

In fact,K is a maximal compact subgroup of U (p, q), a fact which is significant in the general theory of Lie groups,
though we will not discuss this here.

Representations of Lie Groups

As is the case with finite groups, we can learn a lot about Lie groups by studying their representations, which are
homomorphisms � ∶ G → GL(V ) for some finite-dimensional F -vector space V . Note that if dimF V = n, then
GL(V ) ≅ GLn(F ), and so we require that � is a morphism in the sense of Lie groups, that is, it is both a group
homomorphism and a smooth map.

In particular, since conjugation is a group morphism, by the smoothness assumptions
Ψg ∶ G → G

ℎ↦ gℎg−1

is a morphism of Lie groups. Moreover, Ψ determines a morphism
Ψ ∶ G → Aut(G)

g ↦ Ψg

For each g ∈ G we will write Ad(g) for the differential (dΨg)e ∶ TeG → TeG. Therefore we also obtain a map
Ad ∶ G → Aut(TeG)

g ↦ Ad(g)

Now Aut(TeG) = GL(TeG) and thus itself a Lie group. Since Ad also happens to be smooth, we can also define ad
to be the differential d(Ad) ∶ TeG → TIAut(TeG), where TIAut(TeG) = End(TeG).
For a morphism � ∶ G → H of Lie groups, and any g, ℎ ∈ G, we must have Ψ�(g)◦�(ℎ) = �◦Ψg(ℎ). Applying the
differentials to this equation, one finds for the vector space morphism (d�)e ∶ TeG → TeH we have
d�e(ad(X)(Y )) = ad(d�e(X))(d�e(Y )) for all X, Y ∈ TeG.
Explicitly, for GLn(F ) we define [, ] ∶ TeG × TeG → TeG by [X, Y ] = ad(X)(Y ). It follows that this map is bilinear.
By definition, for any X ∈ TeG there is a curve 
 ∶ (−�, �)→ G such that 
(0) = e, and 
 ′(0) = X. We compute

[X, Y ] = ad(X)(Y ) = d
dt
(Ad(
(t))Y )||

|

|t=0
= d
dt
(
(t)Y 
(t)−1)

|

|

|

|t=0

= 
 ′(t)Y 
(t) + 
(t)Y (−
(t)−1
 ′(t)
(t)−1)||
|t=0

= XY − Y X.
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From this computation it also follows [, ] is skew-symmetric, and for X, Y ,Z ∈ TeG,

[X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X, Y ]] = 0,

which we call the Jacobi identity.
In the particular case of a representation � ∶ G → GLn(F ), we have TeGLn(F ) = End(F n). Therefore, the general
study of maps g → End(F n) for an F -vector space g, equipped with a skew-symmetric bilinear map [, ] satisfying the
Jacobi identity, subsumes the study of differentials of Lie group representations, and thus Lie group representations
themselves. This is the inspiration for the first definition of the following subsection.

Lie Algebras

Definition 2.1.5. A Lie algebra is a vector space g with a skew-symmetric bilinear map [, ] ∶ g× g → g satisfying the
Jacobi identity. That is, for all X, Y ,Z ∈ g

1. [X,X] = 0

2. [X, Y ] = −[Y ,X],

3. [X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X, Y ]] = 0.

If char(F ) ≠ 2 then 1) follows from 2).
Given a Lie group G, we’ve already seen that the tangent space Te(G) at the identity provides us with a Lie algebra.
We will occasionally write Lie(G) to refer to the Lie algebra Te(G) and occasionally we’ll write g ∶= Lie(G).
The relevant operation for Lie algebras is the bracket, and thus we define a Lie algebra morphism of Lie algebras g and
h to be a vector space morphism � ∶ g→ h such that

�
(

[X, Y ]g
)

= [�(X), �(Y )]h ,

for all X, Y ∈ g where [, ]g is the bracket of g, and [, ]h is the bracket of h.

As a first example, we’ve already seen that Lie(GLn(F )) = End(F n), where the Lie bracket is given by
[X, Y ] = XY − Y X. We will often write this as gln(F ) for short. Just as many classical examples of Lie groups are
given as subgroups of GLn(F ), many classic examples of Lie algebras are realized as subalgebras of gln.

Definition 2.1.6. A subpsace h of a Lie algebra g is called a Lie subalgebra if [h, h] ∶= {[X, Y ] ∶ X, Y ∈ h} is
contained in h.

Proposition 2.1.7. The Lie algebra Lie(SLn(F )) is sln(F ) = {X ∈Mn(F ) ∶ tr(X) = 0}.

Proof. Let 
 ∶ (−�, �) → SLn(F ), be a curve such that 
(0) = I , and write X ∶= 
 ′(0). Since SLn(F ) ⊆ GLn(F )

we must have det 
(t) = 1. Recall that the absolute value of the determinant of a matrix whose column vectors
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are the vectors determining a parallelogram, is the area of the parallelogram. Like-wise, the wedge product of vectors
represents the volume spanned by those vectors. Thus, for the standard basis {e1, .., en} ofF n, the determinant condition
becomes the requirement 
(t)(e1) ∧ ... ∧ 
(t)(en) = e1 ∧ ... ∧ en. Thus by the product rule, we have

0 = d
dt

(t)(e1) ∧ ... ∧ 
(t)(en)

|

|

|

|t=0
=

n
∑

i=1
e1 ∧ ... ∧X(ei) ∧ ... ∧ en

= tr(X)e1 ∧ ... ∧ en,

but this only holds iff tr(X) = 0. Therefore the Lie algebra sln(F ) is the subspace of gln(F ) of traceless matrices.

Proposition 2.1.8. The Lie algebra Lie(U (p, q)) is

u(p, q) =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A B

B∗ D

⎞

⎟

⎟

⎠

∶ A = −A∗, D = −D∗
⎫

⎪

⎬

⎪

⎭

.

Proof. For some curve 
 ∶ (−�, �)→ U (p, q), we must have 
(t)TH
(t) = H , and thus we compute

0 = )
)t
H
|

|

|

|t=0
= )
)t

(

(
(T ))THĀt
)|

|

|

|t=0

=
( )
)t

(t)

)T
|

|

|

|t=0
H
(0) + 
(0)TH )

)t

(t)

|

|

|

|

|t=0

= XTH +HX̄.

Writing X in block-form as
⎛

⎜

⎜

⎝

A B

C D

⎞

⎟

⎟

⎠

, (A is p × p, and B is q × q), and denoting conjugation by �, the equation
becomes

0 =
⎛

⎜

⎜

⎝

A B

C D

⎞

⎟

⎟

⎠

T
⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

�
⎛

⎜

⎜

⎝

A B

C D

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT CT

BT DT

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

I 0

0 −I

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

Ā B̄

C̄ D̄

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

AT −CT

BT −DT

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

Ā B̄

−C̄ −D̄

⎞

⎟

⎟

⎠

⇒
⎛

⎜

⎜

⎝

A B

−C −D

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−ĀT C̄T

−B̄T D̄T

⎞

⎟

⎟

⎠

.

Thus −C = −B∗ ⇒ C = B∗. We conclude that

u(p, q) =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A B

B∗ D

⎞

⎟

⎟

⎠

∶ A = −A∗, D = −D∗
⎫

⎪

⎬

⎪

⎭

.
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In the special caseH = I from eq. (2.2), the Lie algebra

u(n) ∶= u(n, 0) =
{

X ∈Mnℂ|X = −X∗} . (2.3)

We will often write g0 = u(p, q) for short. To construct an explicit ℝ-basis for g0, let
[A]jk = ajk, [B]jk = bjk, [D]jk = djk, and define Ejk be the elementary matrices with non-zero entry j, k. We
decompose an arbitrary matrix as
⎛

⎜

⎜

⎝

A B

B̄T D

⎞

⎟

⎟

⎠

=
∑

1≤j,k≤p
ajkEjk − ājkEkj +

∑

j≤p,k>p
bjkEjk + b̄jkEkj +

∑

j,k>p
djkEjk − d̄jkEkj

=
p
∑

i=1
2Im(ajj)iEjj +

p+q
∑

k=p+1
2Im(dkk)iEkk +

∑

1≤j<k≤p
ajkEjk − ājkEkj +

∑

p+1≤j<k≤p+q
djkEjk − d̄jkEkj

+
∑

j≤p,k>p
bjkEjk + b̄jkEkj

=
p
∑

i=1
2Im(ajj)iEjj +

p+q
∑

k=p+1
2Im(dkk)iEkk +

∑

j≤p,k>p
Re(bjk)(Ejk + Ekj) +

∑

j≤p,k>p
Im(bjk)i(Ejk − Ekj)

+
∑

1≤j<k≤p
Re(ajk)(Ejk − Ekj) +

∑

1≤j<k≤p
Im(ajk)i(Ejk + Ekj) +

∑

1≤j<k≤q
Re(djk)(Ejk − Ekj)

+
∑

1≤j<k≤q
Im(djk)i(Ejk + Ekj).

Therefore, as an ℝ-vector space, u(p, q) can be written

span{iEjj|1 ≤ j ≤ p + q} (2.4)
⊕ span{Ejk − Ekj|1 ≤ j < k ≤ p}⊕ span{i(Ejk + Ekj)|1 ≤ j < k ≤ p} (2.5)
⊕ span{Ejk − Ekj|p + 1 ≤ j < k ≤ p + q}⊕ span{i(Ejk + Ekj)|p + 1 ≤ j < k ≤ p + q} (2.6)
⊕ span{Ejk + Ekj|1 ≤ j ≤ p, p + 1 ≤ k ≤ p + q}⊕ span{i(Ejk − Ekj)|1 ≤ j ≤ p, p + 1 ≤ k ≤ p + q}. (2.7)

Counting the dimensions of these sub-spaces we find
dimℝ u(p, q) = p + q + 2

p(p−1)
2 + 2 q(q−1)2 + 2pq = p2 + q2 + 2pq.

Since

K =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

∶ A ∈ U (p), D ∈ U (q)

⎫

⎪

⎬

⎪

⎭

,

we have that

k0 ∶= Lie(K) =
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

A 0

0 D

⎞

⎟

⎟

⎠

∶ A = −A∗, D = −D∗
⎫

⎪

⎬

⎪

⎭

.
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Thus by reading off the appropriate bases from the above, we have that

k0 = span{iEjj|1 ≤ j ≤ p + q} (2.8)
⊕ span{Ejk − Ekj|1 ≤ j < k ≤ p}⊕ span{i(Ejk + Ekj)|1 ≤ j < k ≤ p} (2.9)
⊕ span{Ejk − Ekj|p + 1 ≤ j < k ≤ p + q}⊕ span{i(Ejk + Ekj)|p + 1 ≤ j < k ≤ p + q}. (2.10)

Now we define a few useful operations on Lie algebras.

Definition 2.1.9. Given two Lie algebra g1 and g2 with respective Lie brackets [, ]1 and [, ]2, we define the Lie algebra
direct sum by taking the vector space direct sum g ⊕ h. For X1, Y1 ∈ g1 and X2, Y2 ∈ g2 we define the Lie bracket
[, ] ∶ (g⊕ h) × (g⊕ h)→ g⊕ h

[X1 +X2, Y1 + Y2] = [X1, Y1]1 + [X2, Y2]2.

Ideals

In the last section we introduced the idea of Lie subalgebra h of a Lie algebra g, where we require that h is a linear
subspace and [h, h] = {[X, Y ] ∶ X, Y ∈ h} ⊆ h. If the stronger condition that [h, g] ⊆ h, is met, we say that h is an
ideal, and we write h ⊲ g.
For any Lie algebra g, an ideal of central importance is the commutator Dg = [g, g]. The next definition will provide
a useful tool for understanding the structure of Lie algebras, and in particular, allow us to computeDgln.

Definition 2.1.10. For a Lie algebra g with basis {ei|1 ≤ i ≤ n}, we refer to the coefficients

[ei, ej] =
n
∑

k=1
Ckijek,

as the structure constants of g.

The set {Ejk ∶ 1 ≤ j, k ≤ n} forms a basis for gln(F ). Computing

[EjkX]rs =
n
∑

t=1
(Ejk)rtxts = (Ejk)rkxks =

⎧

⎪

⎨

⎪

⎩

0, r ≠ j

(Ejk)jkxks, r = j

thus EjkX =
∑n
s=1 xksEjs. Similarly

[XEjk]rs =
n
∑

t=1
xrt(Ejk)ts = xrj(Ejk)js

⎧

⎪

⎨

⎪

⎩

0, s ≠ k

xrj(Ejk)jk,

so that XEjk = ∑n
r=1 xrjErk. Now we see that

EjkElm =
n
∑

s=1
(Elm)ksEjs = (Elm)Ejm = �klEjm.
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From this, we see that

[Ejk, Elm] = �klEjm − �mjElk. (2.11)

Thus, comparing this with
[Ejk, Elm] =

∑

r,s
Crsjk,lmErs,

for gln, the structure constants are

Crsjk,lm =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�kl, rs = jm

−�jm, rs = lk

0, otherwise
(2.12)

Therefore
Dgln = span{�klEjm − �mjElk

}

.

We can be more specific by computing that

�klEjm − �mjElk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ejj − Ekk, k = l, m = j

Ejm, k = l, m ≠ j

−Elk, k ≠ l, m = j

0, otherwise

By the additivity of trace, we conclude that

Dgln(F ) =
{

X ∈ gln ∶ tr(X) = 0
}

= sln(F ). (2.13)

As Dg is a useful ideal for understanding the structure of g, and Dg is a Lie subalgebra in its own right, we can
take the commutator ofDg itself.
Towards this end, we define two series Dkg and Dkg of Lie algebras, both with the initial terms D1g = Dg = D1g.
The lower central series is given by Dkg = [g,Dk−1g], and the derived series Dkg = [Dk−1g,Dk−1g]. We will also
classify Lie algebras according to their behavior with respect to these series by saying that a Lie algebra g is

1. Nilpotent, if some k, we findDkg = 0,

2. Solvable, if some k, we findDkg = 0,

3. Simple, if dim g > 1, and g has no non-trivial ideals, and

4. Semi-simple, if g has no non-zero solvable ideals.
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The notion of semi-simplicity will be of particular importance to us. As we’ll see in the next section, the represen-
tation theory of semi-simple Lie algebras enjoys some nice features, and information about general Lie algebras can
be lifted from certain related semi-simple Lie algebras.
Given solvable ideals a and b of a Lie algebra g, their sum a + b ∶= {X + Y ∶ X ∈ a, Y ∈ b} is again a solvable
ideal. Thus the sum ∑

a a over all solvable ideals of g is a maximal solvable ideal which we call the radical Rad(g).
As g∕Rad(g) is semi-simple, we write it as gss and refer to it as the semi-simplification of g.

Representations of Lie algebras

We have already seen that given a pair of Lie groupsG andH , with respective Lie algebras g and h, we can differentiate
a morphism � ∶ G → H to obtain a linear map d� ∶ g → h which preserves the Lie bracket, and hence, is a morphism
of Lie algebras. Thus, given a representation � ∶ G → GL(V ) for some vector space V , we obtain a morphism
d� ∶ g→ gl(V ). In general, we refer to any map of Lie algebras g→ gl(V ) as a representation.

As is the case with the representation theory of groups, much of the structure of a Lie algebra can be captured by
understanding fundamental objects known as irreducible representations. If � ∶ g → gl(V ) is a representation of g,
and for some subspace W ⊂ V we have that �(X)W ⊆ W ,∀X ∈ g, then we say that W is an invariant subspace.
Notice that in this case � also determines a representation � ∶ g→ gl(W ).

Definition 2.1.11. A representation � ∶ g → gl(V ) of a Lie algebra g is said to be irreducible if the only invariant
subspaces of V and the 0-vector space, and V .

In the case of representations of groups, one way to build representations from irreducible ones is the use of tensor
products. Given a pair of group representations �1 ∶→ GL(V1) and �2 ∶ G → GL(V2), we can define the tensor

product representation �1 ⊗ �2 ∶ G → GL(V1 ⊗ V2) such that for all g ∈ G, v1 ∈ V1, and v2 ∈ V2, we have

�1 ⊗ �2(g) ⋅
(

v1 ⊗ v2
)

=
(

�1(g) ⋅ v1
)

⊗
(

�2(g) ⋅ v2
)

,

and then extend to the rest of V1 ⊗ V2 by linearity.
If G above is a Lie group, then the representation d(�1⊗�2) of g is obtained taking the differential of �1⊗�2, and by
Proposition 4.19 on page 110 of [5], we may treat a tensor product of functions as a product of functions with respect
to differentiation, and apply a kind of Leibniz formula. Thus, in general, we see that the correct definition for the tensor
product of Lie algebras is the following.

Definition 2.1.12. Given a Lie algebra g, and two representations �1 ∶ g → gl(V1) and �2 ∶ g → gl(V2), we define
their tensor product (�1 ⊗ �2) ∶ g → gl(V1 ⊗ V2) such that for X ∈ g and v1 ⊗ v2 ∈ V1 ⊗ V2

(�1 ⊗ �2)(X)(v1 ⊗ v2) = �1(X)v1 ⊗ v2 + v1 ⊗ �2(X)v2.
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As we’ll see below, the theory also becomes considerably easier for the case of semi-simple Lie algebras. While
many common examples Lie algebra, such as gl(ℂ) (see below), fail to be semi-simple, this isn’t always a great loss,
as exemplified byProposition 9.17 of [2]

Theorem 2.1.13. Let g be a complex Lie algebra, and gss = g∕Rad(g). Every irreducible representation of g is of the

form �0 ⊗ � ∶ g → gl
(

V0 ⊗L
)

, where �0 ∶ gss → gl(V0) is irreducible, and dimℂ L = 1.

For the remainder of this section, we will assume all our Lie algebras are semi-simple.
For an arbitrary Lie algebra g, one begins by finding a maximal Abelian subalgebra h for which the restriction of the
adjoint representation ad ∶ h → gl(g) acts diagonally. We call any such subalgebra h a Cartan subalgebra. Given this
choice of h, the action decomposes g into subspaces on which h acts by a functional � ∈ h∗. That is, there exists a set
Λ ⊆ h∗ such that for each � ∈ Λ, we have spaces

g� = {X ∈ g|∀H ∈ h, ad(H)(X) = �(H) ⋅X} ≠ {0},

where g = h⊕ (
⨁

�∈Λ g�
). The functionals are called roots, and we denote the set of all roots by Δ. The g� are root

spaces, and their elements are called root vectors.
Each of the root spaces g� are 1-dimensional, and Δ generates a lattice ΛΔ ⊆ h∗ having rank equal to dim h.
More generally, any representation g→ gl(V ) will decompose into spaces V =

⨁

� V� where h acts diagonally, where
V� = {v ∈ V |∀H ∈ h,Hv = �(H) ⋅ v⃗}.
At this point, one must make a choice of hyperplane containing half the roots. This can by described more formally
as choosing a linear functional l ∶ ΛΔ ⊗ ℝ → ℝ, and extend it to a functional l ∶ h∗ → ℂ which is irrational with
respect to the lattice ΛΔ. We then define the positive and negative roots respectively

Δ+ = {� ∈ Δ|l(�) > 0}, Δ− = {� ∈ Δ|l(�) < 0}.

Definition 2.1.14. For a representation g → gl(V ), with Cartan subalgebra h ⊆ g, a functional � ∈ h∗ and positive
roots Δ+, a non-zero vector v ∈ V is said to be of weight � ∈ h∗ such that Hv = �(H)v. We say that v is a highest
weight vector if it has weight �, and is in the Kernel of g� for each � ∈ Δ+.

The main point of the preceding definition is the following result.

Theorem 2.1.15. For any representation g → gl(V ) of a semisimple complex Lie algebra g, the subspace

W = {Y ⋅ v ∈ V |Y ∈ g� , � ∈ Δ−} ⊆ V is an irreducible subrepresentation.

Computation of the Semi-simple part of gln(ℂ)

For the main theorems of this thesis, we will be interested in a representation of a certain Lie subalgebra of sln(ℂ),
and hence gln(ℂ). Thus, throughout the rest of this section we reproduce a number of well known results about the
structure and representation theory of gln(ℂ) and sln(ℂ), which will then restrict to results on the Lie subalgebra of
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our main interest, to be described later.
In this section, we define a symmetric bilinear form on arbitrary Lie algebras that has particular importance for repre-
sentation theory, known as the Killing form.
Proposition 2.1.16. For a Lie algebra g over a field F , the map

B ∶ g × g → F

(X, Y )↦ tr(ad(X)◦ad(Y ))

is symmetric and bilinear.

Proof. The symmetry follows from the commutative property of trace, and the bilinearity follows from the linearty of
trace, and the bilinearity of the Lie bracket.

From the bilinearity of B, it’s enough to determine its action on a basis {ei}ni=1 of g. Recalling the definition of the
structure coefficients from the previous subsections, we can compute

ad(ei)◦ad(ej)(ek) = [ei, [ej , ek]] =
[

ei,
n
∑

l=1
C ljkel

]

=
n
∑

l=1

n
∑

m=1
CmilC

l
jkem.

Using this, we can compute a concrete description for the Killing form of gln(ℂ) here, from which the Killing form
for sln(ℂ) will follow as an easy corollary.
Let X, Y ∈ gln(ℂ), then by the bi-linearity, and the computations of the Lie bracket eq. (2.11)

B(X, Y ) = B

(

∑

j,k
xjkEjk,

∑

l,m
ylmElm

)

=
∑

j,k

∑

l,m
xjkylmB(Ejk, Elm) =

∑

j,k

∑

l,m
xjkylm

∑

r,s

∑

t,u
Crsjk,tuC

tu
lm,rs.

Now by eq. (2.12)

C tulm,rs =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�mr, tu = ls

−�ls, tu = rm

0, otherwise
and therefore

B(X, Y ) =
∑

j,k

∑

l,m
xjkylm

∑

r,s

(

Crsjk,ls�mr − C
rs
jk,rm�ls

)

.

Again by eq. (2.12)

Crsjk,ls =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�kl, rs = js

−�js, rs = lk

0, otherwise

Crsjk,rm =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�kr, rs = jm

−�jm, rs = rk

0, otherwise
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Thus the above becomes

B(X, Y ) =
∑

j,k

∑

l,m
xjkylm

( n
∑

s=1
�kl�mj − �jk�ml − �kj�lm +

n
∑

r=1
�jm�lk

)

=
∑

j,k

∑

l,m

(

xjkylmn�kl�mr + xjkylmn�jm�lk − xjkylm�jk�ml − xjkylm�kj�lm
)

= n
n
∑

j=1

n
∑

k=1
xjkykj + n

n
∑

j=1

n
∑

k=1
xjkykj −

n
∑

j=1

n
∑

l=1
xjjyll −

∑

j=1

∑

l=1
xjjyll

= 2n
n
∑

j=1
[XY ]jj − 2

n
∑

j=1
xjj tr(Y )

= 2ntr(XY ) − 2tr(X)tr(Y ).

Recall that sln(ℂ) is the subalgebra of gln(ℂ) of traceless matrices, and therefore Bsln(F )(X, Y ) = 2ntr(XY ).
In order to compute Rad(gln(ℂ)) we will make use of Proposition C.22 of [2], which states that

Proposition 2.1.17. For any complex Lie algebra Rad(g) = (Dg)⟂ with respect to the Killing form.

We computed the killing form for gln(F ) in the previous section to be B(X, Y ) = ntr(XY ) − tr(X)tr(Y ). So we let
Y ∈ gln(ℂ), and demand that it’s Killing product with each basis vector ofDgln(ℂ) be zero.
For j ≠ k, we see that

0 = ntr(EjkY ) − tr(Ejk)tr(Y ) = ntr
( n
∑

i=1
[EjkY ]ii

)

− 0

= n
n
∑

i=1

n
∑

l=1
(Ejk)ilyli

= n
n
∑

i=1
(Ejk)ikyki

= n(Ejk)jkykj

= nykj .
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Therefore ykj = 0, and by arbitrary selection of j ≠ k, all off-diagonal terms of Y must be zero. Meanwhile

0 = tr((Ejj − Ekk)Y ) − tr(Ejj − Ejj)tr(Y ) = tr(EjjY ) − tr(EkkY ) − 0

= n
n
∑

i=1
(EjjY )ii − n

n
∑

i=1
(EkkY )ii

= n
n
∑

i=1

∑

l=1
(Ejj)ilyli − n

n
∑

i=1

n
∑

l=1
(Ekk)ilyli

= n
n
∑

i=1
(Ejj)ijyji − n

n
∑

i=1
(Ekk)ikyki

= n(Ejj)jjyjj − n(Ekk)kkykk

= n(yjj − ykk).

Thus yjj = ykk, and by arbitrary selection of j and k, we conclude that Y = �I for some � ∈ ℂ.
Altogether we conclude

Rad(gln(ℂ)) = (Dgln(ℂ)⟂ = {�I ∶ � ∈ ℂ} .

Now, if we consider (gln(ℂ)
)

ss = gln(ℂ)∕Rad(gln(ℂ)), we have that

X + Rad(gln(ℂ)) = Y + Rad(gln(ℂ)) ⟺ X − Y ∈ Rad(gln(ℂ)) ⟺ X − Y = �I, for some � ∈ ℂ.

Thus two matrices represent the same equivalence class iff their diagonals differ by a constant. In particular
X ∼ X − tr(X)

n I , where

tr
(

X −
tr(X)
n

I
)

= ttrX) − tr(X)
n

tr(I) = tr(X) − tr(X) = 0.

Therefore each class of glnℂ∕Rad(glnℂ) can be represented by a matrix of zero trace.
Furthermore, we’ve seen that two matrices X and Y represent the same class iff Y = X + �I . If we require that
tr(Y ) = 0, then

0 = tr(Y ) = tr(X + �I) = tr(X) − �tr(I) = tr(X) − �
n
⇒ tr(X) = �

n
.

In other words, each equivalence class can uniquely be represented by a traceless matrix, and therefore we identify
(

gln(ℂ)
)

ss = gln(ℂ)∕Rad(gln(ℂ)) ≅ {X ∈ gln(ℂ) ∶ tr(X) = 0}.

In this way, we see that (glnℂ
)

ss is naturally identified with a Lie subalgebra of gln. In particular
(

gln(ℂ)
)

ss ≅ sln(ℂ). Thus as a consequence, we see that sln(ℂ) is a semi-simple Lie algebra.

The Cartan Subalgebra of sln(ℂ).

In this subsection, we will only work with the (semi-simple) Lie algebra g ∶= slnℂ ≅
(

gln(ℂ)
)

ss. First, we will need
to choose a Cartan subalgebra of sln(ℂ). In the case of g = (

gln(ℂ)
)

ss, we define h to be the subalgebra of diagonal
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matrices. First we observe that

[Eii, Ejj] = �ijEij − �jiEji =

⎧

⎪

⎨

⎪

⎩

Eii − Eii = 0, i = j

0, otherwise.

Therefore
[Eii − Ejj , Ekk − Ell] = [Eii, Ekk] − [Ejj , Ekk] − [Eii, Ekk] + [Ejj , Ell] = 0,

and thus we see that h is Abelian.
Now we examine the action ad ∶ sln(ℂ)→ gl(g) restricted to h. First, sinceH = span{Eii−Ejj}, then letting ei ∈ h∗
where

ei(Ejk) =

⎧

⎪

⎨

⎪

⎩

1, i = j = k

0, otherwise

Fixing a particular j, we obtain a basis {ei − ej ∶ 1 ≤ i ≤ n, i ≠ j} for h∗.

In the case of sln = sl2, we have h = span
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 0

0 −1

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

. For X =
⎛

⎜

⎜

⎝

a b

c d

⎞

⎟

⎟

⎠

∈ ge1−e2 , andH =
⎛

⎜

⎜

⎝

ℎ 0

0 −ℎ

⎞

⎟

⎟

⎠

∈ h, we must

have

[(e1 − e2)(H)](X) = ad(H)(X) =
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

ℎ 0

0 −ℎ

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

a b

c d

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

ℎa ℎb

−ℎc −ℎd

⎞

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

ℎa −ℎb

ℎc −ℎc

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 2ℎb

−2ℎc 0

⎞

⎟

⎟

⎠

.

Meanwhile, (e1 − e2)H(X) = (ℎ − (−ℎ))X = 2ℎX and thus

2ℎ
⎛

⎜

⎜

⎝

a b

c d

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 2ℎb

−2ℎc 0

⎞

⎟

⎟

⎠

.

Since ℎ ≠ 0, we know 2ℎc = −2ℎc ⇒ c = 0. Therefore

ge1−e2 = span
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

0 1

0 0

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

Now we consider the case where n ≥ 3.
Suppose X ∈ gel−em . There must be at least one non-zero entry, say xij , and compute

[H,X]ij = [HX]ij − [XH]ij =
n
∑

k=1
ℎikxkj −

n
∑

k=1
xikℎkj = ℎiixij − xijℎjj = (ℎii − ℎjj)xij ,

and [H,X]ij = [(el − em)(H)X]ij = (ℎll −ℎmm)xij . Therefore (ℎii −ℎjj)xij = (ℎll −ℎmm)xij . Since xij ≠ 0, we have
ℎii − ℎjj = ℎll − ℎmm.
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If i = j, we find ℎll = ℎmm. However n is at least 3, and thus we can freely choose the values of both variables, and
thus the equality won’t hold in general. Therefore xii = 0 for all i, and so we now assume i ≠ j.

We have that 0 = tr(H) =
∑n
k=1 ℎkk =

∑

k∈{i,j,l,m} ℎkk +
∑

i∉{i,j,l,m} ℎkk. Since i ≠ j, the first sum has at least
2 terms, thus we can freely set all the terms in the second sum to 0. Therefore we have a system of linear equations
with some variables ℎii, ℎjj , ℎll, and ℎmm, which may not be distinct, and 2 equations ℎii − ℎjj = ℎll − ℎmm and
∑

k∈{i,j,k,l} ℎkk.
If there really are 3 or 4 distinct variables, that is 3 or 4 of the i, j, l, m are distinct, then there aren’t enough constraints.
That is, we can freely choose them to violate the prescribed equations. There can’t be only one variable because i ≠ j,
thus there are exactly two variables.
It can’t be that j = l and j = m, because m ≠ l.
If j = l, then ℎii − ℎjj = −ℎii + ℎjj so ℎii = ℎjj and again, this won’t hold for arbitrary H, therefore j = m and thus
i = l. In other words, all the xij are zero, except possibly xlm, so X = xlmElm.
We can also see that any such choice of xlm will suffice, and therefore gel−em = span{Elm}.

By the argument above, we’ve determined that no other off-diagonal term be be added to hwhile remaining Abelian,
and therefore h is a maximal Abelian subalgebra, making it a Cartan subalgebra.
Since the functionals ei − ej are a basis for the dual h∗, we obtain the decomposition

g = h⊕
⨁

ei−ej

gei−ej ,

where gei−ej = span{Eij}.

Usually, the set of positive roots is taken to be {ei − ej|1 ≤ i < j ≤ n}. However, our main interest will be in a
particular subalgebra k of sl2r(ℂ), to be defined in the next section. The subsets Δ+ = {ei − ej|1 ≤ i < j ≤ r} and
Δ− = {−ei + ej|r + 1 ≤ i < j ≤ 2r}, are positive and negative roots of k respectively, and we’ll write Δ ∶= Δ+ ∪ Δ−.
Thus the root spaces are spanned by

gei−ej = spanℂ{Eij}, 1 ≤ i ≤ r, i < j ≤ 2r (2.14)
g−ei+ej = spanℂ{Eji}, r + 1 ≤ i < j ≤ 2r (2.15)

2.2 The Weil Representation

Our ultimate goal is to investigate the behavior of certain vectors under the action of of the Weil representation. The
Weil representation originated in physics, but was generalized to the realm locally compact Abelian groups by André
Weil. This allowed for a representation theoretic interpretation of theta functions, and provided a powerful tool for the
study of modular forms of half-integral weight.
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We will only outline the theory here, the details for the general case can be found in [9]. Let G be a locally compact
Abelian group, and define its Pontryagin dual Ĝ = Homcts(G,ℂ1). The symplectic group Sp(G × Ĝ)1 is a certain
special subgroup of Aut(G × Ĝ). Any finite dimensional ℝ-vector space W1 is isomorphic (as a vector space) to ℝn,
and thus the underlying group G of W1 is isomorphic (as a group) to ℝn. As ℝn

⋀

≅ ℝ as a group, Ĝ ≅ ℝn
⋀

and can be
realized as the underlying group of the linear dual space (ℝn)∗ ≅ W∗

1 . The natural pairing G × Ĝ → ℂ induces a form
onW = W1 ⊕W∗

1 , which can be described by a matrix

J =
⎛

⎜

⎜

⎝

0 In
−In 0

⎞

⎟

⎟

⎠

.

In this case Sp(G × Ĝ) is actually the Lie group Sp(W) of matrices preserving the form J .
Recall that a covering of a topological space X is a space Y and a continuous surjection p ∶ Y → X such that for all
x ∈ X there exists an open set U ⊆ X containing U , where p−1(U ) is a union of disjoint open sets of Y , each of which
are homeomorphic to U under p. A cover p ∶ Y → X is said to be a double cover if the fiber p−1({x}) contains 2
elements for all x ∈ X. A covering group of a topological group G is a covering p ∶ H → G such that p is also a
group homomorphism.
The metaplectic group Mp(G × Ĝ) is constructed as a double cover of Sp(G × Ĝ), and the Weil representation is a
homomorphism ! ∶ Mp(G × Ĝ) → End((G)), depending on a choice of  ∈ Hom(Z,ℂ1), where Z is the center
of Sp(G × Ĝ), and (G) is the space of Schwartz-Bruhat functions. When G is the underlying group of W1 as above,
the space (G) is the Schwartz space (W1). Given an identificationW1 ≅ ℝn, with coordinates (x1, ..., xn) ∈ ℝn, we
can describe the Schwartz space as the collection of smooth f ∶ ℝn → ℂ such that for all � = {�1, ..., �n} ,
� = {�1, ..., �n} ∈ ℕn0,

supx∈ℝn
|

|

|

|

x�
)f (x)
)x�

|

|

|

|

< ∞,

in multi-index notation.
To describe the setting relevant to our purposes, consider the (p+q)-dimensional Hermitian space (V , ⟨, ⟩V ) of previous
sections, and a 2r-dimensional ℂ-vector spaceW , with a skew-Hermitian form ⟨, ⟩W acting on a basis
{w⃗s|1 ≤ s ≤ 2r} by

⟨ws, wt⟩ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

i, 1 ≤ s = t ≤ r

−i, r + 1 ≤ s = t ≤ 2r

0, otherwise
.

The vector spaceW ∶= V ⊗ℂW considered as a 2(p+ q)(2r)-dimensional ℝ-vector space, has a symplectic form

⟨⟨v ⊗ w, ṽ ⊗ w̃⟩⟩ = Re (⟨v, ṽ⟩V ⟨w, w̃⟩W
)

.

We choose a maximal isotropic subsapce W1 of W, and focus on the Weil representationMp(W) =Mp(G × Ĝ).
In [6], a splitting U (V ) × U (W ) → Mp(W) is provided, and thus by composition the Weil representation describes

1This is commonly written as Sp(G), but this notation will become confusing in our context
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and action of U (V ) × U (W ) on (V r). The U (V ) factor acts on Φ ∈ (W ) by g ⋅Φ(x) = Φ(g−1x), but the action of
U (W ) is more complicated.
LetHr(ℂ) be the collection of r × r Hermitian matrices, and

m(a) ∶=
⎛

⎜

⎜

⎝

a 0

0 (a∗)−1

⎞

⎟

⎟

⎠

, a ∈ GLr(ℂ), n(b) ∶=
⎛

⎜

⎜

⎝

1 b

0 1

⎞

⎟

⎟

⎠

, b ∈ Hr(ℂ), wr =
⎛

⎜

⎜

⎝

0 −Ir
Ir 0

⎞

⎟

⎟

⎠

By an analogous argument to the proof of Proposition 2.2 on page 8 of [1], U (W ) is generated by elements of the
form m(a), n(b), and wr, and hence it suffices to describe the action of the Weil representation for these elements.
Define  ∶ ℝ → ℂ1 by  (x) = e2�ix, let � be a character of ℂ× such that �|ℝ× = sgn(⋅)p+q , and for any
v = (v1, ..., vr) ∈ V r, set T (v) = [

(1∕2)
⟨

vi, vj
⟩

V

]. Then explicit formulas for the action of ! = ! ,� on Φ ∈ (W )

are given by
!(m(a))Φ(v) = |deta| p+q2 Φ(v ⋅ a)�(deta)
!(n(b))Φ(v) =  (tr(bT (v)))Φ(v)

!(wr) = 
V rΦ̂(v)

where 
V r is a special constant associated to the representation known as theWeil index, and Φ̂ is the Fourier transform
of Φ.

As mentioned in the section on Lie algebras, we can study representations of U (W ) by studying the induced repre-
sentation d! on its Lie algebra u(W ), which we will also just write as!. Since the study of Lie algebra representations
is easier for (and can be recovered from) the case of compact, complex, and semi-simple Lie groups, we will consider
the Lie algebra k0 of the maximal compact subgroup U (r) ×U (r) of U (r, r), and the complexification g = g0⊗ℝ ℂ, of
g0 = Lie(U (r, r)), where we set k ∶= k0 ⊗ℝ ℂ.
In the semi-simpification gss of g, we define kss = k∩gss ≅

(

k0
)

ss⊗ℝℂ. In fact, in this section we’ll realize an explicit
isomorphism g ≅ gl2r(ℂ), and thus gss ≅ sl2r(ℂ). Thus by realizing kss as a Lie subalgebra of sl2r(ℂ), we can apply
the theory of the highest weight vector outlined in the Lie algebra section.
In [3], the action of the Lie algebra g via the Weil representation is described by expressing g as isomorphic to a

quotient of (Sym2
ℝW

)

⊗ℝ ℂ, which we also make explicit in this section. Since our focus will be on kss, we will then
restrict to the corresponding subspace.

The Skew-Hermitian space W

Let W be a complex vector space of dimension 2r with a basis {w⃗a, w⃗u|1 ≤ a ≤ r, r + 1 ≤ u ≤ 2r}, and a skew-
Hermitian inner product defined by ⟨w⃗a, w⃗a

⟩

= i,
⟨

w⃗u, w⃗u
⟩

= −i, and ⟨w⃗s, w⃗t
⟩

= 0 for s ≠ t.
Letting G = U (W ) and g0 = u(W ), the defining equation for the Lie group G becomes

⎛

⎜

⎜

⎝

iIp 0

0 −iIq

⎞

⎟

⎟

⎠

= XT
⎛

⎜

⎜

⎝

iIp 0

0 −iIq

⎞

⎟

⎟

⎠

X̄.
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Thus dividing both sides of the equation by i, we see G = U (r, r) and g0 = u(r, r).
Recall that for a K-vector space U , the tensor algebra T (U ), and the ideal I = ⟨x ⊗ y − y ⊗ x⟩ of T (U ), we define
Sym∙ ∶= T (U )∕I , where wewill write x◦y for the image of x⊗y ∈ T (U ) in the quotient T (U )∕I . We set Sym0U = K ,
and for 1 ≤ k ≤ dimU we define Symk(U ) ∶= spanK{u1◦...◦uk|u1, ..., uk ∈ U}.
We define a map

� ∶ Sym2
ℝW → End(W )

�(u⃗◦v⃗)(w⃗) =
⟨

w⃗, u⃗
⟩

v⃗ +
⟨

w⃗, v⃗
⟩

u⃗

Below we will derive the explicit action of the map, and as a result we will be able to see that the image is g0.
Since {w⃗s, iw⃗t ∶ 1 ≤ s, t ≤ 2r} is anℝ-basis forW , the set {w⃗s◦w⃗t, (iw⃗s)◦w⃗t, w⃗s◦(iw⃗t), (iw⃗s)◦(iw⃗t) ∶ 1 ≤ s, t ≤ 2r}

is a basis for Sym2
ℝW . Furthermore

�(u⃗◦iv⃗)w⃗ =
⟨

w⃗, u⃗
⟩

iv⃗ +
⟨

w⃗, iv⃗
⟩

u⃗ =
⟨

w⃗,−iu⃗
⟩

v⃗ +
⟨

w⃗, v⃗
⟩

(−iu⃗) = −
(⟨

w⃗, iu⃗
⟩

v⃗ +
⟨

w⃗, v⃗
⟩

iu⃗
)

= −�(iu⃗◦v⃗)w⃗

�(iu⃗◦iv⃗)w⃗ =
⟨

w⃗, iu⃗
⟩

iv⃗ +
⟨

w⃗, iv⃗
⟩

u⃗ =
⟨

w⃗, u⃗
⟩

(−i2)v⃗ +
⟨

w⃗, v⃗
⟩

(−i2)u⃗ =
⟨

w⃗, u⃗
⟩

v⃗ +
⟨

w⃗, v⃗
⟩

u⃗ = �(u⃗◦v⃗)w⃗.

Thus the image of � is spanned by {�(w⃗s◦w⃗t), �(iw⃗s◦w⃗t)}, and thus it is sufficient to check the action of these
elements on the basis vectors ofW .
We compute

�(w⃗s◦w⃗t)w⃗m =
⟨

w⃗m, w⃗s
⟩

w⃗t +
⟨

w⃗m, w⃗t
⟩

w⃗s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⟨

w⃗s, w⃗s
⟩

w⃗t, m = s ≠ t
⟨

w⃗t, w⃗t
⟩

w⃗s, m = t ≠ s

2
⟨

w⃗s, w⃗s
⟩

w⃗s, m = s = t,

0, otherwise

Letting Est ∈M2r(ℂ) be the matrix with 1 in the s, t position,

�(w⃗s◦w⃗t) =
(⟨

w⃗s, w⃗s
⟩

Ets +
⟨

w⃗t, w⃗t
⟩

Est
)

∈ g0, (2.16)

which we can see by simply reading off the basis eqs. (2.4) to (2.7) from section 2.1.
Likewise, we compute

�(iw⃗s◦w⃗t)w⃗m =
⟨

w⃗m, iw⃗s
⟩

w⃗t +
⟨

w⃗m, w⃗t
⟩

iw⃗s = −i
⟨

w⃗m, w⃗s
⟩

w⃗t +
⟨

w⃗m, w⃗t
⟩

iw⃗s

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−i
⟨

w⃗s, w⃗s
⟩

w⃗t, m = s ≠ t

i
⟨

w⃗t, w⃗t
⟩

w⃗s, m = t ≠ s

0, m = s = t

0, otherwise
= i

(

−
⟨

w⃗s, w⃗s
⟩

Ets +
⟨

w⃗t, w⃗t
⟩

Est
)

.
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Therefore, again by comparing with the basis eqs. (2.4) to (2.7),

�(iw⃗s◦w⃗t) = i
(

−
⟨

w⃗s, w⃗s
⟩

Ets +
⟨

w⃗t, w⃗t
⟩

Est
)

∈ g0.

Theorem 2.2.1. The map � ∶ Sym2ℝW → g0 is surjective.

Proof. By comparing eq. (2.16) and eq. (3.1) to the basis eqs. (2.4) to (2.5) in section 2.1, we see that the map is
surjective.

Furthermore,
{�(w⃗s◦w⃗t)|1 ≤ s ≤ t ≤ 2r} ∪ {�(iw⃗s◦w⃗t)|1 ≤ s < t ≤ 2r}

is a basis for g0.
Taking the complexificationsWℂ = W ⊗ℝ ℂ and g = g0 ⊗ℝ ℂ, by the right-exactness of⊗, the induced map
(Sym2

ℝW )⊗ℝ ℂ → g induced by � is still surjective.
Now

{�(w⃗s◦w⃗t)⊗ 1|1 ≤ s ≤ t ≤ 2r} ∪ {�(iw⃗s◦w⃗t)⊗ i|1 ≤ s < t ≤ 2r},

is a ℂ-basis for g, and thus so is
{1
2
(

�(w⃗s◦w⃗t)⊗ 1 + �(iw⃗s◦w⃗t)⊗ i
)

|1 ≤ s ≤ t ≤ 2r
}

∪
{1
2
(

�(w⃗s◦w⃗t)⊗ 1 − �(iw⃗s◦w⃗t)⊗ i
)

|r + 1 ≤ s ≤ t ≤ 2r
}

.

From the matrix expressions above, one can read off that �(w⃗t◦w⃗s) = �(w⃗s◦w⃗t) and �(iw⃗t◦w⃗s) = −�(iw⃗s◦w⃗t),
and therefore

{1
2
(

�(w⃗s◦w⃗t)⊗ 1 + �(iw⃗s◦w⃗t)⊗ i
)

|1 ≤ s, t ≤ 2r
}

,

is a ℂ-basis for g.

Theorem 2.2.2. LetH =
⎛

⎜

⎜

⎝

Ir 0

0 −Ir

⎞

⎟

⎟

⎠

and �(X) = HX∗H . Then the map

� ∶ gl2r(ℂ)→ g

X ↦
1
2
[(X − �(X))⊗ 1 − i(X + �(X))⊗ i]

is an isomorphism of (complex) Lie algebras.

Proof. Since � is linear, so is �.
Suppose �(X) = 0, then X = ±�(X)⇒ �(X) = 0⇒ X = 0, so the map is injective.

�(Ejk) =

⎧

⎪

⎨

⎪

⎩

1
2

(

(Ejk − Ekj)⊗ 1 − i(Ejk + Ekj)⊗ i
)

, 1 ≤ j, k ≤ r, or r + 1 ≤ j, k ≤ 2r
1
2

(

(Ejk + Ekj)⊗ 1 − i(Ejk − Ekj)⊗ i
)

, 1 ≤ j ≤ r < k ≤ 2r, or 1 ≤ k ≤ r < j ≤ 2r
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and thus by comparison with the basis eqs. (2.4) to (2.7) from section 2.1, the map is surjective.
Finally, for any X, Y ∈ gl2rℂ

[�(X), �(Y )]

=
[1
2
((X − �(X))⊗ 1 − i(X + �(X))⊗ i) , 1

2
((Y − �(Y ))⊗ 1 − i(Y + �(Y ))⊗ i)

]

=1
4
([X − �(X), Y − �(Y )]⊗ 1 + [X − �(X),−i(Y + �(Y ))]⊗ i)

+ 1
4
([−i(X + �(X)), Y − �(Y )]⊗ i + [−i(X + �(X)),−i(Y + �(Y ))]⊗ (−1))

=1
4
(([X, Y ] − [X, �(Y )] − [�(X), Y ] + [�(X), �(Y )] + [X, Y ] + [X, �(Y )] + [�(X), Y ] + [�(X), �(Y )])⊗ 1)

+ 1
4
(i (−[X, Y ] − [X, �(Y )] + [�(X), Y ] + [�(X), �(Y )] − [X, Y ] + [X, �(Y )] − [�(X), Y ] + [�(X), �(Y )])⊗ i)

=1
4
(2 ([X, Y ] + [�(X), �(Y )])⊗ 1 + 2i (−[X, Y ] + [�(X), �(Y )])⊗ i)

=1
2
([X, Y ] − �([X, Y ]))⊗ 1 + i (−[X, Y ] − �([X, Y ]))⊗ i

=�([X, Y ]).

Thus � is an isomorphism of Lie algebras.

Now we will relate certain elements of sl2r(ℂ), to the roots of kss. We writewst = �(w⃗s◦w⃗t)⊗ 1+�(iw⃗s◦w⃗t)⊗i

as a shorthand, and then comparing with the previous theorem

wba
(

1⊗ −i
2

)

=
(

i(Eab + Eba)⊗ 1 + i(−iEab + iEba)⊗ i
) −i
2

= 1
2
(

(Eab − Eba)⊗ 1 − i(Eab + Eba)⊗ i
)

= �(Eab),

wuv
(

1⊗ i
2

)

=
(

−i(Evu + Euv)⊗ 1 + i(iEvu − iEuv)⊗ i
) i
2

= 1
2
(

(Evu − Euv)⊗ 1 − i(Euv + Evu)⊗ i
)

= �(Evu).

We now provide a concrete description of the Weil representation, as presented in [3]. For a standard basis
{v⃗1, ..., v⃗p+q} of V , we write the coordinates of each vector in a tuple v = (u⃗1, ..., u⃗r) ∈ V r as u⃗t = ∑p+q


=1 z
,tv⃗
 .
Let t̄ = t mod r, and define

D+
,t ∶=
(

z
t̄ + �−1
)
)z̄
t̄

)

, and D−
,t ∶=
(

z
t̄ − �−1
)
)z̄
t̄

)

.
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The actions of wab and wuv under the Weil representation are described in Section B.2 of [3] as

!(wba) = i�

[ p
∑

�=1
D−�,aD

+
�,b −

p+q
∑

�=p+1
D−�,bD

+
�,a

]

+ (p − q)�ab,

!(wuv) = i�

[ p
∑

�=1
D−�,uD

+
�,v −

p+q
∑

�=p+1
D−�,vD

+
�,u

]

− (p − q)�vu.

Thus composing with �, we obtain a description of the Weil representation ! ∶ gl2r(ℂ) → End((V r)), for
1 ≤ a, b ≤ r < u, v ≤ 2r

!◦�
(

Eab
)

= !
(

wba
−i
2

)

= !(wba)
−i
2
= �
2

[ p
∑

�=1
D−�,aD

+
�,b −

p+q
∑

�=p+1
D−�,bD

+
�,a

]

+
p − q
2

�ab,

!◦�
(

Evu
)

= !
(

wuv
i
2

)

= !(wvu)
i
2
= −�

2

[ p
∑

�=1
D−�,uD

+
�,v −

p+q
∑

�=p+1
D−�,vD

+
�,u

]

−
p − q
2

�vu.

We will mainly be working with the representation !◦� ∶ gl2r(ℂ)→ End((V r)) and the restriction to
(

gl2r(ℂ)
)

ss ≅ sl2r(ℂ), where we will identify k with its pre-image in sl2r(ℂ) under �. Thus for the remainder of the
thesis, we will drop the �, and simply write ! ∶ gl2r(ℂ)→ End((V r)).
Note that even though we began with the initial assumption that p, q ≥ 1, the operators !(Eab) and !(Evu) are still
defined for the degenerate case when p = 0 or q = 0. We will make use of this fact in the next section.

Propositions for Induction

In this section we will develop some relations between the action of the Weil representation on (V ), and the Schwartz
space of the subspaces of V . We will also prove some propositions relating the Weil representation on (V ) to (V r)

for r > 1. First we establish a result that is useful in the following chapter. Given v = (u1, ..., ur) ∈ V r, we define

⟨v, v⟩ ∶= ⟨u1, u1⟩ + ... + ⟨ur, ur⟩ .

Definition 2.2.3. If V is positive-definite with respect to ⟨, ⟩, then we define the Vacuum vector e−�⟨v,v⟩ ∈ (V r).

This is often given as the prototypical example of an element of Schwartz space.

Lemma 2.2.4. For a positive-definite vector space V with Hermitian form ⟨, ⟩, and the Weil representation

! ∶ gl2r(ℂ)→ (V r), with 1 ≤ a, b ≤ r and r + 1 ≤ u, v ≤ 2r

!(Eab)e−�⟨v,v⟩ =
(p
2

)

�abe
−�⟨v,v⟩

!(Evu)e−�⟨v,v⟩ = −
(p
2

)

�vue
−�⟨v,v⟩
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Proof. Choose a standard basis {v1, ..., vp} for V , and write the coordinates of v = (u1, ..., ur) ∈ V r as ∑p
�=1 z�,sv� ,

for 1 ≤ s ≤ r. Then for 1 ≤ � ≤ p and 1 ≤ s ≤ r

D+
,se
−�⟨v,v⟩ =

(

z
,s + �−1
)

)z̄
,s

)

exp

(

−�
∑

s=1

p
∑

�=1
|z�,s|

2

)

= z
,se−�⟨v,v⟩ − z
,se−�⟨v,v⟩

= 0.

Similarly one finds D̄+
,se−�⟨v,v⟩ = 0. Therefore (since q = 0)

!(Eab)e−�⟨v,v⟩ =

(

�
2

[ p
∑

�=1
D−�,aD

+
�,b

]

+
p
2
�ab

)

e−�⟨v,v⟩

=
p
2
�abe

−�⟨v,v⟩.

The proof that !(Evu) = −
(

p
2

)

�vue−�⟨v,v⟩ is entirely similar.

Given a decomposition V = U ⊕ U⟂, we will relate the Schwartz space (U ) and (U⟂) to (V ), which will be
useful in the next chapter. Suppose U ⊆ V is a subspace where the restriction ⟨, ⟩ |U is a Hermitian form of signature
(m, n). Choose a standard basis {v1, ..., vm, vp+1, ..., vp+n} for U , and extend it to a standard basis

{v1, ..., vm, vm+1, ..., vp, vp+1, ..., vp+n, vp+n+1, ..., vp+q},

of V . Then {vm+1, ..., vp, vp+m+1, ..., vp+q} is a standard basis for U⟂.
For v = (u1, ..., ur) ∈ V r, if for 1 ≤ s ≤ rwe write the orthogonal decompositions us = u′s+u′′s . Thus in the coordinates
us =

∑p+q

=1 z
,sv
 the decompositions are

u′s =
m
∑


=1
z
,sv
 +

p+m
∑


=p+1
z
,sv


u′′s =
p
∑


=m+1
z
,sv
 +

p+q
∑


=p+m+1
z
,sv


Thus, in these coordinates, the action of the Weil representation

! ∶ gl2r(ℂ)→ End((V r))

!U ∶ gl2r(ℂ)→ End((U r))

!⟂ ∶ gl2r(ℂ)→ End((U r
⟂))

in terms of the operators
D±
,s =

(

z
,1 ± �−1
)

)z̄
,s

)

,
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is given for 1 ≤ a, b ≤ r

!(Eab) =
�
2

[ p
∑

�=1
D−�,aD

+
�,b −

p+q
∑

�=p+1
D−�,bD

+
�,a

]

+
p − q
2

�ab,

!U (Eab) =
�
2

[ m
∑

�=1
D−�,aD

+
�,b −

p+n
∑

�=p+1
D−�,bD

+
�,a

]

+ m − n
2

�ab,

!⟂(Eab) =
�
2

[ p
∑

�=m+1
D−�,aD

+
�,b −

p+q
∑

�=p+m+1
D−�,bD

+
�,a

]

+
(p − m) − (q − n)

2
�ab,

and r + 1 ≤ u, v ≤ 2r

!(Evu) = −
�
2

[ p
∑

�=2
D−�,uD

+
�,v −

p+q
∑

�=p+1
D−�,vD

+
�,u

]

−
p − q
2

�vu

!U (Evu) = −
�
2

[ m
∑

�=1
D−�,uD

+
�,v−

p+n
∑

�=p+1
D−�,vD

+
�,u

]

− m − n
2

�vu

!⟂(Evu) = −
�
2

[ p
∑

�=m+1
D−�,uD

+
�,v −

p+q
∑

�=p+m+1
D−�,vD

+
�,u

]

−
(p − m) − (q − n)

2
�vu.

The orthogonal projections V → U and V → U⟂ extend to component-wise projections �U ∶ V r → U r and
�⟂ ∶ V r → U r

⟂, and thus we obtain pullbacks

�∗U ∶ (U
r)→ (V r), �∗⟂ ∶ (U

r
⟂)→ (V r),

where for Φ ∈ (U r) and Ψ ∈ (U r
⟂), we have �∗U (Φ) = Φ◦�U and �∗⟂(Ψ) = Ψ◦�⟂.

Proposition 2.2.5. Suppose V = U ⊕ U⟂, with Φ ∈ (U r) and Ψ ∈ (U r
⟂). Then for

(

�∗U (Φ)�
∗
⟂(Ψ)

)

∈ (V r) and

Est ∈ gl2r(ℂ) such that 1 ≤ s, t ≤ r or r + 1s, t ≤ 2r

!(Est)
(

�∗U (Φ)�
∗
⟂(Ψ)

)

= �∗U
(

!U (Est)Φ
)

⋅ �∗⟂(Ψ) + �
∗
U (Φ) ⋅ �

∗
⟂
(

!⟂(Est)Ψ
)

.

Proof. For the coordinates v = (u1, ..., ur) ∈ V r described preceding the statement of the proposition, we write the
orthogonal decompositions us = u′s + u′′s ∈ U ⊕ U⟂ with v′ = (u′1, ..., u

′
s) and v′′ = (u′′1 , ..., u

′′
r ).

Observe that )
)z
,s

�∗UΦ = 0 and )
)z̄
,s

�∗UΦ = 0 for all 1 ≤ s ≤ r and m+1 ≤ 
 ≤ p or p+m+1 ≤ 
 ≤ p+ q. Like-wise
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)
)z
,s

�∗⟂Ψ = 0 and )
)z̄
,s

�∗⟂Ψ = 0 for all 1 ≤ s ≤ r and 1 ≤ 
 ≤ m or p + 1 ≤ 
 ≤ p + m. Thus, for 1 ≤ a, b ≤ r

!(Eab)
(

�∗U (Φ)�
∗
⟂(Ψ)

)

(v) =
(

�
2

[ p
∑

�=1
D−�,aD

+
�,b −

p+q
∑

�=p+1
D−�,bD

+
�,a

]

+
p − q
2

�ab

)

(

�∗U (Φ)(v)�
∗
⟂Ψ(v)

)

=

((

�
2

[ m
∑

�=1
D−�,aD

+
�,b −

p+n
∑

�=p+1
D−�,bD

+
�,a

]

+ m − n
2

�ab

)

Φ(v′)
)

�∗⟂(Ψ)(v)

+ �∗U (Φ)(v)
(

�
2

[ p
∑

�=m+1
D−�,aD

+
�,b −

p+q
∑

�=p+m+1
D−�,bD

+
�,a

]

+
(p − m) − (q − n)

2
�ab

)

Ψ(v′′)

=
(

!U (Eab)Ψ(v′)
)

�∗⟂(Ψ)(v) + �
∗
U (Φ)(v)

(

!⟂(Eab)Ψ(v′′)
)

= �∗U
(

!U (Est)Φ
)

(v) ⋅ �∗⟂Ψ(v) + �
∗
UΦ(v) ⋅ �

∗
⟂
(

!⟂(Est)Ψ
)

(v).

The proof that for r + 1 ≤ u, v ≤ 2r

!(Euv)
(

�∗U (Φ)�
∗
⟂(Ψ)

)

= �∗U
(

!U (Est)Φ
)

⋅ �∗⟂(Ψ) + �
∗
U (Φ) ⋅ �

∗
⟂
(

!⟂(Est)Ψ
)

,

is entirely similar.

We will also need to make use of some relations of k1 and k2 to kr for r > 2. For an m-tuple c = (c1, ..., cm)

with 1 ≤ c1 ≤ ... ≤ cm ≤ r, we define Tc ∶ V r → V m by Tc(v1, ..., vr) = (vc1 , ..., vcm ). We also obtain a pullback
T ∗c ∶ (V

m)→ (V r) by T ∗c Φ = Φ◦Tc.
Given a standard basis v1, ..., vp+q for V , we write the coordinates of

(u1, ..., ur−m) ∈ V r−m, (u′1, ..., u
′
m) ∈ V

m,

as us = ∑p+q

=1 z
,sv
 , and u′t =

∑p+q

=1 z

′

,tv
 . Then the operators appearing in the Weil representation can be written as

D±
,s =
(

z
,s ± �−1
)

)z̄
,s

)

, D
′±

,t =

(

z′
,t ± �
−1 )
)z̄′
,t

)

.

The following lemma is a computation that will allow us to relate the action of the Weil representation on (V r)

to (V m) with m < r.

Lemma 2.2.6. Let Φ ∈ (V m) and Ψ ∈ (V r−m), with m-tuples c and (r − m)-tuple d, with s = cj ∈ c. Then in the

standard basis

D±
,s
[

(T ∗c Φ)(T
∗
dΨ)

]

=
(

T ∗c (D
′±

,jΦ)

)

(T ∗dΨ).

Proof. This follows directly from the definitions, and the fact that T ∗dΨ doesn’t depend on the vectors in the coordinates
in any of the positions in c.

The next proposition will allow us to determine that certain vectors of (V r) defined in the next chapter, will be
eigenvectors for the action of the Cartan subalgebra of kr. Furthermore, together with several base cases computed by
the code presented at the end of thesis, we can determine their precise eigenvalues by induction.
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Proposition 2.2.7. Suppose Φ ∈ (V ) and Ψ ∈ (V r−1). For 1 ≤ a ≤ r and r + 1 ≤ u ≤ 2r, a = {1, ..., â, ..., r} with

Eaa, Euu ∈ kr and the Weil representation

! ∶ kr → End((V r)),

!1 ∶ k1 → End((V )),

!r−1 ∶ kr−1 → End((V r−1)),

we have

!(Eaa)
[

(T ∗aΦ)(T
∗
a Ψ)

]

=
⎛

⎜

⎜

⎝

T ∗a !1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

Φ
⎞

⎟

⎟

⎠

(

TaΨ
)

!(Euu)
[

(T ∗s Φ)(T
∗
a Ψ)

]

=
⎛

⎜

⎜

⎝

T ∗a !1
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

Φ
⎞

⎟

⎟

⎠

(

TaΨ
)

.

Proof. Given a standard basis v1, ..., vp+q for V , we write (u′1, u′2) ∈ V 2, (u1, ..., ur) ∈ V r with coordinates
u′s =

∑p+q

=1 z

′

,sv
 , and ut =

∑p+q

=1 z
,tut. The action of the Weil representation is expressed as

!(Eaa) =
�
2

[ p
∑

�=1
D−�,aD

+
�,a −

p+q
∑

�=p+1
D−�,aD

+
�,a

]

+
(p − q)
2

,

!1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

= �
2

[ p
∑

�=1
D′−
�,1D

′+
�,1 −

p+q
∑

�=p+1
D
′−
�,1D

′+
�,1

]

+
(p − q)
2

.

By linearity, it suffices to prove the relation for any of the operators, and by the previous lemma, for example,

D−�,aD
+
�,a

[

(T ∗aΦ)(T
∗
a Ψ)

]

= D−�,a
[(

T ∗a (D
′+
�,1Φ)

)

(

TaΨ
)

]

=
(

T ∗a (D
′−
�,1D

′+
�,1Φ)

)

(TaΨ).

The proof that !(Euu)
[

(T ∗s Φ)(T
∗
a Ψ)

]

=
⎛

⎜

⎜

⎝

T ∗a !1
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

Φ
⎞

⎟

⎟

⎠

(

TaΨ
), for r + 1 ≤ u ≤ 2r with Euu ∈ kr is entirely

similar.

The following proposition will be used in the next chapter, to reduce the determination that certain vectors are killed
by the positive roots of kr, to the demonstration that related vectors are killed by the roots of k2.

Proposition 2.2.8. Whenever 1 ≤ a ≤ b ≤ r or r + 1 ≤ u ≤ v ≤ 2r for c = (1, ..., ŝ, ..., t̂, ..., r),Φ ∈ (V 2),

Ψ ∈ (V r−2) and the Weil representation ! ∶ kr → End((V r)), !2 ∶ k2 → End((V 2)), then for

E12, E43 ∈ k2 and Eab, Evu ∈ kr

!(Eab)
[(

T ∗abΦ
) (

T ∗c Ψ
)]

=
(

T ∗ab!2(E12)Φ
)

(T ∗c Ψ)

!(Evu)
[(

T ∗uvΦ
) (

T ∗c Ψ
)]

=
(

T ∗uv!2(E43)Φ
)

(T ∗c Ψ)
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Proof. For 1 ≤ a < b ≤ r we can expand the operators

!(Eab) =
�
2

[ p
∑

�=1
D−�,aD

+
�,b −

p+q
∑

�=p+1
D−�,bD

+
�,a

]

!(Evu) = −
�
2

[ p
∑

�=1
D−�,uD

+
�,v −

p+q
∑

�=p+1
D−�,vD

+
�,u

]

!2(E12) =
�
2

[ p
∑

�=1
D′−
�,1D

′+
�,2 −

p+q
∑

�=p+1
D
′−
�,2D

′+
�,1

]

!2(E43) = −
�
2

[ p
∑

�=1
D
′−
�,3D

′+
�,4 −

p+q
∑

�=p+1
D′−
�,4D

′+
�,3

]

By linearity, and lemma 2.2.6 the result follows.



Chapter 3

The Garcia-Sankaran Construction

In this chapter, we consider the manifoldD of negative-definite q-dimensional subspace of a (p+q)-dimensional vector
space V , with a Hermitian form ⟨, ⟩ of signature (p, q).
Our goal is to construct a specific element �r ∈ (V r)⊗ℂ ∙(D) where (V r) is the space of Schwartz functions on
V r = V ⊕r, described in the previous chapter, and∙(D) is the algebra of differential forms on D. We will then extend
theWeil representation! ∶ kr → End((V r)) of the previous chapter, to act on End ((V r)⊗ℂ ∙(D)

), and show that
the degree 2(qr−1) component (that is, the (qr−1, qr−1)-complex degree component) of �r generates an irreducible
subrepresentation of the Weil representation.
In the first section, we recount the general set up as it appears in [4], by using Quillen’s theory of superconnections as
they appear in the first chapter.
We will prove the main results of this thesis in the second section, by relying on the theory of highest weight vectors,
and a number of properties proved about the Weil representation from chapter 2.

3.1 The Manifold D

Much of the material of this section comes from [4], including the definitions and basic properties of the forms ' and
�.

Definition 3.1.1. Let V be a (p+ q)-dimensional ℂ-vector space, with Hermitian inner product ⟨, ⟩ of signature (p, q).
Define

D(V ) ∶= {� ⊆ V |� is a q − dimensional, negative definite subspace of V }.

Given �0 ∈ D, by Gram-Schmidt orthonormalization, we may select a basis {vp+1, ..., vp+q} for �0 such that

⟨

vi, vj
⟩

=

⎧

⎪

⎨

⎪

⎩

−�ij , p + 1 ≤ i, j ≤ p + q

0, otherwise

51
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By applying Gram-Schmidt again, we can extend this to a standard basis {v1, ..., vp+q} of V such that

⟨

vi, vj
⟩

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�ij , 1 ≤ i, j ≤ p

−�ij , p + 1 ≤ i, j ≤ p + q

0, otherwise

Now for any other � ∈ D, in the basis {vi},

� = span

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1
...

xp,1
y1,1
...

yq,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ..., fq =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,q
...

xp,q
y1,q
...

yq,q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

We must have 0 > ⟨f1, f1⟩ =
(
∑p
i=1 |xi,1|

2) −
∑q
j=1 |yj,1|

2, and therefore not all yj,1 can be zero. Without loss of
generality, say y1,1 ≠ 0. Thus we may replace the choice of basis by

� = span

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1
y1,1

...
xp,1
y1,1

1

...
yq,1
y1,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ...,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,q
...

xp,q
y1,q
...

yq,q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

For i ≠ 1, we may replace fi with fi − y1,if1 (note that the vectors will remain linearly independent) to obtain the
basis of the form

� = span

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f ′1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x′1,1
...

x′p,1
1

y′2,1
...

y′q,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, f ′2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x′1,2
...

x′p,2
0

y′2,2
...

y′q,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

..., f ′q =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x′1,q
...

x′p,q
0

y′2,q
...

y′q,q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Now observe that we now require ⟨f ′2, f ′2
⟩

< 0, and thus we may argue that the remaining y′2,2, ..., y′q,2 cannot all
be zero. Thus we may take y′2,2 ≠ 0 without loss of generality. After dividing f ′2 by y′2,2, we may repeat this process
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of eliminating the y′∙,2 terms of the other vectors.
The above argument of dividing by a non-zero term, and eliminating entries may be repeated until one arrives at a basis
of the form

� = span

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1,1
...

fp,1
1

0

...

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ...,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1,q
...

fp,q
0

...

0

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Thus we may identify each � ∈ D with a matrix (in block from)
⎛

⎜

⎜

⎝

F�
Iq

⎞

⎟

⎟

⎠

, where F� =
⎛

⎜

⎜

⎜

⎜

⎝

f1,1 ... f1,q
... ...

fp,1 ... fp,q

⎞

⎟

⎟

⎟

⎟

⎠

, and Iq is the

q × q identity matrix.
Furthermore, this representation is unique, for given any p × q matrix F , the coefficients of any non-trivial linear
combination of its columns, are the coefficients of a non-trivial linear combination of the columns of

⎛

⎜

⎜

⎝

F

Iq

⎞

⎟

⎟

⎠

, and thus

the resulting combination is a matrix
⎛

⎜

⎜

⎝

A

B

⎞

⎟

⎟

⎠

, for which B ≠ Iq . Therefore we have a bijection between D and

D ∶=

⎧

⎪

⎨

⎪

⎩

A ∈Mpq(ℂ) ∶ Col
⎛

⎜

⎜

⎝

A

Iq

⎞

⎟

⎟

⎠

is negative-definite
⎫

⎪

⎬

⎪

⎭

.

For F ∈ D, writing the column vectors
⎛

⎜

⎜

⎝

F

Iq

⎞

⎟

⎟

⎠

= [v1, ..., vq], we compute

[F ∗F − Iq]ij =

( p
∑

k=1
[F ∗]ikEkj

)

− �ij =

( p
∑

k=1
F̄kiFkj

)

− �ij =
⟨

vi, vj
⟩

.
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If the column vectors [v1, ..., vq] have negative-definite span, then for every zT = (z1, ..., zq) ∈ (ℂq − {0⃗})

0 >

⟨ q
∑

i=1
zivi,

q
∑

j=1
zjvj

⟩

⟺ 0 >
q
∑

i=1

q
∑

j=1
ziz̄j

⟨

vi, vj
⟩

⟺ 0 >
q
∑

i=1
zi

q
∑

j=1
(F ∗F − Iq)ij z̄j

⟺ 0 >
q
∑

i=1
(zT )1i[(F ∗F − Iq)z̄]i1

⟺ 0 > zT (F ∗F − Iq)z̄, ∀zT ∈ (ℂq − {0⃗})

and therefore
D = {F ∈Mpq(ℂ) ∶ zT (F ∗F − Iq)z̄ < 0,∀zT ∈ (ℂq − {0⃗})}.

Note that, for any F ∈Mpq(ℂ), we have

(F ∗F − Iq)∗ = (F ∗F )∗ − Iq = F ∗F − Iq .

Thus F ∗F − Iq is Hermitian. We denote the space of q × q complex Hermitian matrices by Hermq(ℂ), given the
subspace topology ofMq(ℂ). Since the map

ℎ ∶Mpq(ℂ)→ Hermq(ℂ)

A↦ A∗A − Iq

is polynomial in its coordinates, it’s continuous.
For any B ∈ Hermq(ℂ) and z ∈ ℂq ,

(zTBz̄)∗ = zTB∗z̄ = zTBz̄,

and since zTBz̄ is just a complex number, we conclude that zTBz̄ = zTBz̄, that is zTBz̄ ∈ ℝ. Thus, we can define
the set

X− ∶= {B ∈ Hermq(ℂ) ∶ zTBz̄ < 0,∀z ∈ (ℂq − {0⃗})},

and note that D = ℎ−1(X−). Since ℎ is continuous, if we can show that X− is open in Hermq(ℂ) it will follow that D
is open inMpq(ℂ).
Theorem 3.1.2. The set D is a complex manifold of dimension pq.

Proof. First we will show that the set X− is an open subset of Hermq(ℂ). The map

f ∶ Hermq(ℂ) × ℂq → ℝ

(B, v)↦ vTBv̄
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is polynomial in its entries, hence continuous. Furthermore, since f is continuous, and ℂ1 = {z ∈ ℂ ∶ |z| = 1} is
compact, f̂ ∶ Hermq(ℂ) → ℝ defined by f̂ (B) = max

|z|=1f (B, z) is well-defined and continuous. Thus we conclude
that f̂−1(−∞, 0) = X− must be open.
Since ℎ ∶Mpc(ℂ)→ Hermq(ℂ) is continuous, andX− ⊆ Hermq(ℂ) is open, ℎ−1(X−) = D ⊆ Mpq(ℂ) is open. There-
fore D inherits the manifold structure ofMpq(ℂ). Thus we give D the structure of a complex manifold by demanding
that the bijection D → D is a biholomorphism.
Furthermore, choosing some �0 ∈ D gives us coordinates for D by representing � ∈ D by E� .

3.2 The Super Connection and the Special Forms

In this section, we will apply Quillen’s superconnections, and the generalized Chern-Weil theory, in order to construct
the forms ' and � of [4].

Definitions of ' and �

On the manifold D of q-dimensional subspaces of a (p, q)-vector space V , we define the tautological bundle  → D by

 = {(�, v) ∈ D × V ∶ v ∈ �} ⊆ D × V

which we give the subspace topology induced by D × V , with the projection map

� ∶  → D

(�, v)↦ �

The vector space structure on each fiber is simply given by

c(�, u) + d(�, v) = (�, cu + dv).

We define a Hermitian form ⟨, ⟩ on  , such that on the fiber over � ∈ D(V ), we set ⟨(�, u), (�, v)⟩ = − ⟨u, v⟩.
We take the negative because ⟨, ⟩ is negative-definite on � ≅ � , and Hermitian forms on bundles are required to be
positive-definite. When the fiber is understood, we will just write u instead of (�, u).
The Hermitian form ⟨, ⟩ determines a canonical Hermitian form ⟨, ⟩∨ on the dual bundle ∨, and a Hermitian form
⟨, ⟩∧ on⋀∙  =

⨁q
k=0

⋀k  by

⟨u1 ∧ ... ∧ uk, v1 ∧ ... ∧ vk⟩∧ ∶= det
[⟨

ui, vj
⟩


]

,

and⋀i  ⟂
⋀j  for i ≠ j.

We also equip⋀∙  with a ℤ2-grading
(

⋀∙

)0
=

⨁

k even

⋀k
 ,

(

⋀∙

)1
=

⨁

l odd

⋀l
 .
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For v ∈ V we define a section sv ∶ D → ∨ such that, for an open set U ⊆ D, a section � ∶ U →  , and � ∈ D

sv(� )� ∶= ⟨�(� ), v⟩ .

Letting v� and v⟂ be the respective projections of v onto � and �⟂, we find that for a section � ∶ D →  ,

sv(� )� = ⟨�(� ), v⟩ =
⟨

�(� ), v�
⟩

+ ⟨�(� ), v⟂⟩ =
⟨

�(� ), v�
⟩

= −
⟨

�(� ), v�
⟩

 =
⟨

�(� ),−v�
⟩

 .

Therefore −v� is the vector in � which represents sv on ∨� .
We define Dv to be the zero-locus of the section sv. When ⟨v, v⟩ > 0, the Dv are the special cycles relating to the
arithmetic Siegel-Weil formula mentioned in the introduction.
More generally, for an r-tuple of vectors v = (v1, ..., vr) ∈ V r, we define a section sv = (sv1 , ..., svr ) of (r)∨ whose
vanishing locus is Dv ∶= ∩ri=1Dvi .
In order to define sv, we will need to define the Koszul complex K(v) . The Koszul complex is a general con-
struction of homological algebra, originally introduced to define a cohomology theory for Lie algebras. We will
only define it the particular case relevant to the discussion at hand. The Koszul complex K(sv) is the sequence
⋀qr r → ... →

⋀1 r →  where  is the trivial line bundle, and the maps are given by extending the defini-
tion of sv by setting sv(c) = 0 for all c ∈ ℂ, and for uj = (uj,1, ..., uj,r) ∈ V r

sv(u1 ∧ ... ∧ uk) =
k
∑

j=1
(−1)j+1sv(uj)u1 ∧ ... ∧ ûj ∧ ... ∧ uk,

where the hat means that term is omitted.
We define s∗v to be the adjoint of sv, and thus both sv and s∗v define odd endomorphisms of⋀∙ r therefore√2�i (sv + s∗v

)

is odd as well.
By theorem 1.1.16 of section 1.1, there exists a canonical connection ∇ on ⋀∙ r → D which is compatible with the
metric. We define a superconnection ∇v on⋀∙ r by ∇v = ∇ +

√

2�i
(

sv + s∗v
).

LetN ∈ End (⋀∙ r
) be the number operator which acts on⋀k r by multiplication by −k.

For a differential form �, we denote the component of degree m by �[m], and set

'0(v) ∶=
∑

k≥0

( i
2�

)k trs
(

e∇
2
v
)

[2k]
, (3.1)

�0(v) ∶=
∑

k≥0

( i
2�

)k trs
(

Ne∇
2
v
)

[2k]
. (3.2)

Here trs is the supertrace defined in section 1.2. Finally, writing ⟨v, v⟩ = ∑r
j=1

⟨

vj , vj
⟩, we set

'(v) = e−�⟨v,v⟩'0(v), (3.3)
�(v) = e−�⟨v,v⟩�0(v). (3.4)

As proved in Lemma 2.4.6 of [4], ', � ∈ (V r) ⊗ ∙(D). By Proposition 2.4.4 and 2.4.5 of [4], we have the
following result
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Proposition 3.2.1. Given v = (w1, ..., wr) ∈ V r,

1. '(v)[k] = 0 for k < 2qr,

2. '(v) = '(w1) ∧ ... ∧ '(wr),

3. '(v) is closed,

4. ∀g ∈ U (p, q), we have g∗'(gw1, ..., gwr) = '(w1, ..., wr),

5. �(v)[k] = 0, for k < 2(q − 1),

6. for �i(v) = �(vi) ∧ '(v1, ..., vi
⋀

, ..., vr), we have �(v) =
∑r
i=1 �i(v),

7. ∀g ∈ U (p, q), we find g∗�(gw1, ..., gwr) = �(w1, ..., wr).

Note that in particular, the U (p, q)-equivairance properties 4) and 7) imply that it’s enough to understand the be-
haviour of ' and � at any particular � ∈ D. From the definitions 2) and 6), and applying 1) and 5)

�r(v)[2(qr−1)] = �(wr)[2(q−1)] ∧ '(v)[2q(r−1)] = �(wr)[2(q−1)] ∧ '(w1)[2q] ∧ ... ∧ '(wr−1)[2q].

Our goal for the next section is to prove that the degree 2(qr − 1) component of �r generates an irreducible sub-
representation of the Weil representation. This has already been been established when q = 1 in [4]. We will obtain
partial results for several small values of q, by establishing bases cases through computation, and applying an inductive
argument. The general base case(s) for arbitrary q remain unknown.

3.3 Properties of the Forms

The Restriction Property

In this section we will establish some results relating the forms ' and � defined on D(V ) to the corresponding forms
on D(W ) for a certain proper subspaceW of V . This will allow us to apply inductive arguments on the dimension of
V , to obtain various properties of ' and �.
Note that for w ∈ V , the special cycles Dw of the previous section are the sets

Dw = {� ∈ D ∶ � ⟂ w}.

Since dimℂ � = q for all � ∈ D, and q is the largest possible dimension of a negative-definite subspace of V , it must
be the case that D = ∅ when ⟨w,w⟩ < 0. Ifw = 0⃗, then Dw = D, and ifw ≠ 0⃗ but ⟨w,w⟩ = 0, then Dw = ∅. Thus we
will restrict to the case when ⟨w,w⟩ > 0, whence Dw is precisely the set of q-dimensional negative-definite subspaces
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of the (p − 1 + q)-dimensional vector space w⟂ = (spanℂw
)⟂, with respect to the Hermitian form ⟨, ⟩w ∶= ⟨, ⟩ |w⟂ ,

having signature (p − 1, q). Therefore the map

� ∶ D(w⟂)→ Dw

� ↦ �

is a bijection. The Dw are locally components of the special cycles relating to the conjectured arithmetic Siegel-Weil
formula mentioned in the introduction.
In particular, given a standard basis {v1, ..., vp+q} of V , the vectors {v1, ..., v̂n, ..., vp+q} are a standard basis for v⟂n . As
for any � ∈ Dvn we have � ⟂ vn, the matrix corresponding to � in the standard basis has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1,1 ... �1,q
... ...

�n−1,q ... �n−1,q
0 ... 0

�n,1 ... �n,q
... ...

�p,1 ... �p,q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using the coordinates for D(v⟂n ) with respect to the standard basis {v1, ..., v̂n, ..., vp+q} as described in the previous
section, the inclusion map � ∶ D(v⟂n )↪ D is given by

�

⎛

⎜

⎜

⎜

⎜

⎝

�1,1 ... �p,q
... ...

�p−1,q ... �p−1,q

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1,1 ... �1,q
... ...

�n−1,q ... �n−1,q
0 ... 0

�n,1 ... �n,q
... ...

�p−1,1 ... �p−1,q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.5)

The above culminates in a useful lemma for the following section.

Lemma 3.3.1. Let V be a (p+1, q)-vector space with standard basis {v1, ..., vp+1}, takem ∈ ℕ such that p+1 ≥ 2m+1,

and consider the coordinates for D = D(V ) described in section 3.1, with respect to the standard basis.

Then for the basis
{

)
)�i,j

∶ 1 ≤ i ≤ p, 1 ≤ j ≤ q
}

of T�0D, and for each

u = )
)�i1,j1

∧ ... )
)�im,jm

∧ )
)�̄k1,l1

∧ ... ∧ )
)�̄km,lm

∈
⋀m,m

T�0D,

there exists w ∈ V , and uw ∈
⋀m,m T�0D(w) such that �∗(uw) = u.
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Proof. Suppose that p+1 ≥ 2m+1 ⟺ p ≥ 2m. Since u is thewedge product of 2m vectors, and (p+1) ≥ 2m+1 > 2m,
there must exist some number
n ∈ {1, ..., p + 1} such that for all 1 ≤ s ≤ m, we have is, ks ≠ n. Choosing the coordinates described in section 3.1
for D(v⟂n ) with respect to {v1, ..., v̂n, ..., vp+q}, by the description of � ∶ D(v⟂n ) ↪ D in eq. (3.5), the push-forward
�∗ ∶ T�0D(v

⟂
n )→ T�0D acts by

�∗

(

)
)�i,j

)

=

⎧

⎪

⎨

⎪

⎩

)
)�i,j

, i < n

)
)�i+1,j

, i ≥ n

For 1 ≤ p ≤ m, set

i′k =

⎧

⎪

⎨

⎪

⎩

ip, ip < n

ip − 1, ip ≥ n

k′p =

⎧

⎪

⎨

⎪

⎩

kp, kp < n

kp − 1, kp ≥ n

Then
uw ∶=

)
)�i′1,ji

∧ ... ∧ )
)�i′m,jm

∧ )
)�̄k′1,l1

∧ ... ∧ )
)�̄k′m,lm

∈
⋀m,m

T�0D(v
⟂
n ),

where
�∗(uw) =

)
)�i1,ji

∧ ... ∧ )
)�im,jm

∧ )
)�̄k1,l1

∧ ... ∧ )
)�̄km,lm

= u.

Returning to the general case of w ∈ V with ⟨w,w⟩ > 0, we will write � ∶  → D(V ) and �w ∶ w → D(w⟂) for
the tautological bundles. Then,

�∗ = {(�, e) ∈ D(w⟂) ×  ∶ �(� ) = �(e)} =
{

(�, (� ′, v)) ∈ D(w⟂) × (D × V ) ∶ � = �(� ′, v), v ∈ � ′
}

=
{

(�, (� ′, v)) ∈ D(w⟂) × (D × V ) ∶ � = � ′, v ∈ � ′
}

=
{

(�, (�, v)) ∈ D(w⟂) × (D × V ) ∶ v ∈ �
}

.

Thus the map (�, v)↦ (�, (�, v)) is an isomorphism with the tautological bundle
w = {(�, v) ∈ D(w⟂) × V ∶ v ∈ �} on D(w⟂), and so we will take our model of the tautological bundle on D(w⟂) to
be �∗ . When the context is clear, we will just write u both in place of (�, u) and (�, (�, u)).
Note that for the Hermitian form ⟨, ⟩w on w we have

⟨u, v⟩w ∶= − ⟨u, v⟩w = − ⟨u, v⟩ ,

since u, v ∈ � ⊆ w⟂. Therefore the inner product ⟨, ⟩∗ on �∗ representing ⟨, ⟩w is

⟨u, v⟩∗ ∶= − ⟨u, v⟩ = ⟨u, v⟩w .
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Given an open set U ⊆ D and frame {e1, ..., eq} over U , the set {�∗e1, ..., �∗eq} is a frame over �−1(U ). The section
� ↦

⟨

�∗ej(� ), �∗ek(� )
⟩ is just the pullback of the section � ↦

⟨

ej(� ), ek(� )
⟩

 thus the matrixH∗ whose (j, k)th entry
entry is ⟨�∗ej , �∗ek

⟩

∗ is just the entry-wise pullback of the matrixH whose (j, k)th entry is ⟨ej , ek
⟩.

By 1.1.16, over U the canonical connection compatible with ⟨, ⟩ is given by ∇ = dD + � where � = H−1)H , and over
�−1(U ), the canonical connection compatible with ⟨, ⟩w (that is, ⟨, ⟩∗) can be written as ∇∗ = d∗ + �∗, where d∗ is the
exterior derivative on D(w⟂), and �∗ = H−1

∗ )H∗. Therefore

∇∗ = d∗ + �∗ = d∗ +H−1
∗ )H∗ = d∗ + (�∗H)−1)(�∗H) = �∗(dD +H−1)H) = �∗∇.

Thus the pullback connection �∗∇, is the canonical connection compatible with ⟨, ⟩∗. Furthermore the Hermitian
form on⋀∙ w ≅

⋀∙ �∗ ≅ �∗
⋀

 is the pullback of the Hermitian form on⋀∙  induced by ⟨, ⟩ .
Given v′ ∈ w⟂, we define a section sv′ ∶ D(w⟂) → (�∗)∨ in the same way we defined sv on D → ∨, that is for a
section � ∶ D(w⟂)→ (�∗)∨ and � ∈ D(w⟂),

s̄v′ (� )� =
⟨

�(� ), v′
⟩

∗ .

We define s̄∗v′ to be the adjoint of s̄v′ . Now, given v′ ∈ w⟂, we define a superconnection ∇̄v′ on �∗ → D(w⟂) in
the same way we defined ∇v on  , namely,

∇̄v′ = �∗∇ +
√

2�i
(

s̄v′ + s̄∗v′
)

.

For v ∈ V , we write v⟂ for the projection of v ontow⟂. Since for any � ∈ D(w⟂) the fiber (�∗⟩� is identified with
� ⊆ w⟂, given any section � ∶ D(w⟂)→ �∗ ,

s̄v⟂ (� )� = − ⟨�(� ), v⟂⟩∗ = − ⟨�(� ), v⟩ = sv(�(� ))� = (sv◦�)(� )�.

Therefore s̄v⟂ is the pullback section �∗sv = sv◦�. It follows that the adjoint section with respect to the Koszul
complex K(v⟂) on D(w⟂) is given by s̄∗v⟂ = �∗s∗v. Therefore,

∇̄v⟂ = �
∗∇ +

√

2�i
(

s̄v⟂ + s̄
∗
v⟂

)

= �∗∇ +
√

2�i
(

�∗sv + �∗s∗v
)

= �∗
(

∇ +
√

2�i
(

sv + s∗v
)

)

= �∗∇v.

By eq. (1.9) of section 1.2, we know (

�∗∇v
)2 = �∗

(

∇v
)2, and thus by the above

exp
(

∇̄2v⟂

)

= exp
(

(

�∗∇v
)2
)

= exp (�∗∇2v
)

= �∗exp (∇2v
)

.

Writing '0w, �0w for the forms on D(w⟂) corresponding to '0 and �0, we obtain

'0w(v⟂) =
∑

k≥0

( i
2�

)k trs
(

exp
(

∇̄2v⟂

))

[2k]
=
∑

k≥0

( i
2�

)k trs
(

�∗exp (∇2v
))

[2k] = �
∗

(

∑

k≥0

( i
2�

)k trs
(exp (∇2v

))

[2k]

)

= �∗
(

'0(v)
)

.
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Since the grading on⋀∙ �∗ ≅ �∗
⋀∙  is induced from the grading of⋀∙  , the number operator of �∗⋀∙  is �∗N ,

whereN is the number operator on  , and thus

�0w(v⟂) =
∑

k≥0

( i
2�

)k trs
(

(�∗N)exp
(

∇2v⟂

))

[2k]
=
∑

k≥0

( i
2�

)k trs
(

(�∗N)�∗exp (∇2v
))

[2k]

= �∗
(

∑

k≥0

( i
2�

)k trs
(

Nexp (∇2v
))

[2k]

)

= �∗
(

�0(v)
)

.

Therefore, we obtain Lemma 2.4.2 on Page 17 of [4],

Proposition 3.3.2. Letw ∈ V such that ⟨w,w⟩ > 0, and 'w, �w be the forms on D(w⟂) defined analogously to ' and

� onD. Writing V as the direct sum V = span{w}⊕w⟂, we write the respective components of v ∈ V as v = vw+v⟂.

Then, for the natural inclusion � ∶ D(w⟂)↪ D

�∗('(v)) = e−�⟨vw,vw⟩'w(v⟂)

�∗(�(v)) = e−�⟨vw,vw⟩�w(v⟂).

Proof. This follow from the preceding discussion, and the eq. (3.4).

3.4 Highest Weight Vectors

This section contains the main theorems of this thesis. We will use the properties of the immersed submanifolds Dw
for ⟨w,w⟩ > 0, the behaviour under the inclusions � ∶ D(w⟂)↪ D, and the technical results of 2.2 to obtain inductive
results regarding when the form �r(v)[2(q−1)] is a highest weight vector.
Throughout, by a (p, q)-vector space we will mean a
(p + q)-dimensional ℂ-vector space with a Hermitian form of signature (p, q). Recall that for a differential form �, by
�[k] we mean the kth degree component.
Given such a (p, q)-vector space V , the action of the Weil representation ! ∶ gl2r(ℂ) → End((V r)⊗∙(D)) can be
extended to

!⊗ 1 ∶ kr → End ((V r)⊗∙(D))

!⊗ 1 ∶ kr → End ((V r)⊗∙(D(w⟂))
)

.

Since the actions of these extensions are entirely determined by the action on the first factor, we will use the same
notation for both as it should be clear from context. We will also drop the tensor notation, and simply use !.
Our ultimate goal is to prove that, writing v = (w1, ..., wr), the form

�r(w1, ..., wr)[2(qr−1)] = �(wr) ∧ '(w1) ∧ ... ∧ '(wr−1)[2(qr−1)] ∈ (V r)⊗∙(D(V )),
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constructed in the previous section, generates an irreducible representation under the action of the Lie subalgebra
kr = kss of gl2r(ℂ) ≅ u(r, r) ⊗ℝ ℂ, via the Weil representation. We will apply the theory of highest weight vectors
from section 2.1 in order to demonstrate this. Thus we need to demonstrate that �r(v)[2(qr−1)] is an eigenvector for the
action of the Cartan subalgebra hr of kr. Recall from section 2.1 that hr has a basis {Ess − E2r,2r ∶ 1 ≤ s < 2r}. We
define the weight �r ∈ h∗r by

�r(Ess − E2r,2r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(p + q − 1), 1 ≤ s < r

(p + q − 2), s = r

−1, r + 1 ≤ s < 2r

(3.6)

In particular, we will show that �r(v)[2(qr−1)] has weight �r.
First, we will use induction on p in the r = 1 and r = 2 cases, extending some of the results from section 2.2. These
results assume certain base cases that are not known in general, but for which we have established several cases by
computation from the code displayed at the end of this document.
In order to lift these results to higher values of r, we will need to rely on the following result.

Theorem 3.4.1 (Kudla-Millson). For all (p, q)-vector spaces and r ≥ 1 ≤ p (or r = p + 1 when q = 1) the form

'(w1) ∧ ... ∧ '(wr)[2qr] ∈ (V r)⊗∙(D) has weight �r ∈ h∗r given by

�r(Ess − E2r,2r) =

⎧

⎪

⎨

⎪

⎩

p + q, 1 ≤ s ≤ r

0, r + 1 ≤ s < 2r

for which it is a highest weight vector.

Proof. Page 364 of Theorem 3.1 of [6].

When r = 1, for the form '[2q] ∈ (V )⊗∙(D), and the Weil representation
! ∶ gl2(ℂ)→ End((V )⊗∙(D))

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

'(v)[2q] =
(p + q

2

)

'(v)[2q],

!
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

'(v)[2q] = −
(p + q

2

)

'(v)[2q].

For the first result, we’ll also need to extend the action of the pullback

1⊗ �∗ ∶ (V r)⊗∙(D)→ (V r)⊗∙(D(w⟂)),

where again we will drop the tensor notation for simplicity.

Lemma 3.4.2. For any X ∈ kr, we have (1⊗ �∗)◦(!⊗ 1)(X) = (!⊗ 1)(X)◦(1⊗ �∗).
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Proof. Let Φ(v)⊗ 
 ∈ (V r)⊗∙(D) and X ∈ kr, then

(1⊗ �∗)◦(!⊗ 1)(X)Φ(v)⊗ 
 = (1⊗ �∗)[(!(X)Φ(v))⊗ 
] = (!(X)Φ(v))⊗ �∗
 = (!⊗ 1)(X)(Φ(v)⊗ �∗
)

= (!⊗ 1)(X)◦(1⊗ �∗)(Φ(v)⊗ 
).

As a first step to showing �r(v)[2(qr−1)] ∈ (V r)⊗∙(D) has weight �r in general, we will demonstrate (assuming
certain base cases) by induction on p, that �[2(q−1)] has weight �1. More specifically, we will investigate the particular

action of
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

∈ gl2(ℂ) on �(v)[2(q−1)] under the Weil representation ! ∶ gl2(ℂ) → End((V )⊗∙(D)),
which will be useful in lifting these results to the cases when r > 1.

Proposition 3.4.3. Consider some fixed q such that q ≥ 1, and let p ≥ 2(q − 1). Suppose that for every (p, q)-vector

space V , the Weil representation ! ∶ gl2(ℂ)→ End ((V )⊗∙(D)), and �(v)[2(q−1)] ∈ (V )⊗∙(D(V )) we find

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)] =
(

p + q − 2
2

)

�(v)[2(q−1)],

!
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

�(v)[2(q−1)] = −
(

p + q − 2
2

)

�(v)[2(q−1)].

Then, for all (p′, q)-vector spaces V ′ with p′ ≥ p, for the form �(v)′[2(q−1)] ∈ (V ′) ⊗ ∙(D(V ′)) and the Weil

representation !′ ∶ gl2(ℂ)→ End
(

(V ′)⊗∙(D(V ′))
)

, we have

!′
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)′[2(q−1)] =
(

p′ + q − 2
2

)

�(v)′[2(q−1)],

!′
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

�(v)′[2(q−1)] = −
(

p′ + q − 2
2

)

�(v)′[2(q−1)].

Proof. Supposing that the hypothesis holds, let V be a (p + 1, q)-vector space, and writing D = D(V ), consider
�(v)[2(q−1)] ∈ (V )⊗q−1,q−1(D). For �0 ∈ D, if we can show that !

⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)] and

((p + q − 2)∕2)�(v)[2(q−1)] agree on any basis of⋀m,m T�0D, then by linearity they must be equal.
For a standard basis {v1, ..., vp+q} of V , and the coordinates for D described in section 3.1,

{

)
)�i1,j1

∧ ... )
)�im,jm

∧ )
)�̄k1,l1

∧ ... ∧ )
)�̄km,lm

∶ 1 ≤ i∙, k∙ ≤ p, 1 ≤ j∙, l∙ ≤ q

}

,

is a basis for ⋀m,m T�0D. By lemma lemma 3.3.1, for any one of the above basis vectors u, there exists w ∈ V where
�0 ∈ D(w⟂), and some uw ∈ ⋀m,m T�0D(w

⟂), such that �∗(uw) = u, for the inclusion map � ∶ D(w⟂)↪ D.
Write ! ∶ gl2(ℂ) → End ((V )⊗∙(D)), and !w ∶ k1 → End ((w⟂)⊗∙(D(w⟂))

), for the Weil representation.
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Note that w⟂ is a (p, q)-vector space with respect to the restricted Hermitian form ⟨, ⟩ |w⟂ . Writing ⟨w⟩ ∶= spanℂw,
for the orthogonal direct sum V = ⟨w⟩⊕w⟂, we write the respective components of v ∈ V as v = vw + v⟂, and the
orthogonal projections �w ∶ V → ⟨w⟩ and �⟂ ∶ V → w⟂. We can extend the pullbacks
�∗w(⟨w⟩)→ (V ) and �∗⟂ ⊗ 1 ∶ (w⟂)→ (V ) to

�∗w ⊗ 1 ∶ (⟨w⟩)⊗∙(D(w⟂))→ (V )⊗∙(D(w⟂))

�∗⟂ ⊗ 1 ∶ (w⟂)⊗∙(D(w⟂))→ (V )⊗∙(D(w⟂))

where again, we will drop the tensor notation and simply write �∗w and �∗⟂ as there’s no chance of confusion.
By proposition 3.3.2 �∗�(v) = e−�⟨vw,vw⟩�w(v⟂), and note that e−�⟨vw,vw⟩ ∈ (⟨w⟩) and
�w(w⟂) ∈ (w⟂)⊗∙(D(w⟂)), where

e−�⟨vw,vw⟩�w(v⟂) = �∗w
(

e−�⟨vw,vw⟩
)

(v)�∗⟂(�w)(v).

Therefore �∗�(v) = �∗w
(

e−�⟨vw,vw⟩
)

�∗⟂(�w)(v).
Writing the Weil representation

!w ∶ gl2(ℂ)→ End((⟨w⟩)⊗∙(D(w⟂)))

!⟂ ∶ gl2(ℂ)→ End((w⟂)⊗∙(D(w⟂)))

by the induction hypothesis, we have

!⟂
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�w(v⟂)[2(q−1)] =
(

p + q − 2
2

)

�w(v⟂)[2(q−1)].

The result of proposition 2.2.5 carries over to !⊗ 1, !w ⊗ 1, and !⟂ ⊗ 1, and thus

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)]u = !
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)]�∗(uw)

= �∗
⎛

⎜

⎜

⎝

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)]
⎞

⎟

⎟

⎠

uw

= !
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

(

�∗�(v)[2(q−1)]
)

uw,

by lemma 3.4.2,

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)]u = !
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

(

�∗w
(

e−�⟨vw,vw⟩
)

�∗⟂(�w)
)

uw

= �∗w
⎛

⎜

⎜

⎝

!w
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

e−�⟨vw,vw⟩
⎞

⎟

⎟

⎠

�∗⟂�w(v⟂)[2(q−1)]

+ �∗w
(

e−�⟨vw,vw⟩
)

�∗⟂
⎛

⎜

⎜

⎝

!⟂
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�w(v⟂)[2(q−1)]
⎞

⎟

⎟

⎠

uw,
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By proposition 2.2.5,

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)]u =
1
2
�∗w

(

e−�⟨vw,vw⟩
)

�∗⟂�w(v⟂)[2(q−1)]uw

+ �∗w
(

e−�⟨vw,vw⟩
)

�∗⟂

((

p + q − 2
2

)

�w(v⟂)[2(q−1)]

)

uw,

By lemma 2.2.4 and the induction hypothesis,

!
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)]u =
(

(p + 1) + q − 2
2

)

�∗w
(

e−�⟨vw,vw⟩
)

�∗⟂�w(v⟂)[2(q−1)]uw

=
(

(p + 1) + q − 2
2

)

�∗�(v)[2(q−1)]uw

=
(

(p + 1) + q − 2
2

)

�(v)[2(q−1)]�∗(uw)

=
(

(p + 1) + q − 2
2

)

�(v)[2(q−1)]u.

By the arbitrary choice of u ∈ T�0D, we conclude that !
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�[2(q−1)] =
(

(p+1)+q−2)
2

)

�[2(q−1)]. By the arbitrary

choice of (p+1, q)-vector space V , and the principle of induction, we conclude that the result holds for all (p′, q)-vector
spaces with p′ ≥ p.
The proof that !

⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�[2(q−1)] = −
(

(p+1)+q−2
2

)

�[2(q−1)] is entirely similar.

We now use the results of the r = 1 case, to extend to the case when r > 1.

Corollary 3.4.4. Let V be a (p, q)-vector space, and consider the form �[2(q−1)] ∈ (V )⊗∙(D) and the Weil repre-

sentation !1 ∶ gl2(ℂ)→ End ((V )⊗∙(D)). If

!1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2(q−1)] =
(

p + q − 2
2

)

�(v)[2(q−1)],

!1
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

�(v)[2(q−1)] = −
(

p + q − 2
2

)

�(v)[2(q−1)],

then for all r ≥ 1, the form �r(v)[2(qr−1)](V r) ⊗ ∙(D), has weight �r ∈ h∗r ( eq. (3.6)) for the Weil representation

! ∶ kr → End ((V r)⊗∙(D)).

Proof. Let v = (w⃗1, ..., w⃗r) ∈ V r, and recall from proposition 3.2.1 that

�r(v)[2(qr−1)] = �(wr)[2(q−1)] ∧ '(w1, ..., wr−1)[2q(r−1)] = �(wr)[2(q−1)] ∧ '(w1)[2q] ∧ ...'(wr−1)[2q],
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where �(wr)[2(q−1)] ∈ (V )⊗∙(D), for each 1 ≤ s ≤ r − 1 we have '(ws)[2q] ∈ (V )⊗∙(D), and
'(w1, ..., wr−1)[2q(r−1)] ∈ (V r−1)⊗∙(D). Letting d = {1, ..., r − 1}, for the maps

T{r} ∶ V r → V

Td ∶ V r → V r−1

described preceding proposition 2.2.7, we extend the pullbacks to

T ∗{r} ⊗ 1 ∶(V r)⊗∙(D)→ (V )⊗ D

T ∗d ⊗ 1 ∶(V r)⊗∙(D)→ (V r−1)⊗∙(D)

As with previous extensions, we drop the tensor notation. Now we write

�r(v)[2(qr−1)] = �(wr)[2(q−1)] ∧ '(w1, ..., wr−1)[2q(r−1)]

=
(

T ∗{r}�
)

(v)[2(q−1)] ∧
(

T ∗d'
)

(v)[2q(r−1)]

By proposition 2.2.7, for Err ∈ kr
!(Err)�r(v)[2(qr−1)] = !(Err)

(

T ∗{r}�
)

(v)[2(q−1)] ∧
(

T ∗d'
)

(v)[2q(r−1)]

=
⎛

⎜

⎜

⎝

T ∗{r}!1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�
⎞

⎟

⎟

⎠

(v)[2(q−1)] ∧
(

Td'
)

(v)[2q(r−1)]

=
(

T ∗{r}

(

p + q − 2
2

)

�
)

(v)[2(q−1)] ∧
(

T ∗d'
)

(v)[2q(r−1)]

=
(

p + q − 2
2

)

(

T ∗{r}�
)

(v)[2(q−1)] ∧
(

T ∗d'
)

(v)[2q(r−1)]

=
(

p + q − 2
2

)

�r(v)[2(qr−1)].

The proof that for E2r,2r ∈ kr,

!(E2r,2r)�r(v)[2(qr−1)] = −
(

p + q − 2
2

)

�r(v)[2(qr−1)],

is entirely similar to the above.

For 1 ≤ s < r,

�r(v)[2(qr−1)] = �(wr) ∧ '(w1) ∧ ... ∧ '(wr−1)[2(qr−1)] = '(ws) ∧ �(wr) ∧ '(w1) ∧ ... ∧ '(ws)
⋀

∧ ...'(wr−1)[2(qr−1)],

and since '(ws)[2q] ∈ (V )⊗∙(D) and

�r−2(w1, ..., ŵs, ..., wr) ∶= �(wr) ∧ '(w1) ∧ ... ∧ '(ws)
⋀

∧ ...'(wr−1)[2(q(r−1)−1)] ∈ (V r−1)⊗∙(D),

writing d = {1, ..., ŝ, ..., r} we have

�r(v)[2(qr−1)] =
(

T ∗{s}'
)

(v)[2q] ∧
(

T ∗d �
r−1) (v)[2(q(r−1)−1)].
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Since !1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

'[2q] =
(

p+q
2

)

'[2q], by Proposition 2.2.7

!(Ess)�r(v)[2(qr−1)] = !(Ess)
(

T ∗{s}'
)

(v)[2q] ∧
(

T ∗d �
r−1) (v)[2(q(r−1)−1)]

=
⎛

⎜

⎜

⎝

T ∗{s}!1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

'
⎞

⎟

⎟

⎠

(v)[2q] ∧
(

T ∗d �
r−1) (v)[2(q(r−1)−1)]

=
(

T ∗{s}
(p + q)
2

'
)

(v)[2q] ∧
(

T ∗d �
r−1) (v)[2(q(r−1)−1)]

=
(p + q)
2

(

T ∗{s}'
)

(v)[2q] ∧
(

T ∗d �
r−1) (v)[2(q(r−1)−1)]

=
(p + q)
2

�r(v)[2(qr−1)].

The proof that for r + 1 ≤ s < 2r

!(Ess)�r(v)[2(qr−1)] = −
(p + q)
2

�r(v)[2(qr−1)],

is entirely similar to the above.
As determined in Section 2.1, {Ess − E2r,2r ∶ 1 ≤ s < 2r} is a basis for the Cartan subalgebra of kr ⊆ gl2r(ℂ), and
thus combining the computations above, the action of the Cartan subalgebra is given by

!(Ess − E2r,2r)�r(v)[2(qr−1)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(p + q − 1)�r(v)[2(qr−1)], 1 ≤ s ≤ r

(p + q − 2)�r(v)[2(qr−1)], s = r

−�r(v)[2(qr−1)], r + 1 ≤ s < 2r

= �r(Ess − E2r,2r)�r(v)[2(qr−1)].

Recall from Section 2.1, in order to show a certain vector is of highest weight, we must both demonstrate its weight
for the action of the Cartan subalgebra, and show that it is killed by the positive root vectors. By eq. (2.14), the positive
root vectors for gl2r(ℂ) are

{Est ∶ 1 ≤ s ≤ r, s < t ≤ 2r} ∪ {Ets ∶ r + 1 ≤ s < t ≤ 2r}.

As we’re restricting our attention to kr ⊆ gl2r(ℂ), we will only focus on compact positive roots,

{Est ∶ 1 ≤ s < t ≤ r} ∪ {Ets ∶ r + 1 ≤ s < t ≤ 2r}

i.e. those which belong to kr.
When r = 1, the Lie algebra k1 has no such roots. In the next theorem we will induct on p for (p, q)-vector spaces to
show that �2(v) is killed by the positive roots.
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Theorem 3.4.5. Suppose p ≥ 4q − 2. If for every (p, q)-vector space V , the form �2(v)[4q−2] ∈ (V 2)⊗∙(D(V )) is

killed by the positive roots of k2, then every (p′, q)-vector space V ′ with p′ ≥ p, the corresponding form

�′2(v) = �
′(w⃗2) ∧ '′(w⃗1) is killed by the positive roots of k2.

Proof. Suppose that the hypothesis holds, and let V be a (p + 1, q)-vector space. Let {vp+1, ..., vp+q} be a standard
basis for �0 ∈ D, and extend to a standard basis {v1, ..., vp+1+q}. Giving D = D(V ) the coordinates of section 3.1,
let u be a basis vector of ⋀2q−1,2q−1 T�0D(V ) as appearing in the statement of lemma 3.3.1. Then by the result of
lemma 3.3.1, there exists w ∈ {v1, ..., vp} where �0 ∈ D(w⟂) and uw ∈

⋀2q−1,2q−1 T�0D(w
⟂) such that for the

inclusion � ∶ D(w⟂) ↪ D, we have �∗uw = u. Note that w⟂ is a (p, q)-vector space with respect to the restricted
Hermitian form ⟨, ⟩ |w⟂ . By our induction hypothesis, for the forms 'w and �w on D(w⟂), the Weil representation
!w ∶ k2 → End((V 2)⊗∙(D(w⟂))) and E12, E43 ∈ k2

!(E12)�w(u2)[2(q−1)] ∧ 'w(u1)[2q] = 0,

!(E43)�w(u2)[2(q−1)] ∧ 'w(u1)[2q] = 0.

Write ⟨w⟩ ∶= spanℂw. For each entry of v = (u1, u2) ∈ V 2 we’ll write the components of orthogonal decomposi-
tion V = ⟨w⟩⊕w⟂ as u1 = u′1 + u′′1 and u2 = u′2 + u′′2 .
By the proposition 3.3.2, for the inclusion � ∶ D(w⟂)↪ D we have

�∗'(u1)[2q] = e
−�

⟨

u′1,u
′
1

⟩

'w(u′′1 )[2q]

�∗�(u2)[2(q−1)] = e
−�

⟨

u′2,u
′
2

⟩

�w(u′′2 )[2(q−1)].

We will write
�0(u′1, u

′
2) = exp

(

−�
(⟨

u′1, u
′
1
⟩

+
⟨

u′2, u
′
2
⟩))

,

which is the vacuum vector for (⟨w⟩2).
Thus, for the pullbacks �∗w ∶ (⟨w⟩2)⊗∙(D) → (V 2)⊗∙(D) and �∗⟂ ∶ ((w⟂)2)⊗∙(D) → (V 2)⊗∙(D)

defined in the proof of proposition 3.4.3, we find
�∗�r(v)[4q−2] = �∗

(

�(u2)[2(q−1)] ∧ '(u1)[2q]
)

= �∗�(u2)[2(q−1)] ∧ �∗'(u1)[2q]

= e−�
⟨

u′2,u
′
2

⟩

�w(u′′2 )[2(q−1)] ∧ e
−�

⟨

u′1,u
′
1

⟩

'w(u′′1 )[2q]

= �0
(

�w(u′′1 )[2(q−1)] ∧ 'w(u
′′
1 )[2q]

)

= �∗w(�0)�
∗
⟂
(

(�w)[2(q−1)] ∧ ('w)[2q]
)

(u1, u2).

Thus, for the Weil representation
! ∶ k2 → End((V 2)⊗∙(D))

!w ∶ k2 → End((⟨w⟩2)⊗∙(D(w⟂)))

!⟂ ∶ k2 → End(((w⟂)2)⊗∙(D(w⟂))),
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we have

!(E12)�r(v)[4q−2]u

= !(E12)�r(v)[4q−2]�∗(u)

= �∗
(

!(E12)�r(v)[4q−2]
)

uw

= !(E12)�∗
(

�r(v)[4q−2]
)

uw, by lemma 3.4.2
= !(E12)�∗w(�0)�

∗
⟂
(

(�w)[2(q−1)] ∧ ('w)[2q]
)

uw

= �∗w
(

!w(E12)�0
)

�∗⟂
(

(�w)[2(q−1)] ∧ ('w)[2q]
)

+ �∗w(�0)�
∗
⟂
(

!⟂(E12)(�w)[2(q−1)] ∧ ('w)[2q]
)

, by proposition 2.2.5
=
(

0 ⋅ �∗⟂
(

(�w)[2(q−1)] ∧ ('w)[2q]
)

+ �∗w(�0) ⋅ 0
)

uw, by lemma 2.2.4 and the induction hypothesis
= 0.

Therefore we’ve shown the equality of !(E12)�2(v)[4q−2] and the 0-functional on any one of the basis vectors of
⋀2q−1,2q−1 T�0D as described in lemma 3.3.1. By linearity !(E12)�2(v)[4q−2] agrees with 0 on all of⋀2q−1,2q−1 T�0D,
and are therefore they are equal.
The proof that !(E43)�r(v)[4q−2] = 0, is entirely similar.

Theorem 3.4.6. If �2(v)[4q−2] is killed by the positive roots of k2, then �r(v)[2(qr−1)] is killed by the positive roots of kr
for any r ≥ 2.

Proof. Suppose that �2 ∈ (V 2)⊗∙(D) is killed by the positive roots of k2. Let v = (w1, ..., wr) ∈ V r, and Ear ∈ kr
with 1 ≤ a < r. Observe that

�r(v)[2(qr−1)] = �(wr) ∧ '(w1) ∧ ... ∧ '(wr−1)[2(qr−1)] = �(wr) ∧ '(wa) ∧ '(w1) ∧ ... ∧ '(wa)
⋀

∧ ... ∧ '(wr−1)[2(qr−1)].

Now �(wr) ∧ '(w1)[4q−2] = �2(v)[4q−2] ∈ (V 2)⊗∙(D) and
'r−2(v) ∶= '(w1)∧ ...∧'(wa)

⋀

∧ ...∧'(wr−1)[2(q(r−1)−1)] ∈ (V r−2)⊗∙(D), where if we let d = {1, ..., â, ..., b̂, ..., r}

�r(v)[2(qr−1)] = �(wr) ∧ '(wa) ∧ '(w1) ∧ ... ∧ '(wa)
⋀

∧ ... ∧ '(wr−1)[2(qr−1)]

=
(

T{ab}�2
)

(v)[4q−2]
(

T ∗d'
r−2) (v)[2(q(r−1)−1)].

Thus by proposition 2.2.8

!(Ear)�r(v)[2(qr−1)] = !(Ear)
[

(

T{ab}�2
)

[4q−2]
(

T ∗d'
r−1) (v)[2(q(r−1)−1)]

]

=
[

T ∗{ab}!2(E12)�2
]

(v)[4q−2]
(

T ∗d'
r−2) (v)[2(q(r−1)−1)]

= T ∗{ab}(0)
(

T ∗d'
r−2) (v)[2(q(r−1)−1)] by the hypothesis,

= 0.

The proof that �r(v)[2(qr−1)] is killed by the other positive root is entirely similar.
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Finally, we combine the previous results to yield our main theorem.

Theorem 3.4.7. Let V be a (p, q)-vector space. The form �r(v)[2(qr−1)] is a highest weight vector of weight �r ∈ h∗r for

the Weil representation ! ∶ kr → (V r)⊗∙(D(V )) for (p, q, r) in the following cases

1. (p, 1, r) for any r ≤ p + 1.

2. (p, 2, r) for any r ≤ p.

3. (p, 3, r) for 1 ≤ p ≤ 3 and any r ≤ p.

4. (1, 4, 1), (2, 4, 1), (2, 4, 2), and (3, 4, r) for r ≤ 3.

Proof. 1. This is proven in [4].

2. Let V be a (p, 2)-vector space, {vp+1, ..., vp+q} a standard basis for some �0 ∈ D. Extend to a standard basis
{v1, ..., vp+q} of V , and equip D with the coordinates of section 3.1. Let !1 ∶ gl2(ℂ)→ End((V )⊗∙(D)) be
the Weil representation. Using the code in the final chapter, we’ve established that for p = 1 or p = 2, evaluating
the form �(v)[2]|�0 at �0,

!1
⎛

⎜

⎜

⎝

1 0

0 0

⎞

⎟

⎟

⎠

�(v)[2]|�0 =
(p
2

)

�(v)[2]|�0

!1
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

�(v)[2]|�0 = −
(p
2

)

�(v)[2]|�0

As p ≥ 2, by corollary 3.4.4, for every (p, 2)-vector space V , r ≥ 1, and the Weil representation
!r ∶ kr → End((V r)⊗∙(D)) the form �r(v)[2(2r−1)]|�0 has weight �r ∈ h∗r . By proposition 3.2.1 we conclude
that �r(v)[2(2r−1)] has weight �r.
We have also established by computation that for each (p, 2)-vector space with p ≤ 4q − 2 = 6, the form
�2(v)[6]|�0 is killed by the positive roots of k2 and thus by theorem 3.4.5, for any (p, 2)-vector space the form
�2(v)[6]|�0 is killed by the positive roots of k2. Again by proposition 3.2.1 we’re able to conclude �2(v)[6] is killed
by the positive roots of k2. Thus it follows from theorem 3.4.6 that for each (p, 2)-vector space and r, the form
�r(v)[2(2r−1)] is killed by the positive roots of kr.
In conclusion, for any (p, 2)-vector space, the form �r(v)[2(qr−1)] has weight �r ∈ h∗r and is killed by the action of
its root vectors. Therefore �r(v)[2(qr−1)] is a highest weight vector, which implies that it generates an irreducible
subrepresentation.

3. By direct computation.

4. By direct computation.
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3.5 Computations

In this section we will walk through the computation of the (p, q) = (1, 1) case "by hand". This can serve both as test
that the code does what it promises to do, and also clarify what exactly needs to be computed. We will also display
some of the output of the code, and highlight some interesting features there in.

The Case (p, q) = (1, 1) by Hand

Let V be a (1, 1)-vector space. Given a standard basis {v1, v2} for V , we equipD = D(V )with the coordinates outlined
in section 3.1. Under this description, the coordinates of any point � ∈ D = D(V ) is just a 1 × 1matrix, i.e. a complex
number �1,1 such that |�1,1|2 − 1 < 0, that is, D is (biholomorphic to) the open complex unit disc.

We have that � = span
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

�1,1
1

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

. Letting  → D be the tautological bundle, for each � ∈ D the fiber � is � , and thus

we take the global frame
⎧

⎪

⎨

⎪

⎩

e =
⎛

⎜

⎜

⎝

�1,1
1

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, trivializing  → D. Thus we will take {1, e} as a global frame for  ⊕ D,

where  = D is the structure sheaf.
From this point on, we will simply write � for �1,1, as we will only make reference to the variable, not the space.
The Hermitian form ⟨, ⟩ on  is determined entirely by ℎ ∶= ⟨e, e⟩ = − ⟨e, e⟩ = 1 − |� |2.
The Hermitian form ⟨, ⟩∧ of the total bundle ⊕  is thus

H =
⎛

⎜

⎜

⎝

1 0

0 1 − |� |2

⎞

⎟

⎟

⎠

.

For v = (z1, z2)T ∈ V the section sv ∶ D → ∨ acts by

sv(� )(e) = ⟨e, v⟩ = z̄1� − z̄2.

Thus the matrix S of the extension of sv to the Koszul complex  sv
←←←←←←←←←→  is

S =
⎛

⎜

⎜

⎝

0 z̄1� − z̄2
0 0

⎞

⎟

⎟

⎠

.
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To compute the adjoint s∗v of sv, for u ∈  and w ∈  we have

⟨Su,w⟩ =
⟨

u, S⋆w
⟩

⇒ (Su)THw̄ = uTHS⋆w

vTSTHw̄ = uTHS̄⋆w̄, since this holds for any pair of vectors,
⇒ STH = HS̄⋆

H−1STH = S⋆

H̄−1S̄T H̄ = S⋆

H−1S∗H = S⋆.

As shown in the previous section, the matrix of the adjoint S⋆ is computed as

S⋆ = H−1S∗H =
⎛

⎜

⎜

⎝

1 0

0 1
1−|� |2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0

z1�̄ − z2 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0

0 1 − |� |2

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 0

0 1
1−|� |2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0

z1�̄ − z2 0

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 0
z1 �̄−z2
1−|� |2 0

⎞

⎟

⎟

⎠

Therefore

(S + S⋆)2 =
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

0 z̄1� − z̄2
0 0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

0 0
z1 �̄−z2
1−|� |2 0

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

2

=
⎛

⎜

⎜

⎝

0 z̄1� − z̄2
z1 �̄−z2
1−|� |2 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 z̄1� − z̄2
z1 �̄−z2
1−|� |2 0

⎞

⎟

⎟

⎠

=
(z̄1� − z̄2)(z1�̄ − z2)

1 − |� |2
⋅ I

Recall that by proposition 1.1.17, the connection ∇ on  can be given a local description ∇ = d + � where

� =
)(1 − |� |2)
1 − |� |2

=
−�̄

1 − |� |2
d�.

Again by proposition 1.1.17, the curvature can be expressed as the operator

Θ = )̄
−�̄

1 − |� |2
dx =

−(1 − |� |2) − (−�̄ )(−� )
(1 − |� |2)2

d�̄ ∧ d� =
d� ∧ d�̄
(1 − |� |2)2

.

For the superconnection ∇v = ∇ + i
√

2�(S + S⋆), the super curvature is

∇2v = −2�(S
2 +

(

S⋆
)2) + i

√

2�(∇(S + S⋆) + (S + S⋆)∇) + ∇2.

If we split ∇2v = r0 + r1 + r2 into components where the form degree of ri is i. Thus

−2�(S2 +
(

S⋆
)2) + i

√

2�(∇(S + S⋆) + (S + S⋆)∇) + ∇2,
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and therefore

r0|�=0 =
(

i
√

2�
(

S + S⋆
)

)2
|�=0 = −2�

(

(z̄1� − z̄2)(z1�̄ − z2)
1 − |� |2

)

I2|�=0 = −2�|z2|2I2.

Note that the connection for  is just d, so the connection ∇ on the total bundle  ⊕ is ∇(f ⊗ 1) = df ⊗ 1, and
∇(f ⊗ s−1v ) = df ⊗ s−1v + �f ⊗ s−1v .

r1(1⊗ 1) = i
√

2�
[

∇sv(1⊗ 1) + ∇s∗v(1⊗ 1) + (sv + s∗v)∇(1⊗ 1)
]

= i
√

2�
[

∇(0) + ∇
(

z1�̄ − z2
1 − |� |2

⊗ e
)

+ (sv + s∗v)(0)
]

= i
√

2�
[

(d + �)
(

z1�̄ − z2
1 − |� |2

⊗ e
)]

= i
√

2�
[

)
z1�̄ − z1
1 − |� |2

+ )̄
z1�̄ − z2
1 − |� |2

+
(

−�̄
1 − |� |2

d�
)(

z1�̄ − z2
1 − |� |2

)]

⊗ e

= i
√

2�
[

−
(z1�̄ − z2)(−�̄ )
(1 − |� |2)2

d� +
z1(1 − |� |2) − (z1�̄ − z2)(−� )

(1 − |� |2)2
d�̄ +

−�̄ (z1�̄ − z2)
(1 − |� |2)2

d�
]

⊗ e

⇒ r1(1⊗ 1)|�=0 =
(

i
√

2�z1
)

d�̄ ⊗ e.

r1(1⊗ e) = i
√

2�
[

∇sv(1⊗ e) + ∇s∗v(1⊗ e) + sv∇(1⊗ e) + s∗v∇(1⊗ e)
]

= i
√

2�
[

∇(z̄1� − z̄2)⊗ 1 + ∇(0) + sv

(

−�̄
1 − |� |2

d� ⊗ e
)

+ 0
]

= i
√

2�
[

d(z̄1� − z̄2)⊗ 1 + sv

(

−�̄
1 − |� |2

d� ⊗ e
)]

= i
√

2�
[

z̄1d� +
−�̄

1 − |� |2
(z̄1� − z̄2)d�

]

⊗ 1

⇒ r1(1⊗ e)|�=0 =
(

i
√

2�z̄1
)

d� ⊗ 1.

Now, by proposition 1.2.6, the definition of∙(D)-linearity preceding it, and the fact that r1 had even total degree,
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we compute

r21(1⊗ 1)|�=0 = r1
(

i
√

2�z1d�̄ ⊗ e
)

|

|

|

|�=0

=
(

i
√

2�z1d�̄
)

∧ r1 (1⊗ e) |�=0

=
(

i
√

2�z1d�̄
)

∧
(

i
√

2�z̄1d� ⊗ 1
)

= 2�|z1|2d� ∧ d�̄ ⊗ 1,

r21(1⊗ e)|�=0 = r1
(

i
√

2�z̄1d� ⊗ 1
)

|

|

|

|�=0

=
(

i
√

2�z̄1d�
)

∧ r1 (1⊗ 1) |�=0

=
(

i
√

2�z̄1d�
)

∧
(

i
√

2�z1d�̄ ⊗ e
)

= −2�|z1|2d� ∧ d�̄ ⊗ e.

Therefore
1
2
trs(r21)|�=0 = 1

2
(

2�|z1|2d� ∧ d�̄ −
(

−2�|z1|2d� ∧ d�̄
))

= 2�|z1|2d� ∧ d�̄ .

Finally, we see that

trs(r2)|�=0 = trs
⎛

⎜

⎜

⎝

0 0

0 d�∧d�̄
(1−|� |2)2

⎞

⎟

⎟

⎠

|�=0 = −d� ∧ d�̄ .

We now compute '(v)[2]|�=0 and �(v)[0]|�=0 according to their definitions eq. (3.3) and eq. (3.4). Since r0|�=0 =
−2�|z2|2I2, it commutes with (r1 + r2)|�=0 and thus

e∇
2
v
|�=0 = er0+r1+r2 |�=0 = er0er1+r2 |�=0.

Therefore

'(v)[2]|�=0 = e−�(|z1|
2−|z2|2)

( i
2�

)

trs
(

e∇
2
v
)

[2]
|�=0

= e−�(|z1|
2−|z2|2)

( i
2�

)

trs
(

er0er1+r2
)

[2] |�=0

= ie−�(|z1|2−|z2|2)

2�
e−2�|z2|

2 trs
(

I + (r1 + r2) +
1
2
(r1 + r2)2 + ...

)

[2]
|�=0

= ie−�(|z1|2+|z2|2)

2�
trs

(

r2 +
1
2
r21
)

|�=0

= i
2�
e−�(|z1|

2+|z2|2)
(

−d� ∧ d�̄ + 2�|z1|2dz ∧ d�̄
)

= ie−�(|z1|2+|z2|2)

2�
(2�|z1|2 − 1)d� ∧ d�̄ .
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The number operatorN on ⊕  is given byN =
⎛

⎜

⎜

⎝

0 0

0 −1

⎞

⎟

⎟

⎠

, and thus

�(v)[0]|�=0 = e−�(|z1|
2−|z2|2)

( i
2�

)0 trs
(

Ne∇
2
v
)

[0]
|�=0

= e−�(|z1|
2−|z2|2)trs

(

Ner0er1+r2
)

[0] |�=0

= e−�(|z1|
2−|z2|2)trs

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

0 0

0 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

e−2�|z2|2 0

0 e−2�|z2|2
⎞

⎟

⎟

⎠

(I + (r1 + r2) + ...)
⎞

⎟

⎟

⎠[0]

|�=0

= e−�(|z1|
2−|z2|2)trs

⎛

⎜

⎜

⎝

0 0

0 −e−2�|z2|2
⎞

⎟

⎟

⎠

= e−�(|z1|
2+|z2|2).

thus �(v)[0]|�=0 is just the vacuum vector, and thus by the computation of lemma 2.2.4, we know it’s killed under

the action of the Weil representation. That is, it has weight determined by �
⎛

⎜

⎜

⎝

1 0

0 −1

⎞

⎟

⎟

⎠

= 0 = p + q − 2, as expected.
By the proof of corollary 3.4.4 we know that �2(v)[2]|�=0 = �(w2)[0]∧'(w1)|�=0 has the weight �1 specified in eq. (3.6).
Now we will determine the action of the positive compact roots. We write v = (w1, w2) ∈ V 2 in the standard basis as
w1 = z1,1v1 + z2,1v2 and w2 = z1,2v1 + z2,2v2. Again, from the proof of lemma 2.2.4, we know that

D+1,2exp
(

−�(|z1,1|2 + |z2,1|
2 + |z1,2|

2 + |z2,2|
2) = 0

D+2,1exp
(

−�(|z1,1|2 + |z2,1|
2 + |z1,2|

2 + |z2,2|
2) = 0.

Therefore, writing 'G = exp (−�(|z1,1|2 + |z2,1|2 + |z1,2|2 + |z2,2|2
) for short, we have

�2(w1, w2)[2]|�=0 = �(w1)[0] ∧ '(v)[2]|�=0 = 'G ⋅
( i
2�

)

(2�|z1,1|2 − 1)d� ∧ d�̄ ,

and thus
!(E12)�2(w1, w2)[0]|�=0 = i�

[

D−1,1D
+
1,2 −D

−
2,2D

+
2,1

]

'G ⋅ (2�|z1,1|2 − 1)d� ∧ d�̄

= i�
[

D−1,1(2�|z1,1|
2 − 1)D+1,2'

G − (2�|z1,1|2 − 1)D−2,2D
+
2,1'

G
]

d� ∧ d�̄

= i�[0 − 0]d� ∧ d�̄

= 0.

The computation that !(E43)�2(w1, w2)[2] is entirely similar. Thus we’ve seen in this case that �2(v)[2q] has weight
�1, and is killed by the positive compact roots of k1, implying that it is a highest weight vector.

The Case of (p, q) for q > 1 via Sage

As an example of how infeasible it is to carry these computations out by hand for other small q, for (p, q) = (1, 2) the
inverse matrixH−1 of the matrixH describing the Hermitian form on D is
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 (|�1,1||�1,2|)2
(

(|�1,1|�1,2|)2

|�1,1|2−1
−|�1,2|2+1

)

(|�1,1|2−1)2
− 1

|�1,1|2−1
− |�1,2|2

(

(|�1,1||�1,2|)2

|�1,1|2−1
−|�1,2|2+1

)

(|�1,1|2−1)
0

0 − |�1,2|2
(

(|�1,1||�1,2|)2

|�1,1|2−1
−|�1,2|2+1

)

(|�1,1|2−1)
1

(|�1,1||�1,2|)2

|�1,1|2−1
−|�1,2|2+1

0

0 0 0 − 1
|�1,1|2|�1,2|2−(|�1,1|2−1)(|�1,2|2−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

In order to obtain the curvature, one must compute )̄ (H−1)H
), which is already quite tedious, let alone the

computations of the rest of ∇2v = r0 + r1 + r2, and trs(Ne∇2v ).

We now produce the forms �(v)[2(q−1)]|�0 in several different cases, as computed from Sage. For the ease of reading,
we’ve set

'G = e−�
∑p+q

=1 |z
 |

2
.

The (p, q) = (1, 2) case,

�(v)[2]|�0 = '
G ⋅

(
(

2i �|z1|2 − i
)

2�
d�1,1 ∧ d�̄1,1 +

(

2i �|z1|2 − i
)

2�
d�1,2 ∧ d�̄1,2

)

.
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Notice the similarity with the form '(v)[2]|�0 from the (1, 1) case.
In the (2, 2) case,

�(v)[2]|�0 ='
G ⋅

(
(

2i �|z1|2 − i
)

2�
d�1,1 ∧ d�̄1,1 + i z2z̄1d�1,1 ∧ d�̄2,1 + i z1z̄2d�1,2 ∧ d�̄1,1 +

(

2i �|z2|2 − i
)

2�
d�1,2 ∧ d�̄2,1

)

+ 'G ⋅

(
(

2i �|z1|2 − i
)

2�
d�1,2 ∧ d�̄1,2 + i z2z̄1d�1,2 ∧ d�̄2,2 + i z1z̄2d�2,2 ∧ d�̄1,2 +

(

2i �|z2|2 − i
)

2�
d�2,2 ∧ d�̄2,2

)

,

and compare this with '[2] of the (2, 1)-case

'(v)[2]|�0 = '
G⋅

(
(

2i �|z1|2 − i
)

2�
d�1,1 ∧ d�̄1,1 + i z2z̄1d�1,1 ∧ d�̄1,2 + i z1z̄2d�1,1 ∧ d�̄1,1 +

(

2i �|z2|2 − i
)

2�
d�1,2 ∧ d�̄1,2

)

.

The (p, q) = (1, 3) case,

�(v)[4]|�0 ='
G ⋅

(
(

2�2|z1|4 − 4�|z1|2 + 1
)

2�2
d�1,1 ∧ d�1,2 ∧ d�̄1,1 ∧ d�̄1,2 +

(

2�2|z1|4 − 4�|z1|2 + 1
)

2�2
d�1,1 ∧ d�1,3 ∧ d�̄1,1 ∧ d�̄1,3

)

+ 'G ⋅

(

2�2|z1|4 − 4�|z1|2 + 1
)

2�2
d�1,2 ∧ d�1,3 ∧ d�̄1,2 ∧ d�̄1,3,

is also very similar to '[4]|�0 of the (1, 2) case,

'[4]|�0 = '
G ⋅

(

2�2|z1|4 − 4�|z1|2 + 1
)

2�2
d�1,1 ∧ d�1,2 ∧ d�̄1,1 ∧ d�̄1,2.

Finally, for the (p, q) = (1, 4) case,

�(v)[6]|�0 ='
G ⋅

(

4i �3|z1|6 − 18i �2|z1|4 + 18i �|z1|2 − 3i
)

4�3
d�1,1 ∧ d�1,2 ∧ d�1,3 ∧ d�̄1,1 ∧ d�̄1,2 ∧ d�̄1,3

+ 'G ⋅

(

4i �3|z1|6 − 18i �2|z1|4 + 18i �|z1|2 − 3i
)

4�3
d�1,1 ∧ d�1,2 ∧ d�1,4 ∧ d�̄1,1 ∧ d�̄1,2 ∧ d�̄1,4

+ 'G ⋅

(

4i �3|z1|6 − 18i �2|z1|4 + 18i �|z1|2 − 3i
)

4�3
d�1,1 ∧ d�1,3 ∧ d�1,4 ∧ d�̄1,1 ∧ d�̄1,3 ∧ d�̄1,4

+ 'G ⋅

(

4i �3|z1|6 − 18i �2|z1|4 + 18i �|z1|2 − 3i
)

4�3
d�1,2 ∧ d�1,3 ∧ d�1,4 ∧ d�̄1,2 ∧ d�̄1,3 ∧ d�̄1,4,

we compare '(v)[6] of the (1, 3) case,

'[6]|�0 = '
G ⋅

(

4i �3|z1|3 − 18i �2|z1|4 + 18i �|z1|2 − 3i
)

4�3
d�1,1 ∧ d�1,2 ∧ d�1,3 ∧ d�̄1,1 ∧ d�̄1,2 ∧ d�̄1,3





Chapter 4

The Code

1 # Created April 23rd, 2021 this is not the official total code , but the best version yet

that computes nu and mu in the specific

2 # 2q and 2(q-1), and checks the r = 2 case. (No Funke - Hoffman)

3
4 # Setting the parameters of the manifold.

5
6 p = 2

7 q = 2

8
9 # Defining the manifold , with chart and frame. The coordinates x are defined in such a way

that for i<p*q, i+p*q represents

10 # the conjugate of x. More specifically yet , x_1 through x_p are the entries of the column

vector of the first basis vector of

11 # a given point of D. To put it another way , the entries going down of the first column of

the matrix Z representing the point.

12 # Thus x_{i+p} is the next colum , then x_{1+2p}, ..., to x_{i+(q-1)p}. With conjugates x_{p

*q+i}, ..., x_{p*q+i+(q-1)p}.

13 # That is to say , taking for coordinates 0<=i<=q-1, 0<=j<=p-1, z_{i,j} = x[j*p+i]

14
15 M = Manifold ((2*p*q), ’M’, field=’complex ’)

16 U = M.open_subset(’U’)

17 x = U.chart(names=tuple(’x_%d’ % i for i in range (2*p*q)))

18 eU = x.frame()

19 # First coordinate controls conjuagtion (0 is normal , 1 is conjugated), second coordinate

controls vector , 3rd controls

20 # vector coordinate.

21
22 e = {(i,j,k): var("e_ {}{}{}".format(i,j,k), latex_name="e_ {{{}{}{}}}".format(i,j,k)) for i

in range (2) for j in range(q) for k in range ((p+q))}

23
24 # Is the kth entry of the jth canonical frame vector is e[(0,j,k)], with conjugate e[(1,j,k)

79
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].

25
26 # Here we set the p variables in the first p coordinates of each frame vector.

27 for i in range(q):

28 for k in range(p):

29 e[(0, i, k)] = x[((i*p)+k)]

30
31 # Here we set the conugate variables of the first p entries of the frame vectors.

32 for i in range(q):

33 for k in range(p):

34 e[(1,i,k)] = x[(((i*p)+k)+((p*q)))]

35
36 # Here we tell both the frame , and conjugate vectors where the 1 is.

37 for i in range (2):

38 for j in range(q):

39 e[(i,j,(p+j))] = 1

40
41 # Here we set the rest of the entries of the frame and conjugate vectors to 0.

42 for i in range (2):

43 for j in range(q):

44 for k in range(p+q):

45 if k not in range(p) and k!=p+j:

46 e[(i,j,k)] = 0

47
48 # Defining variables for an arbitrary vecotr v[(0,i)], and its conjugate v[(1,i)].

49
50 v = {(i,j): var("v_{}{}".format(i, j), latex_name="z_ {{{}{}}}".format(i, j)) for i in range

(2) for j in range(p+q)}

51
52 # Defining labels to call the entries of s_v(e_j).

53
54 sve = {(i): var("sve_{}".format(i)) for i in range(q)}

55
56 # Defining labels to call the entries of s_vbar(e_j).

57
58 svebar = {(i): var("svebar_ {}".format(i)) for i in range(q)}

59
60 # Setting the entries of sve.

61
62 for i in range(q):

63 prod = 0

64 for j in range(p):

65 prod = prod + (e[(0, i, j)]*v[(1, j)])

66 for k in range(p, p+q):

67 prod = prod - (e[(0, i, k)]*v[(1,k)])
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68 sve[i] = prod

69
70 # Setting the entries of svebar.

71
72 for i in range(q):

73 prod = 0

74 for j in range(p):

75 prod += (v[(0, j)]*e[(1, i, j)])

76 for k in range(p, p+q):

77 prod -= (v[(0,k)]*e[(1, i, k)])

78 svebar[i] = prod

79
80 # Making them into mixed forms. We want these to be zero forms , so the list P lets us set

all other components to 0, with the

81 # appropriate size.

82
83 P = []

84 for i in range ((2*p*q)):

85 P.append (0)

86
87 Q = []

88 for i in range ((2*p*q) -1):

89 Q.append (0)

90
91 SveBar = [M.mixed_form(comp =([ svebar[i]]+P)) for i in range(q)]

92
93 Sve = [M.mixed_form(comp =([sve[i]]+P)) for i in range(q)]

94
95 # Pre -computing the exterior derivatives for later use.

96
97 dSve = {(i): var("dSve_{}".format(i)) for i in range(q)}

98
99 for i in range(q):

100 dSve[i] = Sve[i]. exterior_derivative ()

101
102 # Pre -computing the exterior derivative for later use.

103
104 dSveBar = {(i): var("dSveBar_ {}".format(i)) for i in range(q)}

105
106 for i in range(q):

107 dSveBar[i] = SveBar[i]. exterior_derivative ()

108 show(v[0,0])

109
110 # We want L[k] to be the list of all k-wedge basis vectors , so we set the o position to be 0

by convention.
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111
112 L = [[[]]]

113
114 # Here we set L[1] to be the q numbers from 0 to q-1.

115
116 LL = []

117 for i in range(q):

118 LL.append ([i])

119 L.append(LL)

120 # Now that we’ve set L[1], we can use this to determine L[k] for each k, and note that this

gives the proper

121 # lexicographic order.

122
123 if q>=2:

124 for k in range(2,q+1):

125 LLL = []

126 for i in range(binomial(q, k-1)):

127 for j in range(q):

128 if L[k-1][i][len(L[k-1][i]) -1]<j:

129 mm = []

130 for t in L[k-1][i]:

131 mm.append(t)

132 mm.append(j)

133 LLL.append(mm)

134 L.append(LLL)

135 # Now we simply copy this entire method , except we make lists with an eU so they can be

called upon as coordinate frames later.

136 # First we create two lists of those numbers from 0 to pq -1, and pq to 2pq -1 respectively.

137
138 Lpq = [[[]]]

139 L2pq = [[[]]]

140
141 LLpq = []

142 for i in range(p*q):

143 LLpq.append ([i])

144 Lpq.append(LLpq)

145
146 LL2pq = []

147 for i in range(p*q, 2*p*q):

148 LL2pq.append ([i])

149 L2pq.append(LL2pq)

150
151 # Now we creat two lists Lpq and L2pq inductively , where Lpq[i] is the collection of all

lists of length i, (i<=q) of numbers

152 # between 0 and pq -1, in strictly increasing order , and the same for L2pq but between pq and
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2pq -1.

153
154 if q>=2 or p>=2:

155 for i in range(2, 2*q):

156 LLLpq = []

157 for j in Lpq[i-1]:

158 for k in range(p*q):

159 if j[len(j) -1]<k:

160 mm = []

161 for t in j:

162 mm.append(t)

163 mm.append(k)

164 LLLpq.append(mm)

165 Lpq.append(LLLpq)

166
167 elif (q == 1) and (p == 1):

168 Lpq.append ([[0 ,1]])

169
170 # And do the same for the lists of length q-1.

171
172 if q>=2 or p>=2:

173 for i in range(2, 2*q):

174 LLL2pq = []

175 for j in L2pq[i-1]:

176 for k in range(p*q, 2*p*q):

177 if j[len(j) -1]<k:

178 mm = []

179 for t in j:

180 mm.append(t)

181 mm.append(k)

182 LLL2pq.append(mm)

183 L2pq.append(LLL2pq)

184
185 elif (q == 1) and (p == 1):

186 L2pq.append ([[0 ,1]])

187
188 # Now we fuse these two lists in such a way that that qList simply contains those lists

where the first q are from Lpq[q],

189 # and the second q are from L2pq[q]. The list q1List is similar , but draws on those entries

of length q-1.

190
191 qList = []

192
193 for i in Lpq[q]:

194 for j in L2pq[q]:
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195 temp = []

196 for k in i:

197 temp.append(k)

198 for l in j:

199 temp.append(l)

200 qList.append(temp)

201
202 q1List = []

203
204 for i in Lpq[q-1]:

205 for j in L2pq[q-1]:

206 temp = []

207 for k in i:

208 temp.append(k)

209 for l in j:

210 temp.append(l)

211 q1List.append(temp)

212
213 rList = []

214
215 for i in Lpq[2*q-1]:

216 for j in L2pq [2*q-1]:

217 temp = []

218 for k in i:

219 temp.append(k)

220 for l in j:

221 temp.append(l)

222 rList.append(temp)

223 # Here we create a list so that the ith entry is a list of of all the ith wedge basis

vectors.

224
225 WedgeList = []

226
227 for i in range (2*(2*q-1)+1):

228 if i == 2*(q-1):

229 W = []

230 for j in q1List:

231 WW = [eU]

232 for k in j:

233 WW.append(k)

234 W.append(WW)

235 WedgeList.append(W)

236 elif i == 2*q:

237 W = []

238 for j in qList:



85

239 WW = [eU]

240 for k in j:

241 WW.append(k)

242 W.append(WW)

243 WedgeList.append(W)

244 elif i == 2*(2*q - 1):

245 W = []

246 for j in rList:

247 WW = [eU]

248 for k in j:

249 WW.append(k)

250 W.append(WW)

251 WedgeList.append(W)

252 else:

253 WedgeList.append ([])

254
255
256 # Defining a function which will help combine separate peices of hemritian matrices , SVe ,

and r_1 and r_2.

257
258 def F(i):

259 Sum = 0

260 for j in range(i):

261 Sum += binomial(q,j)

262 return Sum

263
264 # Computing the matrix for the conjugate of the operator s_v.

265
266 SVEbar = matrix(SR , 2^q, 2^q)

267
268 for i in range(q+1):

269 if i == 0:

270 for j in range (2^q):

271 SVEbar[j,0] = 0

272 else:

273 for j in L[i]:

274 for k in j:

275 temp = []

276 for l in j:

277 if l != k:

278 temp.append(l)

279 SVEbar[L[i-1]. index(temp)+F(i-1), L[i].index(j)+F(i)] = (-1)^(j.index(k))*

svebar[k]

280
281 # Defining the Hermitian matrix of the tautological bundle.
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282
283 HE = matrix(SR, q, q)

284
285 for i in range(q):

286 for j in range(q):

287 prod = 0

288 for k in range(p):

289 prod -= (e[(0, i, k)]*e[(1, j, k)])

290 for l in range(p+q):

291 if l>=p:

292 prod += (e[(0, i, l)]*e[(0, j, l)])

293 HE[i,j] = prod

294
295 # Making variables for Hermitian forms h[(i,j,k)], the first variable should control the

wedge degree , the other two

296 # variables control that matrix entry.

297
298 # h = {(i,j,k): var("h_ {}{}{}". format(i,j,k)) for i in range(1,q+1) for j in range(binomial(

q, floor(q/2))) for k in

299 # range(binomial(q, floor(q/2)))}.

300
301 h = {(i): var("h_{}".format(i)) for i in range(q+1)}

302
303 # creating a list by which to index Hermitian matrices. We give i a range such that that

the index matches the wedge power.

304
305 for i in range(q+1):

306 h[i] = matrix(SR, binomial(q, i), binomial(q, i))

307
308 # Here we set the values for each entry of each Hermitian matrix by use of the minor

definiton of the inner product

309 # for k-wedges.

310
311 h[0][0 ,0] = 1

312
313 for i in range(1, q+1):

314 for z in L[i]:

315 for w in L[i]:

316 h[i][L[i].index(z), L[i]. index(w)] = HE[z, w].det()

317 hinv = {(i): var("hinv_{}".format(i)) for i in range(q+1)}

318
319 for i in range(q+1):

320 hinv[i] = h[i]. inverse ()

321
322 #Setting up HW to mean H-wedge , as in the hermiitan matrix of the total bundle.



87

323
324 HW = matrix(SR, 2^q, 2^q)

325
326 for i in range(q+1):

327 for j in range(binomial(q, i)):

328 for k in range(binomial(q, i)):

329 HW[j+F(i), k+F(i)] = h[i][j,k]

330
331 #Computing SveStar as a matrix for the total bundle.

332
333 SVEstr = (HW*( SVEbar)*(HW.inverse ())).transpose ()

334
335 # We create purely symbol versions of the x coordinates to speed up the computation of the

sve* coefficients.

336
337 X = {(i): var("X_{}".format(i), latex_name="X_{}") for i in range (2*p*q)}

338
339 # Now we turn the entries of SVEstr into mixed forms. The notation is setup so that Cform[i

][j][k] means the kth coefficient

340 # of the action of svestar on the jth vector of the ith wedge.

341
342 Cform = [[[M.mixed_form(comp =([ SVEstr[k+F(i+1),j+F(i)]]+P)) for k in range(binomial(q,i+1))]

for j in range(binomial(q, i))] for i in range(q)]

343
344 Cform [0][0][0]

345
346 # Here we pre -compute the exterior derivatives as they will probably be called upon anumber

of times , first some labels.

347 # dC is going to be the mixed form differential of the C coefficients , so first we creat

diff_forms dCdiff.

348
349 dCdiff = [[[M.diff_form (1, name=’dCdiff_ {}{}’.format(i,j,k)) for k in range(binomial(q,i+1))

] for j in range(binomial(q,i))] for i in range(q)]

350
351 dC = {(i,j,k): var("dC_ {}{}{}".format(i,j,k), latex_name="dC_ {{{}{}{}}}".format(i,j,k)) for

i in range(q) for j in range(binomial(q,i)) for k in range(binomial(q,i+1))}

352
353 for i in range(q):

354 for j in range(binomial(q,i)):

355 for k in range(binomial(q,i+1)):

356 for l in range (2*p*q):

357 dCdiff[i][j][k][l] = (diff(Cform[i][j][k][0]. expr().subs({x[m] : X[m] for m

in range (2*p*q)}),X[l])).subs({X[n] : 0 for n in range (2*p*q)})

358
359 for i in range(q):
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360 for j in range(binomial(q,i)):

361 for k in range(binomial(q,i+1)):

362 dC[i,j,k] = M.mixed_form(comp =([0]+[ dCdiff[i][j][k]]+Q))

363
364 # Setting up a labelling for the entries of the inverse Hermitian matrices as mixed forms.

365
366 Hinv = {(i): var("H_{}".format(i)) for i in range(q+1)}

367
368 #Setting the components for the mixed -form version of the matrices.

369
370 for i in range(q+1):

371 Hinv[i] = [[M.mixed_form(comp =([ hinv[i][j,k]]+P)) for j in range(binomial(q, i))] for k

in range(binomial(q, i))]

372
373 # Setting up a labelling for the inverse Hermitian matrices as matrices of mixed forms.

374
375 Hminv = {(i): var("H_{}".format(i)) for i in range(q+1)}

376
377 # Initializing the inverse Hermitian matrices as mixed forms.

378
379 for i in range(q+1):

380 Hminv[i] = matrix(M.mixed_form_algebra (), binomial(q, i), binomial(q, i))

381
382 # Setting the components of the inverse Hermitian mixed form matrices.

383
384 for i in range(q+1):

385 for j in range(binomial(q, i)):

386 for k in range(binomial(q, i)):

387 Hminv[i][j,k] = Hinv[i][j][k]

388
389 # Making a list to label the differentials of Hermitian matrices as mixed form matrices.

390
391 dH = {(i): var("dH_{}".format(i)) for i in range(q+1)}

392
393 # Initializing entries of derivative Hermitian matrices as 1-forms.

394
395 for i in range(q+1):

396 dH[i] = [[M.diff_form(1, name=’dh_ {}{}’.format(j, k)) for j in range(binomial(q, i))]

for k in range(binomial(q,i))]

397
398 # Setting the components of the 1-forms.

399
400 for i in range(q+1):

401 for j in range(binomial(q, i)):

402 for k in range(binomial(q, i)):
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403 for l in range((p*q)):

404 dH[i][j][k][eU ,l] = diff(h[i][j, k], x[l])

405
406 # Making labels for the mixed form Hermitian derivative matrices.

407
408 DH = {(i): var("DH_{}".format(i)) for i in range(q+1)}

409
410 # Setting the components of the mixed forms for the matrix entries of the derivative of the

Hermitian matrices.

411
412 for i in range(q+1):

413 DH[i] = [[M.mixed_form(comp =([0]+[ dH[i][j][k]]+Q)) for k in range(binomial(q, i))] for j

in range(binomial(q, i))]

414
415 # Making a list of variables to label the matrices of derivatives of Hermitin matrices as

mixed matrices.

416
417 DHm = {(i): var("DHm_{}".format(i)) for i in range(q+1)}

418
419 # Initializing matrices to be the derivatives of the Hermitian form matrices.

420
421 for i in range(q+1):

422 DHm[i] = matrix(M.mixed_form_algebra (), binomial(q, i), binomial(q, i))

423
424 # Setting the components of the derivatives of the Hermitian matrcies as mixed matrices.

425
426 for i in range(q+1):

427 for j in range(binomial(q, i)):

428 for k in range(binomial(q, i)):

429 DHm[i][j,k] = DH[i][j][k]

430
431 # Setting labels for the connections matrices.

432
433 omega = {(i): var("DHm_{}".format(i)) for i in range(1,q+1)}

434
435 # Computing the connection matrices.

436
437 for i in range(q+1):

438 omega[i]=Hminv[i]*DHm[i]

439
440 # Creating a list of variables to index curvature matrix entries.

441
442 o = {(i): var("o_{}".format(i)) for i in range(q+1)}

443
444 # Initializing 2-forms for the curvature matrices.
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445
446 for i in range(q+1):

447 o[i] = [[M.diff_form (2, name=’o_{}{}’.format(j, k)) for k in range(binomial(q, i))] for

j in range(binomial(q,i))]

448
449 # setting the components of the 2-forms to be the derivatives of the components of the

connection matrices.

450
451 for i in range(q+1):

452 for j in range(binomial(q,i)):

453 for k in range(binomial(q,i)):

454 for l in range(p*q):

455 for m in range(p*q, 2*p*q):

456 o[i][j][k][eU, m, l] = diff(omega[i][j,k][1][l].expr(), x[m])

457
458 #Creating a list of zeros for indexing mixed forms.

459
460 R = []

461 for i in range ((2*p*q) -2):

462 R.append (0)

463
464 # Creating labels for the mixed -forms of the curvature matrix.

465
466 O = {(i): var("o_{}".format(i)) for i in range(q+1)}

467
468 # Defining the mixed forms.

469
470 for i in range(q+1):

471 O[i] = [[M.mixed_form(comp =([0 ,0]+[o[i][j][k]]+R)) for j in range(binomial(q, i))] for k

in range(binomial(q, i))]

472
473 # Defining labels for the mixed form curvature matrices.

474
475 Omega = {(i): var("Omega_ {}".format(i)) for i in range(q+1)}

476
477 # Initializng the curvature matrices of mixed forms.

478
479 for i in range(q+1):

480 Omega[i] = matrix(M.mixed_form_algebra (), binomial(q, i), binomial(q, i))

481
482 # Setting the components of the mixed form curvature matrices.

483
484 for i in range(q+1):

485 for j in range(binomial(q,i)):

486 for k in range(binomial(q,i)):
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487 Omega[i][j,k] = O[i][j][k]

488 # We will break the computation of r_1 up into several small parts letting Svs mean SvStar ,

O omega , and d for d,

489 # we will look at dSv , SvO , OSv , dSvs , SvsO , OSvs. We will write these as matrices , and

then add them altogether.

490 # Note that the index i indicates coming from the ith component , and moving to either the i

-1 componet for Sv terms , or the

491 # i+1 component for Svs terms.

492
493 dSv = {(i): var("NabSvd_ {}".format(i), latex_name="dSv_ {{}}".format(i)) for i in range(1, q

+1)}

494
495 OSv = {(i): var("NabSvd_ {}".format(i), latex_name="dSv_ {{}}".format(i)) for i in range(1, q

+1)}

496
497 SvO = {(i): var("NabSvd_ {}".format(i), latex_name="dSv_ {{}}".format(i)) for i in range(1, q

+1)}

498
499 dSvs = {(i): var("NabSvd_ {}".format(i), latex_name="dSv_ {{}}".format(i)) for i in range(q)}

500
501 OSvs = {(i): var("NabSvd_ {}".format(i), latex_name="dSv_ {{}}".format(i)) for i in range(q)}

502
503 SvsO = {(i): var("NabSvd_ {}".format(i), latex_name="dSv_ {{}}".format(i)) for i in range(q)}

504
505 # I initialize these as matrices.

506
507 for i in range(1,q+1):

508 dSv[i] = matrix(M.mixed_form_algebra (), binomial(q, i-1), binomial(q,i))

509
510 for i in range(1,q+1):

511 OSv[i] = matrix(M.mixed_form_algebra (), binomial(q, i-1), binomial(q,i))

512
513 for i in range(1,q+1):

514 SvO[i] = matrix(M.mixed_form_algebra (), binomial(q, i-1), binomial(q,i))

515
516 for i in range(q):

517 dSvs[i] = matrix(M.mixed_form_algebra (), binomial(q, i+1), binomial(q,i))

518
519 for i in range(q):

520 OSvs[i] = matrix(M.mixed_form_algebra (), binomial(q, i+1), binomial(q,i))

521
522 for i in range(q):

523 SvsO[i] = matrix(M.mixed_form_algebra (), binomial(q, i+1), binomial(q,i))

524
525 # Finally , I compute their components.
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526
527 for i in range(1, q+1):

528 for j in range(binomial(q, i)):

529 for z in L[i][j]:

530 templist = []

531 for w in L[i][j]:

532 if w != z:

533 templist.append(w)

534 dSv[i][L[i-1]. index(templist), j] = (-1)^(L[i][j]. index(z))*dSve[z]

535
536 for i in range(1,q+1):

537 for j in range(binomial(q,i)):

538 for k in range(binomial(q, i-1)):

539 Sum = 0

540 for l in L[i][j]:

541 templist = []

542 for m in L[i][j]:

543 if m != l:

544 templist.append(m)

545 Sum += (-1)^(L[i][j].index(l))*Sve[l]* omega[i-1][k, L[i-1]. index(templist)]

546 OSv[i][k,j] = Sum

547
548 # This one has not been checked by hand for p=2.

549
550 for i in range(1,q+1):

551 for j in range(binomial(q,i)):

552 for k in range(binomial(q,i)):

553 for l in L[i][k]:

554 templist = []

555 for m in L[i][k]:

556 if m != l:

557 templist.append(m)

558 SvO[i][L[i-1]. index(templist), j] += (-1)^(L[i][k]. index(l))*omega[i][k,j]*

Sve[l]

559
560 for i in range(q):

561 for j in range(binomial(q,i)):

562 for k in range(binomial(q,i+1)):

563 dSvs[i][k,j] = dC[(i,j,k)]

564
565 for i in range(q):

566 for j in range(binomial(q,i)):

567 for k in range(binomial(q,i+1)):

568 Sum = 0

569 for l in range(binomial(q,i+1)):
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570 Sum += Cform[i][j][l]* omega[i+1][k,l]

571 OSvs[i][k,j] = Sum

572
573 for i in range(q):

574 for j in range(binomial(q,i)):

575 for k in range(binomial(q,i+1)):

576 Sum = 0

577 for l in range(binomial(q,i)):

578 Sum += omega[i][l,j]*Cform[i][l][k]

579 SvsO[i][k,j] = Sum

580
581 # Setting labels for the matrices describing when r_1 move up or down from wedge i.

582
583 r1down = {(i): var("r1down_ {}".format(i), latex_name="r1down_ {{}}".format(i)) for i in range

(1,q+1)}

584
585 r1up = {(i): var("r1up_{}".format(i), latex_name="r1up_ {{}}".format(i)) for i in range(q)}

586
587 for i in range(1,q+1):

588 r1down[i] = matrix(M.mixed_form_algebra (), binomial(q,i-1), binomial(q,i))

589
590 for i in range(q):

591 r1up[i] = matrix(M.mixed_form_algebra (), binomial(q,i+1), binomial(q,i))

592
593 for i in range(1,q+1):

594 r1down[i] = dSv[i]+OSv[i]+SvO[i]

595
596 for i in range(q):

597 r1up[i] = dSvs[i]+OSvs[i]+SvsO[i]

598
599 # Initializing r_1.

600
601 r_1 = matrix(M.mixed_form_algebra (), 2^q, 2^q)

602
603 # Setting the entries of r_1. .

604
605 for i in range(1,q+1):

606 for j in range(binomial(q, i-1)):

607 for k in range(binomial(q,i)):

608 r_1[j+F(i-1),k+F(i)] += r1down[i][j,k]

609
610 for i in range(q):

611 for j in range(binomial(q, i+1)):

612 for k in range(binomial(q, i)):

613 r_1[j+F(i+1), k+F(i)] += r1up[i][j,k]
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614
615 # Initializing the 2-component of the curvature.

616
617 r_2 = matrix(M.mixed_form_algebra (), 2^q, 2^q)

618
619 # Setting the entries of the 2-component of the curvature , from the entires of the separate

curvature matrices.

620
621 for i in range(q+1):

622 for j in range(binomial(q,i)):

623 for k in range(binomial(q,i)):

624 r_2[j+F(i),k+F(i)] = Omega[i][j,k]

625
626
627 r_1EvalDForm = [[M.diff_form (1, name=’r_1EvalDForm_ {}{}’.format(i,j)) for j in range (2^q)]

for i in range (2^q)]

628
629 for i in range (2^q):

630 for j in range (2^q):

631 for k in range (2*p*q):

632 r_1EvalDForm[i][j][k] = r_1[i,j][1][k].expr().subs({x[i] : 0 for i in range (2*p*

q)})

633
634 r_1EvalMForm = [[M.mixed_form(comp =([0]+[ r_1EvalDForm[i][j]]+Q)) for j in range (2^q)] for i

in range (2^q)]

635
636 r_2EvalDForm = [[M.diff_form (2, name=’r_2EvalDForm_ {}{}’.format(i,j)) for j in range (2^q)]

for i in range (2^q)]

637
638 for i in range (2^q):

639 for j in range (2^q):

640 for l in range(p*q):

641 for m in range(p*q, 2*p*q):

642 r_2EvalDForm[i][j][m, l] = r_2[i,j][2][m, l].expr().subs({x[z] : 0 for z in

range (2*p*q)})

643
644 r_2EvalMForm = [[M.mixed_form(comp =([0, 0]+[ r_2EvalDForm[i][j]]+R)) for j in range (2^q)] for

i in range (2^q)]

645
646
647 # Here we evaluate the matrices at the origin which belongs to our manifold , thus reducing

the runtimes. Note that we could

648 # replace this with evaluation at any other point.

649
650 r_1Eval = matrix(M.mixed_form_algebra (), 2^q, 2^q)
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651 r_2Eval = matrix(M.mixed_form_algebra (), 2^q, 2^q)

652
653 for i in range (2^q):

654 for j in range (2^q):

655 r_1Eval[i,j] = r_1EvalMForm[i][j]

656 r_2Eval[i,j] = r_2EvalMForm[i][j]

657
658
659 abc = [[[]] ,[[1] , [2]]]

660
661 for i in range(2, 2*p*q+1):

662 abcd = [1, 2]

663 add = []

664 for j in Tuples(abcd , i).list():

665 Sum = 0

666 for k in j:

667 Sum += k

668 if Sum == 2*(q-1) or Sum == 2*q:

669 add.append(j)

670 abc.append(add)

671
672 def is_cyc_perm (list1 , list2):

673 if len (list1) == len (list2):

674 for shift in range (len (list1)):

675 for i in range (len (list1)):

676 if list1 [i] != list2 [(i + shift) % len (list1)]:

677 break

678 else:

679 return True

680 else:

681 return False

682 else:

683 return False

684
685 # Now we sift through Rnew , realizing that pairs of elements which are cyclic permutations

of each other obtained by swapping

686 # the order of multiplication of endomorphisms , are in fact the same. (This only holds for

even endos , which r_1 and r_2 are).

687 # I let it run over j so many times because I found running it once or twice it

688 # might miss an equivalence. I think I have it so that it runs an appropriate number of

times so that everything will be

689 # accounted for.

690
691 for j in range(binomial ((2*p*q+1), floor ((2*p*q+1) /2))):

692 for i in range(2, 2*p*q+1):
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693 for z in abc[i]:

694 for w in abc[i]:

695 if is_cyc_perm(z,w):

696 abc[i]. remove(w)

697 abc[i]. append(z)

698
699 # We create UR to be the union of Rnew , and then we shuffle things to make sure it always

begins with a 1.

700
701 UR = []

702 for thing in abc:

703 for stuff in thing:

704 if stuff != []:

705 UR.append(stuff)

706
707 for item in UR:

708 for i in range(len(item)):

709 if item [0] == 2:

710 item.remove (2)

711 item.append (2)

712
713 # UR cond creates a list which is UR with duplicates removed.

714
715 URcond = []

716 for i in UR:

717 add = True

718 for (j,k) in URcond:

719 if i == j:

720 add = False

721 if add:

722 One_Counter = 0 # this counts the number of 1’s, because 2mod 4 r_1’s gives minus ,

while 0mod 4 give +.

723 for l in i:

724 if l == 1:

725 One_Counter += 1

726 URcond.append ((i, One_Counter % 4))

727
728 # URmult is a list that keeps track of the multiplicities of the elements of UR.

729
730 URmult = []

731 for (i,j) in URcond:

732 count = 0

733 for k in UR:

734 if i == k:

735 count = count + 1
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736 URmult.append (((i,j), count))

737
738 # URlen organizes URmult into collections based on number of matrix factors. (which affects

the constant out in front)

739
740 URlen = []

741 for i in range (2*p*q+1):

742 URlen.append ([])

743 for ((j,k),l) in URmult:

744 URlen[len(j)]. append (((j,k),l))

745
746 for i in range (2^q):

747 for j in range (2^q):

748 r_1Eval[i, j] = (I*sqrt (2*pi))*r_1Eval[i, j]

749
750 # Labelling r_1 and r_2 so that they can be called upon and computed from Rnew’s

arrangements.

751
752 RListTracker = {(i): var("R_{}".format(i), latex_name="R_{{}}".format(i)) for i in range

(1,3)}

753 RListTracker [1] = r_1Eval

754 RListTracker [2] = r_2Eval

755
756 # Intiailizing a mixed form identity matrix.

757
758 Idform = M.mixed_form(comp =([1]+P))

759
760 IdMat = matrix(M.mixed_form_algebra (), 2^q, 2^q)

761
762 for i in range (2^q):

763 IdMat[i,i] = Idform

764
765 # Setting up the first two terms of the taylor expansion of exp , however we don’t write r_1

because it vanishes in the

766 # supertrace(s).

767
768 E = IdMat+r_2Eval

769
770 # This computes the actual product of the powers of r_1+r_2 , but instead of using URlen in

previous programs , we run this with

771 # UR2q2 making it faster to compute the 2q-2 degree part of nu.

772
773 for i in range(2, 2*p*q+1):

774 fac = factorial(i)

775 for ((j,k),l) in URlen[i]:
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776 prod = IdMat

777 for m in j:

778 prod = prod*RListTracker[m]

779 if k == 0:

780 E += (prod.apply_map(lambda s: l*((1/ fac))*s))

781 else:

782 E += (prod.apply_map(lambda s: -l*((1/ fac))*s))

783 SuperTrace = 0

784 for i in range(q+1):

785 if (i % 2) == 0:

786 for j in range(binomial(q, i)):

787 SuperTrace += E[j+F(i), j+F(i)]

788 else:

789 for j in range(binomial(q, i)):

790 SuperTrace -= E[j+F(i), j+F(i)]

791
792 SuperTraceN = 0

793 for i in range(q+1):

794 if (i % 2) == 0:

795 for j in range(binomial(q, i)):

796 SuperTraceN -= i*E[j+F(i), j+F(i)]

797 else:

798 for j in range(binomial(q, i)):

799 SuperTraceN += i*E[j+F(i), j+F(i)]

800
801 # Setting up the scalar term.

802
803 r_00 = 0

804 for i in range(q):

805 r_00 += (SVEstr[i+1,0]* sve[i])

806
807 r_0 = r_00.subs({x[j] : 0 for j in range (2*p*q)})

808 r_0 = (-2*pi)*r_0

809
810 QQ = 0

811 for i in range(p):

812 QQ += v[(0, i)]*v[(1, i)]

813 for i in range(p, p+q):

814 QQ -= v[(0, i)]*v[(1, i)]

815
816 # We give Phi and Nu only in the relevent degrees.

817
818 Phi = exp(-pi*QQ)*((I/(2*pi))^q)*exp(r_0)*SuperTrace [2*q]

819 Nu = exp(-pi*QQ)*((I/(2*pi))^(q-1))*exp(r_0)*SuperTraceN [2*(q-1)]

820 # Defining the pieces of the operators to act on Phi and Nu, which suffices for the
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eigenvalue conditions.

821
822
823 Phi.display(eU)

824 def Dp(i,j,k,f):

825 return ((v[(i,k)]*f)+((1/pi)*diff(f,v[(j, k)])))

826
827 def Dm(i,j,k,f):

828 return ((v[(i,k)]*f) -((1/pi)*diff(f,v[(j, k)])))

829
830 def Opr_Alpha1(f):

831 Sum = 0

832 for i in range(p):

833 Sum += Dm(1,0,i,Dp(0,1,i,f))

834 return ((pi)/2)*Sum

835
836 def Opr_Alpha2(f):

837 Sum = 0

838 for i in range(p):

839 Sum += Dm(0,1,i,Dp(1,0,i,f))

840 return ((pi)/2)*Sum

841
842 def Opr_Mu1(f):

843 Sum = 0

844 for i in range(p,p+q):

845 Sum -= Dm(0,1,i,Dp(1,0,i,f))

846 return ((pi)/2)*Sum

847
848 def Opr_Mu2(f):

849 Sum = 0

850 for i in range(p,p+q):

851 Sum -= Dm(1,0,i,Dp(0,1,i,f))

852 return ((pi)/2)*Sum

853
854 def OP(f):

855 return Opr_Alpha1(f)+Opr_Alpha2(f)+Opr_Mu1(f)+Opr_Mu2(f)+(p-q)*f

856
857 # Here we break the very operators from above open into different pieces in order to analyze

the separate actions , which in turn

858 # should help us prove the r>1 case for Phi.

859
860 PhiPart_Alpha1 = [M.diff_form (2*q, name=’PhiPartAlpha1_ {}’.format(i)) for i in range(len(

WedgeList [2*q]))]

861 for j in range(len(WedgeList [2*q])):

862 PhiPart_Alpha1[j][ WedgeList [2*q][j]] = Opr_Alpha1(Phi[WedgeList [2*q][j]]. expr())
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863
864 OprPhi_Alpha1 = 0

865 for k in range(len(WedgeList [2*q])):

866 OprPhi_Alpha1 += PhiPart_Alpha1[k]

867
868 PhiPart_Alpha2 = [M.diff_form (2*q, name=’PhiPartAlpha2_ {}’.format(i)) for i in range(len(

WedgeList [2*q]))]

869 for j in range(len(WedgeList [2*q])):

870 PhiPart_Alpha2[j][ WedgeList [2*q][j]] = Opr_Alpha2(Phi[WedgeList [2*q][j]]. expr())

871
872 OprPhi_Alpha2 = 0

873 for k in range(len(WedgeList [2*q])):

874 OprPhi_Alpha2 += PhiPart_Alpha2[k]

875
876 PhiPart_Mu1 = [M.diff_form (2*q, name=’PhiPartMu1_ {}’.format(i)) for i in range(len(WedgeList

[2*q]))]

877 for j in range(len(WedgeList [2*q])):

878 PhiPart_Mu1[j][ WedgeList [2*q][j]] = Opr_Mu1(Phi[WedgeList [2*q][j]]. expr())

879 OprPhi_Mu1 = 0

880 for k in range(len(WedgeList [2*q])):

881 OprPhi_Mu1 += PhiPart_Mu1[k]

882
883 PhiPart_Mu2 = [M.diff_form (2*q, name=’PhiPartMu2_ {}’.format(i)) for i in range(len(WedgeList

[2*q]))]

884 for j in range(len(WedgeList [2*q])):

885 PhiPart_Mu2[j][ WedgeList [2*q][j]] = Opr_Mu2(Phi[WedgeList [2*q][j]]. expr())

886
887 OprPhi_Mu2 = 0

888 for k in range(len(WedgeList [2*q])):

889 OprPhi_Mu2 += PhiPart_Mu2[k]

890 if OprPhi_Alpha1 == q*Phi:

891 print(’Eigen’)

892 else:

893 print(’no’)

894 if OprPhi_Alpha2 == q*Phi:

895 print(’Eigen’)

896 else:

897 print(’no’)

898 if OprPhi_Mu1 == 0:

899 print(’killed ’)

900 else:

901 print(’no’)

902 if OprPhi_Mu2 == 0:

903 print(’killed ’)

904 else:
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905 print(’no’)

906 # Here we break the very operators from above open into different pieces in order to analyze

the separate actions , which in turn

907 # should help us prove the r>1 case for Nu.

908
909 if q == 1:

910 OprNu_Alpha1 = Opr_Alpha1(Nu.expr())

911 else:

912 NuPart_Alpha1 = [M.diff_form (2*(q-1), name=’NuPart_ {}’.format(i)) for i in range(len(

WedgeList [2*(q-1)]))]

913 for i in range(len(WedgeList [2*(q-1)])):

914 NuPart_Alpha1[i][ WedgeList [2*(q-1)][i]] = Opr_Alpha1(Nu[WedgeList [2*(q-1)][i]]. expr

())

915 OprNu_Alpha1 = 0

916 for i in range(len(WedgeList [2*(q-1)])):

917 OprNu_Alpha1 += NuPart_Alpha1[i]

918
919 if q == 1:

920 OprNu_Alpha2 = Opr_Alpha2(Nu.expr())

921 else:

922 NuPart_Alpha2 = [M.diff_form (2*(q-1), name=’NuPart_ {}’.format(i)) for i in range(len(

WedgeList [2*(q-1)]))]

923 for i in range(len(WedgeList [2*(q-1)])):

924 NuPart_Alpha2[i][ WedgeList [2*(q-1)][i]] = Opr_Alpha2(Nu[WedgeList [2*(q-1)][i]]. expr

())

925 OprNu_Alpha2 = 0

926 for i in range(len(WedgeList [2*(q-1)])):

927 OprNu_Alpha2 += NuPart_Alpha2[i]

928
929 if q == 1:

930 OprNu_Mu1 = Opr_Mu1(Nu.expr())

931 else:

932 NuPart_Mu1 = [M.diff_form (2*(q-1), name=’NuPart_ {}’.format(i)) for i in range(len(

WedgeList [2*(q-1)]))]

933 for j in range(len(WedgeList [2*(q-1)])):

934 NuPart_Mu1[j][ WedgeList [2*(q-1)][j]] = Opr_Mu1(Nu[WedgeList [2*(q-1)][j]]. expr())

935 OprNu_Mu1 = 0

936 for k in range(len(WedgeList [2*(q-1)])):

937 OprNu_Mu1 += NuPart_Mu1[k]

938
939 if q == 1:

940 OprNu_Mu2 = Opr_Mu2(Nu.expr())

941 else:

942 NuPart_Mu2 = [M.diff_form (2*(q-1), name=’NuPart_ {}’.format(i)) for i in range(len(

WedgeList [2*(q-1)]))]
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943 for j in range(len(WedgeList [2*(q-1)])):

944 NuPart_Mu2[j][ WedgeList [2*(q-1)][j]] = Opr_Mu2(Nu[WedgeList [2*(q-1)][j]]. expr())

945 OprNu_Mu2 = 0

946 for k in range(len(WedgeList [2*(q-1)])):

947 OprNu_Mu2 += NuPart_Mu2[k]

948
949 if OprNu_Alpha1 == (q-1)*Nu:

950 print(’Eigen’)

951 else:

952 print(’no’)

953
954 if OprNu_Alpha2 == (q-1)*Nu:

955 print(’Eigen’)

956 else:

957 print(’no’)

958
959 if OprNu_Mu1 == 0:

960 print(’killed ’)

961 else:

962 print(’no’)

963
964 if OprNu_Mu2 == 0:

965 print(’killed ’)

966 else:

967 print(’no’)

968 # Here begins the r = 2 code.

969 # We want to deal with the case when r>1 now , so we set up a list of r vectors indexed by

the first coordinate , the second

970 # controls conjuagtion , and the third is the component. That is, vr[i,0,k] is the kth

component of the ith vector , and v[i,1,k]

971 # is its conjugate.

972
973 vr = {(i,j,k): var("v_ {}{}{}".format(i,j,k), latex_name="v_ {{{}{}{}}}") for i in range (2)

for j in range (2) for k in range(p+q)}

974 # Everything seems to work fine here , but in other versions it doesn’t like that we index

the scalar part of PhiForm and NuForm.

975 # This should get changed eventually , but for now I’ll just focus on updating it in Copy5 -

Copy2.

976
977 # Now we set up a protocol to compute Phi(v_i), by simply replacing the instances of v[i,j]

with the appropriate instance of

978 # vr[j,k,l]. So we want a list Phiv[i], each of which is a mixed form , being Phi with all

the v[i,j] swapped out. Thus we

979 # first need to build differential forms for each component.

980



103

981 # Then we set -up the differential forms.

982
983 PhivForm = M.diff_form (2*q)

984
985 NuvForm = M.diff_form (2*(q-1))

986
987 for k in WedgeList [2*q]:

988 PhivForm[k] = ((Phi[k].expr()).subs({v[0,l] : vr[0,0,l] for l in range(p+q)})).subs({v

[1,m] : vr[0,1,m] for m in range(p+q)})

989
990 if q == 1:

991 NuvForm = ((Nu.expr()).subs({v[0,l] : vr[1,0,l] for l in range(p+q)})).subs({v[1,m] : vr

[1,1,m] for m in range(p+q)})

992 else:

993 for k in WedgeList [2*(q-1)]:

994 NuvForm[k] = ((Nu[k].expr()).subs({v[0,l] : vr[1,0,l] for l in range(p+q)})).subs({v

[1,m] : vr[1,1,m] for m in range(p+q)})

995
996 # In the original we compute Nu(v), but We’ll set up a List NuV , where NuV[i] is the i’th

term , that is

997 # NuV[i]=Nu(v_i)^Phi(v_1)^...^ Phi(v_{i-1})^Phi(v_{i+1}) ^... Phi(v_r).

998 # However , we really only care about the piece with highest weight , being NuV[r-1]

999
1000 if q == 1:

1001 NuV = NuvForm*PhivForm

1002 else:

1003 NuV = NuvForm.wedge(PhivForm)

1004 # Here we try to develop the operators for Appendix B Funke -Hoffman , that may may analyze r

>1. First we define delta functions.

1005
1006 delta = matrix(SR, 2, 2)

1007
1008 for i in range (2):

1009 delta[i,i] = 1

1010 # Now we start to build the operators piece by piece. Since it doesn’t affect the form

degree , we can first define the operator

1011 # as acting on the scalar parts , and then worry about stitching it together into a mixed

form.

1012
1013 # This first operator is the terms of the sum of for the first p terms.

1014
1015 def WOa(i,j,f):

1016 Sum = 0

1017 for k in range(p):

1018 Sum += vr[j,1,k]*(vr[i,0,k]*f+(1/pi)*diff(f,vr[i,1,k])) - (1/pi)*diff(vr[i,0,k]*f
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+(1/pi)*diff(f,vr[i,1,k]),vr[j,0,k])

1019 for l in range(p,p+q):

1020 Sum -= vr[i,0,l]*(vr[j,1,l]*f+(1/pi)*diff(f,vr[j,0,l])) - (1/pi)*diff(vr[j,1,l]*f

+(1/pi)*diff(f,vr[j,0,l]),vr[i,1,l])

1021 return ((pi/2)*Sum + ((p-q)/2)*delta[i,j]*f)

1022
1023 def WOu(i,j,f):

1024 Sum = 0

1025 for k in range(p):

1026 Sum+= vr[i,0,k]*(vr[j,1,k]*f+(1/pi)*diff(f,vr[j,0,k])) - (1/pi)*diff(vr[j,1,k]*f+(1/

pi)*diff(f,vr[j,0,k]), vr[i,1,k])

1027 for l in range(p,p+q):

1028 Sum -= vr[j,1,l]*(vr[i,0,l]*f+(1/pi)*diff(f,vr[i,1,l])) - (1/pi)*diff(vr[i,0,l]*f

+(1/pi)*diff(f,vr[i,1,l]), vr[j,0,l])

1029 return -((pi/2)*Sum - ((p-q)/2)*delta[i,j]*f)

1030 # Okay ... Things are going weird here with the roots , trying to find out when they really

get killed.

1031
1032 Kila = True

1033
1034 for i in WedgeList [2*(2*q-1)]:

1035 if (WOa(1,0,NuV[i].expr())).expand () == 0:

1036 pass

1037 else:

1038 print(i)

1039 Kila = False

1040 print(Kila)

1041 Kilu = True

1042
1043 # Note that there’s an issue here with Sage sometimes the comparison (esp. for forms) !=0

will not register correctly ,

1044 # HOWEVER for some reason == always works , or at least it seems to. Therefore , in the below

I have made a fairly silly looking

1045 # if statement to basically use != via ==.

1046
1047 for i in WedgeList [2*(2*q-1)]:

1048 if (WOu(0, 1,NuV[i].expr())).expand () == 0:

1049 pass

1050 else:

1051 print(i)

1052 Kilu = False

1053 print(Kilu)
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�r, 62
�(v), 56
�r(v), 57
Hermq(ℂ), 54
Hermq(ℂ), 25
Rad(g), 33

Sp2n, 24
'(v), 56
sv, 56
s∗v, 56

almost complex manifold, 8
almost complex structure, 8

Cartan subalgebra, 34
complex structure, 6
Complexification, 9
connection, 10
connection, canonical, 14
cotangent bundle, 9
curvature, 11

differential, 5

fiber, 3

Hermitian inner product, 13
Hermitian metric, vector bundle, 14
Hermitian vector bundle, 14
highest weight, 41
highest weight vector, 23, 34
homogeneous, 15

ideal, Lie algebra, 31
integrable, 10

Jacobi identity, 28
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Jacobian, 5

Killing form, 35
Koszul complex, 56
Kudla-Millson form, 1

Lie algebra, 28
Lie group, 23, 40
Lie group, morphism of, 24
Lie subgroup, 24
local frame, 5

pullback bundle, 4
pullback, superconnection, 21
push-forward, 5

radical, Lie algebra, 33
representation, Lie group, 27
root spaces, 34
root vectors, 34
roots, 34

Schwartz function, 51
Schwartz Space, 1
Schwartz space, 40
Semi-simple, 33
skew-Hermitian, 41
solvable, 33
standard basis, 52
structure constants, 31
subalgebra, 28
super vector bundle, 17
super vector space, 15
superalgebra, 15
supercommutator, 15
superconnection, 3, 20
superconnections, 1
supercurvature, 21
supertrace, 16

supertrace, vector bundle, 20
symmetric space, 1
symplectic form, 40
symplectic group, 24

tangent bundle, 6
tangent space, 5
tautological bundle, 55, 71
tensor product, representations, 33
transition function, 4
trivialization, 3

underlying smooth manifold, 7

Vacuum vector, 45
vector bundle, 3

Weil representation, 1, 23, 39, 45
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